1
|
Baskar A, Madhivanan K, Atchudan R, Arya S, Sundramoorthy AK. Nanoparticle electrochemical biosensors for virus detection. Clin Chim Acta 2025; 566:120054. [PMID: 39551230 DOI: 10.1016/j.cca.2024.120054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Viruses pose a significant threat to global public health, underscoring the urgent need for rapid, accurate, and sensitive diagnostic methods for timely detection and intervention. The demand for efficient diagnostics that can detect a wide range of viral pathogens has never been greater. In this context, metal nanoparticle-based biosensors have emerged as a promising solution, offering exceptional sensitivity for detecting various analytes, including nucleic acids (DNA/RNA), proteins, and other biomarkers associated with pathogens. These biosensors are particularly critical for the development of point-of-care (POC) diagnostic tools, enabling early detection of infectious agents. This review explores recent advancements in nanoparticle (NP)-based biosensors that utilize noble metals like gold (Au), silver (Ag), and platinum (Pt) for viral pathogen detection, focusing on viruses such as SARS-CoV, HIV, hepatitis, influenza, and Zika. It highlights the role of NP-based electrochemical sensors and compares traditional and contemporary detection techniques. The review also examines key performance metrics such as limits of detection (LOD), linear detection ranges, cost-effectiveness, and accessibility, with a special emphasis on their application in POC diagnostics. The aim is to provide researchers with valuable insights into the development of next-generation NP-based biosensors, facilitating the creation of innovative diagnostic technologies for viral diseases.
Collapse
Affiliation(s)
- Anandavalli Baskar
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Keerthana Madhivanan
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
2
|
Tackling the challenges of developing microneedle-based electrochemical sensors. Mikrochim Acta 2022; 189:440. [DOI: 10.1007/s00604-022-05510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
|
3
|
Hatamluyi B, Rezayi M, Amel Jamehdar S, Rizi KS, Mojarrad M, Meshkat Z, Choobin H, Soleimanpour S, Boroushaki MT. Sensitive and specific clinically diagnosis of SARS-CoV-2 employing a novel biosensor based on boron nitride quantum dots/flower-like gold nanostructures signal amplification. Biosens Bioelectron 2022; 207:114209. [PMID: 35339072 PMCID: PMC8938305 DOI: 10.1016/j.bios.2022.114209] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023]
Abstract
The sudden increase of the COVID-19 outbreak and its continued growth with mutations in various forms has created a global health crisis as well as devastating social and economic effects over the past two years. In this study, a screen-printed carbon electrode reinforced with boron nitride quantum dots/flower-like gold nanostructures (BNQDs/FGNs/SPCE) and functionalized by highly specific antisense DNA oligonucleotide presents an alternative and promising solution for targeting SARS-CoV-2 RNA without nucleic acid amplification. The platform was tested on 120 SARS-CoV-2 RNA isolated from real clinical samples (60 positive and 60 negative confirmed by conventional RT-PCR method). Based on obtained quantitative results and statistical analysis (box-diagram, cutoff value, receiver operating characteristic curve, and t-test), the biosensor revealed a significant difference between the two positive and negative groups with 100% sensitivity and 100% specificity. To evaluate the quantitation capacity and detection limit of the biosensor for clinical trials, the detection performance of the biosensor for continuously diluted RNA isolated from SARS-CoV-2-confirmed patients was compared to those obtained by RT-PCR, demonstrating that the detection limit of the biosensor is lower than or comparable to that of RT-PCR. The ssDNA/BNQDs/FGNs/SPCE showed negligible cross-reactivity with RNA fragments isolated from Influenza A (IAV) clinical samples and also remained stable for up to 14 days. In conclusion, the fabricated biosensor may serve as a promising tool for point-of-care applications.
Collapse
Affiliation(s)
- Behnaz Hatamluyi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kobra Salimian Rizi
- Isfahan University of Technology, Department of Materials Engineering, Isfahan, Iran
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamzeh Choobin
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taher Boroushaki
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Zou C, Zhang Q, Wei X. Synchronization of Hyper-Lorenz System Based on DNA Strand Displacement. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1897-1908. [PMID: 33385311 DOI: 10.1109/tcbb.2020.3048753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lorenz system is depicted by chemical reaction equations of an ideal formal chemical reaction network, and a series of reversible reactions are added into chemical reaction network in order to construct a cluster of hyper-Lorenz system. DNA as a universal substrate for chemical dynamics can approximate arbitrary dynamical characteristics of ideal formal chemical reaction network through auxiliary DNA strands and displacement reactions. Based on Lyapunov's stableness theory, a novel synchronization strategy is proposed. A 6-dimensional hyper-Lorenz system is taken as examples for simulation and shows that DNA strands displacement reactions can implement the synchronization of ideal formal chemical reaction networks. Numerical simulations indicate that synchronization based on DNA strand displacement is robust to the detection of DNA strand concentration, control of reaction rate, and noise.
Collapse
|
5
|
Moço AC, Neto JA, de Moraes DD, Guedes PH, Brussasco JG, Flauzino JM, Luz LF, Soares MM, Madurro JM, Brito-Madurro AG. Carbon ink-based electrodes modified with nanocomposite as a platform for electrochemical detection of HIV RNA. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Li Z, Xu H, Li S, Wu S, Miao X. Zettomole electrochemical HIV DNA detection using 2D DNA-Au nanowire structure, hemin/G-quadruplex and polymerase chain reaction multi-signal synergistic amplification. Anal Chim Acta 2021; 1159:338428. [PMID: 33867042 DOI: 10.1016/j.aca.2021.338428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023]
Abstract
Multi-signal synergistically amplified electrochemical sensing of HIV DNA was proposed based on two-dimensional (2D) DNA-Au nanowire structure coupled with hemin/G-quadruplex and polymerase chain reaction (PCR). In the design, by using target HIV DNA as the template, PCR generated numbers of double-stranded DNA (dsDNA) with free single-stranded DNA (ssDNA) tails on one side and free G-quadruplex sequences on the other side. Then, the ssDNA tails of the PCR products were hybridized with the capture probe (CP) to introduce the hemin/G-quadruplex to the electrode surface as a redox-active reporter and to amplify the electrochemical signal as mimic peroxidase catalysis in the presence of H2O2. Meanwhile, (+)AuNPs were electrostatically adsorbed onto dsDNA surface for the formation of 2D DNA-Au nanowire structure, amplifying the electrochemical signal further as another mimic peroxidase and electric conductor together. By effectively combining these signal amplification processes, ultrasensitive HIV DNA detection was achieved with a detection limit of 1.3 aM, indicating that it has potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Zongbing Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Huanwen Xu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Shiqiang Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Shujie Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| |
Collapse
|
7
|
Development of an ultrasensitive electrochemical genosensor for detection of HIV-1 pol gene using a gold nanoparticles coated carbon paste electrode impregnated with lead ion-imprinted polymer nanomaterials as a novel electrochemical probe. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Zou C, Zhang Q, Wei X. Compilation of a Coupled Hyper-Chaotic Lorenz System Based on DNA Strand Displacement Reaction Network. IEEE Trans Nanobioscience 2020; 20:92-104. [PMID: 33055027 DOI: 10.1109/tnb.2020.3031360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ideal formal chemical reaction network is an effective programming language to design complex system dynamical behavior. In this article, a coupled hyper-chaotic Lorenz system can be described by the ordinary differential equations of an ideal formal reaction network, which is constructed by catalysis, annihilation and adjust reaction modules, where the variables of system are represented by the difference in concentration of two chemical species. The ideal formal reaction network can be implemented by DNA strand displacement reaction network. Through Lyapunov exponent, we have analyzed hyper-chaotic dynamical behavior of coupled Lorenz system. In discussion and analysis, we have analyzed effect of noise, reaction rate control error and concentration detection error to DNA strand displacement reaction network.
Collapse
|
9
|
Castillo-Henríquez L, Brenes-Acuña M, Castro-Rojas A, Cordero-Salmerón R, Lopretti-Correa M, Vega-Baudrit JR. Biosensors for the Detection of Bacterial and Viral Clinical Pathogens. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6926. [PMID: 33291722 PMCID: PMC7730340 DOI: 10.3390/s20236926] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
Abstract
Biosensors are measurement devices that can sense several biomolecules, and are widely used for the detection of relevant clinical pathogens such as bacteria and viruses, showing outstanding results. Because of the latent existing risk of facing another pandemic like the one we are living through due to COVID-19, researchers are constantly looking forward to developing new technologies for diagnosis and treatment of infections caused by different bacteria and viruses. Regarding that, nanotechnology has improved biosensors' design and performance through the development of materials and nanoparticles that enhance their affinity, selectivity, and efficacy in detecting these pathogens, such as employing nanoparticles, graphene quantum dots, and electrospun nanofibers. Therefore, this work aims to present a comprehensive review that exposes how biosensors work in terms of bacterial and viral detection, and the nanotechnological features that are contributing to achieving a faster yet still efficient COVID-19 diagnosis at the point-of-care.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- National Center for High Technology (CeNAT), National Laboratory of Nanotechnology (LANOTEC), San José 1174-1200, Costa Rica;
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Mariana Brenes-Acuña
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Arianna Castro-Rojas
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Rolando Cordero-Salmerón
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Mary Lopretti-Correa
- Nuclear Research Center, Faculty of Science, Universidad de la República (UdelaR), Montevideo 11300, Uruguay;
| | - José Roberto Vega-Baudrit
- National Center for High Technology (CeNAT), National Laboratory of Nanotechnology (LANOTEC), San José 1174-1200, Costa Rica;
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| |
Collapse
|
10
|
Tavakoli J, Wang J, Chuah C, Tang Y. Natural-based Hydrogels: A Journey from Simple to Smart Networks for Medical Examination. Curr Med Chem 2020; 27:2704-2733. [PMID: 31418656 DOI: 10.2174/0929867326666190816125144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Natural hydrogels, due to their unique biological properties, have been used extensively for various medical and clinical examinations that are performed to investigate the signs of disease. Recently, complex-crosslinking strategies improved the mechanical properties and advanced approaches have resulted in the introduction of naturally derived hydrogels that exhibit high biocompatibility, with shape memory and self-healing characteristics. Moreover, the creation of self-assembled natural hydrogels under physiological conditions has provided the opportunity to engineer fine-tuning properties. To highlight recent studies of natural-based hydrogels and their applications for medical investigation, a critical review was undertaken using published papers from the Science Direct database. This review presents different natural-based hydrogels (natural, natural-synthetic hybrid and complex-crosslinked hydrogels), their historical evolution, and recent studies of medical examination applications. The application of natural-based hydrogels in the design and fabrication of biosensors, catheters and medical electrodes, detection of cancer, targeted delivery of imaging compounds (bioimaging) and fabrication of fluorescent bioprobes is summarised here. Without doubt, in future, more useful and practical concepts will be derived to identify natural-based hydrogels for a wide range of clinical examination applications.
Collapse
Affiliation(s)
- Javad Tavakoli
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia.,School of Biomedical Engineering, University of Technology Sydney, Ultimo, 2007 NSW, Australia
| | - Jing Wang
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia.,Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Institute of Textile Composite, School of Textile, Tianjin Polytechnic University, Tianjin 300387, China
| | - Clarence Chuah
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Youhong Tang
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| |
Collapse
|
11
|
A simple, sensitive and non-enzymatic signal amplification strategy driven by seesaw gate. Anal Chim Acta 2020; 1108:160-166. [DOI: 10.1016/j.aca.2020.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 11/22/2022]
|
12
|
El-Safty S, Shenashen M. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio 2020; 5:100044. [PMID: 32181446 PMCID: PMC7066237 DOI: 10.1016/j.mtbio.2020.100044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Early detection and easy continuous monitoring of emerging or re-emerging infectious, contagious or other diseases are of particular interest for controlling healthcare advances and developing effective medical treatments to reduce the high global cost burden of diseases in the backdrop of lack of awareness regarding advancing diseases. Under an ever-increasing demand for biosensor design reliability for early stage recognition of infectious agents or contagious diseases and potential proteins, nanoscale manufacturing designs had developed effective nanodynamic sensing assays and compact wearable devices. Dynamic developments of biosensor technology are also vital to detect and monitor advanced diseases, such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), diabetes, cancers, liver diseases, cardiovascular diseases (CVDs), tuberculosis, and central nervous system (CNS) disorders. In particular, nanoscale biosensor designs have indispensable contribution to improvement of health concerns by early detection of disease, monitoring ecological and therapeutic agents, and maintaining high safety level in food and cosmetics. This review reports an overview of biosensor designs and their feasibility for early investigation, detection, and quantitative determination of many advanced diseases. Biosensor strategies are highlighted to demonstrate the influence of nanocompact and lightweight designs on accurate analyses and inexpensive sensing assays. To date, the effective and foremost developments in various nanodynamic designs associated with simple analytical facilities and procedures remain challenging. Given the wide evolution of biosensor market requirements and the growing demand in the creation of early stage and real-time monitoring assays, precise output signals, and easy-to-wear and self-regulating analyses of diseases, innovations in biosensor designs based on novel fabrication of nanostructured platforms with active surface functionalities would produce remarkable biosensor devices. This review offers evidence for researchers and inventors to focus on biosensor challenge and improve fabrication of nanobiosensors to revolutionize consumer and healthcare markets.
Collapse
Affiliation(s)
- S.A. El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan
| | | |
Collapse
|
13
|
Zhao W, Liu M, Li H, Wang S, Tang S, Kong RM, Yu R. Ultra-sensitive label-free electrochemical detection of the acute leukaemia gene Pax-5a based on enzyme-assisted cycle amplification. Biosens Bioelectron 2019; 143:111593. [DOI: 10.1016/j.bios.2019.111593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/31/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
|
14
|
Nanomaterials as efficient platforms for sensing DNA. Biomaterials 2019; 214:119215. [DOI: 10.1016/j.biomaterials.2019.05.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
|
15
|
Li Y, Chen H, Dai Y, Chen T, Cao Y, Zhang J. Cellular interface supported toehold strand displacement cascade for amplified dual-electrochemical signal and its application for tumor cell analysis. Anal Chim Acta 2019; 1064:25-32. [PMID: 30982514 DOI: 10.1016/j.aca.2019.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 01/17/2023]
Abstract
In this work, toehold strand displacement cascade (TSDC) has been delicately designed and carried out on the cellular interface for the amplification and output of dual-electrochemical signal. Specifically, antibody cross-linked T strand can recognize cell which is linked with immune-magnetic bead. Subsequently, T strand on the cellular interface can mediate the occurrence of TSDC, resulting the change of SN3/S1-MB to SN3/S2-Fc ratio in the supernatant after magnetic separation. The resultant SN3/S1-MB and SN3/S2-Fc can be immobilized on the electrode interface through click chemistry and give the amplified double electrochemical signal. So the tumor cell amount can closely correlate with the change of the double signal. Except for output of the double signal for improvement of analytical accuracy, the double magnetic separation not only eliminate the interference of the complicated substances in serum, but also remove the influence of cell on click reaction on the electrode interface. So based on cellular interface supported TSDC for amplified dual-electrochemical signal, the established method has been successfully applied to analyze the tumor cells in serum accurately and sensitively.
Collapse
Affiliation(s)
- Yifei Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, PR China
| | - Hong Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China
| | - Yuhao Dai
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China
| | - Tingjun Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China.
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, PR China.
| |
Collapse
|
16
|
Chen A, Zhuo Y, Chai Y, Yuan R. Bipedal DNA walker mediated enzyme-free exponential isothermal signal amplification for rapid detection of microRNA. Chem Commun (Camb) 2019; 55:13932-13935. [DOI: 10.1039/c9cc06214a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work reported an electrochemiluminescence (ECL) biosensor based on a bipedal DNA walker mediated enzyme-free exponential isothermal DNA signal amplification, which achieved sensitive and rapid detection of microRNA (miRNA).
Collapse
Affiliation(s)
- Anyi Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
17
|
Label-free optical biosensor for target detection based on simulation-assisted catalyzed hairpin assembly. Comput Biol Chem 2018; 78:448-454. [PMID: 30545762 DOI: 10.1016/j.compbiolchem.2018.11.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/23/2022]
Abstract
The development of efficient and convenient strategy without involving enzyme or complex nanomaterial for the micro molecules detection has profound meaning in the diagnosis of diseases. Herein, taking the advantages of the strong affinity of aptamer and catalyzed hairpin assembly, we develop a new non-label optical amplified strategy for thrombin detection in this work. To support both biological inquiry and technological innovation, thermodynamic models are introduced to predict the minimum energy secondary structure of interacting nucleic acid strands and calculate the partition function and equilibrium concentration for complexes in our system. Then, the thermodynamics properties of interacting DNA strands and the reactions of toehold strand displacement-driven assembly have been simulated, validating the feasibility of the theory and optimizing the follow-up lab tests. Following that, our strategy for thrombin detection is proved to be feasible and effective in biological experiment. Taken together, such a biosensor has a good potential in bioactive molecules detection and disease diagnosis for future biological research.
Collapse
|