1
|
Xiao X, Ni W, Yang Y, Chen Q, Zhang Y, Sun Y, Liu Q, Zhang GJ, Yao Q, Chen S. Platinum nanowires/MXene nanosheets/porous carbon ternary nanocomposites for in situ monitoring of dopamine released from neuronal cells. Talanta 2024; 278:126496. [PMID: 38996563 DOI: 10.1016/j.talanta.2024.126496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Dopamine is an important neurotransmitter in the body and closely related to many neurodegenerative diseases. Therefore, the detection of dopamine is of great significance for the diagnosis and treatment of diseases, screening of drugs and unraveling of relevant pathogenic mechanisms. However, the low concentration of dopamine in the body and the complexity of the matrix make the accurate detection of dopamine challenging. Herein, an electrochemical sensor is constructed based on ternary nanocomposites consisting of one-dimensional Pt nanowires, two-dimensional MXene nanosheets, and three-dimensional porous carbon. The Pt nanowires exhibit excellent catalytic activity due to the abundant grain boundaries and highly undercoordinated atoms; MXene nanosheets not only facilitate the growth of Pt nanowires, but also enhance the electrical conductivity and hydrophilicity; and the porous carbon helps induce significant adsorption of dopamine on the electrode surface. In electrochemical tests, the ternary nanocomposite-based sensor achieves an ultra-sensitive detection of dopamine (S/N = 3) with a low limit of detection (LOD) of 28 nM, satisfactory selectivity and excellent stability. Furthermore, the sensor can be used for the detection of dopamine in serum and in situ monitoring of dopamine release from PC12 cells. Such a highly sensitive nanocomposite sensor can be exploited for in situ monitoring of important neurotransmitters at the cellular level, which is of great significance for related drug screening and mechanistic studies.
Collapse
Affiliation(s)
- Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Wei Ni
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, China
| | - Yujie Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95060, USA
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, China.
| | - Qunfeng Yao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
2
|
Milne SA, Lasserre P, Corrigan DK. Fabrication of a graphite-paraffin carbon paste electrode and demonstration of its use in electrochemical detection strategies. Analyst 2024; 149:4736-4746. [PMID: 39114971 DOI: 10.1039/d4an00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Electrochemical detection methods hold many advantages over their optical counterparts, such as operation in complex sample matrices, low-cost and high volume manufacture and possible equipment miniaturisation. Despite these advantages, the use of electrochemical detection is currently limited in the clinical setting. There is a wide range of potential electrode materials, selected for optimal signal-to-noise ratios and reproducibility when detecting target analytes. The use of carbon paste electrodes (CPEs) for electrochemical detection can be limited by their analytical performance, however they remain very attractive due to their low cost and biocompatibility. This paper presents the fabrication of an easy-to-make and use graphite powder/paraffin wax paste combined with a substrate produced via additive manufacturing and confirms its functionality for both direct and indirect electrochemical measurements. The produced CPEs enable the direct voltammetric detection of hexaammineruthenium(III) chloride and dopamine at an experimental limit of detection (ELoD) of 62.5 μM. The key inflammatory biomarker Interleukin-6 through an enzyme-linked immunosorbant assay (ELISA) was also quantified, yielding a clinically-relevant ELoD of 150 pg ml-1 in 10% human serum. The performance of low-cost and easy-to-use CPEs obtained in 0.5 hours is showcased in this study, demonstrating the platform's potential uses for point-of-need electroanalytical applications.
Collapse
Affiliation(s)
- Stuart A Milne
- University of Strathclyde, Biomedical Engineering, Wolfson Centre, 106 Richmond St, Glasgow G1 1XQ, UK.
| | - Perrine Lasserre
- University of Strathclyde, Pure and Applied Chemistry, Thomas Graham Building, 295 Cathedral St, Glasgow G1 1XL, UK
| | - Damion K Corrigan
- University of Strathclyde, Pure and Applied Chemistry, Thomas Graham Building, 295 Cathedral St, Glasgow G1 1XL, UK
| |
Collapse
|
3
|
Guo J, Ma Y, Han T, Yang J, Miao P. Magnetic MOF composites for the electrocatalysis and biosensing of dopamine released from living cells. J Mater Chem B 2024; 12:8181-8188. [PMID: 39081063 DOI: 10.1039/d4tb00996g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Metal-organic frameworks (MOFs) with fit ligands and metals can be integrated into electrochemical biosensors for the detection of various biomolecules. In this study, we have synthesized novel magnetic MOF composites as electrocatalysts and constructed a novel biosensor for electrochemical detection of dopamine. The composites named Fe3O4@ZIF-8@AuNPs-COOH are synthesized through layer-by-layer assembly. They exhibit excellent stability and cooperative catalytic activity. In addition, green recycling is readily achieved through magnetizing/demagnetizing the electrode. The large specific surface area and ordered porous structures of the magnetic MOFs ensure good dispersion of gold nanoparticles, while the carboxyl group efficiently shields other redox-active interfering substances. The proposed electrochemical biosensor accomplishes the sensitive detection of dopamine in human serums and living cells. This study broadens the application of MOFs in electrochemical biosensing, validates the feasibility of biosensors for in vivo analysis, and provides new insights into green sensing.
Collapse
Affiliation(s)
- Jiarong Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Ying Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Tongyu Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, China.
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
4
|
Muttaqien SE, Khoris IM, Suryanggono J, Sadhukhan PC, Pambudi S, Chowdhury AD, Park EY. Point-of-care dengue detection: polydopamine-modified electrode for rapid NS1 protein testing for clinical samples. Mikrochim Acta 2024; 191:174. [PMID: 38436801 DOI: 10.1007/s00604-024-06259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Early diagnosis of dengue infection by detecting the dengue virus non-structural protein 1 (DENV-NS1) is important to the patients to initiate speedy treatment. Enzyme-linked immunosorbent assay (ELISA)-based NS1 detection and RT-PCR are time-consuming and too complex to be employed in remote areas of dengue-endemic countries. Meanwhile, those of NS1 rapid test by lateral flow assay suffer from low detection limit. Electrochemical-based biosensors using screen-printed gold electrodes (SPGEs) have become a reliable detection method to convey both ELISA's high sensitivity and rapid test portability. In this research, we developed an electrochemical biosensor for DENV-NS1 detection by employing polydopamine (PDA)-modified SPGE. The electrodeposition of PDA on the surface of SPGE serves as a bioconjugation avenue for anti-NS1 antibody through a simple and low-cost immobilization procedure. The biosensor performance was evaluated to detect DENV-NS1 protein in PBS and human serum through a differential pulse voltammetric (DPV) technique. The developed sensing platform displayed a low limit of detection (LOD) of 1.63 pg mL-1 and a wide linear range of 10 pg mL-1 to 1 ng mL-1 (R2 ∼ 0.969). The sensing platform also detected DEV-NS1 from four different serotypes in the clinical samples collected from dengue patients in India and Indonesia, with acceptable sensitivity, specificity, and accuracy values of 90.00%, 80.95%, and 87.65%, respectively. This result showcased the facile and versatile method of PDA coating onto the surface of screen-printed gold electrodes for a miniaturized point-of-care (PoC) detection device.
Collapse
Affiliation(s)
- Sjaikhurrizal El Muttaqien
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan, 15314, Indonesia
| | - Indra Memdi Khoris
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan
- Nanomaterials Research Division, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Jodi Suryanggono
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan, 15314, Indonesia
| | - Provash C Sadhukhan
- ICMR-NICED Virus Laboratory, Kolkata, I.D. & B.G. Hospital, Banerjee Road, Kolkata, 700010, West Bengal, India
| | - Sabar Pambudi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan, 15314, Indonesia
| | - Ankan Dutta Chowdhury
- Amity Institute of Nanotechnology, Amity University Kolkata, Kolkata, 700084, West Bengal, India
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
5
|
Amorim I, Bento F. Electrochemical Sensors Based on Transition Metal Materials for Phenolic Compound Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:756. [PMID: 38339472 PMCID: PMC10857252 DOI: 10.3390/s24030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Electrochemical sensors have been recognized as crucial tools for monitoring comprehensive chemical information, especially in the detection of a significant class of molecules known as phenolic compounds. These compounds can be present in water as hazardous analytes and trace contaminants, as well as in living organisms where they regulate their metabolism. The sensitive detection of phenolic compounds requires highly efficient and cost-effective electrocatalysts to enable the development of high-performance sensors. Therefore, this review focuses on the development of advanced materials with excellent catalytic activity as alternative electrocatalysts to conventional ones, with a specific emphasis on transition metal-based electrocatalysts for the detection of phenolic compounds. This research is particularly relevant in diverse sectors such as water quality, food safety, and healthcare.
Collapse
Affiliation(s)
- Isilda Amorim
- Centre of Chemistry, University of Minho, Gualtar Campus, 4710-057 Braga, Portugal
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Fátima Bento
- Centre of Chemistry, University of Minho, Gualtar Campus, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Tomagra G, Re A, Varzi V, Aprà P, Britel A, Franchino C, Sturari S, Amine NH, Westerink RHS, Carabelli V, Picollo F. Enhancing the Study of Quantal Exocytotic Events: Combining Diamond Multi-Electrode Arrays with Amperometric PEak Analysis (APE) an Automated Analysis Code. BIOSENSORS 2023; 13:1033. [PMID: 38131793 PMCID: PMC10741388 DOI: 10.3390/bios13121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
MicroGraphited-Diamond-Multi Electrode Arrays (μG-D-MEAs) can be successfully used to reveal, in real time, quantal exocytotic events occurring from many individual neurosecretory cells and/or from many neurons within a network. As μG-D-MEAs arrays are patterned with up to 16 sensing microelectrodes, each of them recording large amounts of data revealing the exocytotic activity, the aim of this work was to support an adequate analysis code to speed up the signal detection. The cutting-edge technology of microGraphited-Diamond-Multi Electrode Arrays (μG-D-MEAs) has been implemented with an automated analysis code (APE, Amperometric Peak Analysis) developed using Matlab R2022a software to provide easy and accurate detection of amperometric spike parameters, including the analysis of the pre-spike foot that sometimes precedes the complete fusion pore dilatation. Data have been acquired from cultured PC12 cells, either collecting events during spontaneous exocytosis or after L-DOPA incubation. Validation of the APE code was performed by comparing the acquired spike parameters with those obtained using Quanta Analysis (Igor macro) by Mosharov et al.
Collapse
Affiliation(s)
- Giulia Tomagra
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy; (G.T.); (C.F.); (V.C.)
| | - Alice Re
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Veronica Varzi
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Pietro Aprà
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Adam Britel
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Claudio Franchino
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy; (G.T.); (C.F.); (V.C.)
| | - Sofia Sturari
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Nour-Hanne Amine
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Remco H. S. Westerink
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, The Netherlands;
| | - Valentina Carabelli
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy; (G.T.); (C.F.); (V.C.)
| | - Federico Picollo
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| |
Collapse
|
7
|
Paul J, Moniruzzaman M, Kim J. Framing of Poly(arylene-ethynylene) around Carbon Nanotubes and Iodine Doping for the Electrochemical Detection of Dopamine. BIOSENSORS 2023; 13:308. [PMID: 36979520 PMCID: PMC10046453 DOI: 10.3390/bios13030308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 06/01/2023]
Abstract
Dopamine (DA), an organic biomolecule that acts as both a hormone and a neurotransmitter, is essential in regulating emotions and metabolism in living organisms. The accurate determination of DA is important because it indicates early signs of serious neurological disorders. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) have received considerable attention in recent years as promising porous materials with an unrivaled degree of tunability for electrochemical biosensing applications. This study adopted a solvothermal strategy for the synthesis of a conjugated microporous poly(arylene ethynylene)-4 (CMP-4) network using the Sonagashira-Hagihara cross-coupling reaction. To increase the crystallinity and electrical conductivity of the material, CMP-4 was enveloped around carbon nanotubes (CNTs), followed by iodine doping. When used as an electrochemical probe, the as-synthesized material (I2-CMP-CNT-4) exhibited excellent selectivity and sensitivity to dopamine in the phosphate-buffered solution. The detection limits of the electrochemical sensor were 1 and 1.7 μM based on cyclic voltammetry (CV) and differential pulse voltammetry (DPV).
Collapse
Affiliation(s)
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Republic of Korea
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
8
|
Braxton E, Fox DJ, Breeze BG, Tully JJ, Levey KJ, Newton ME, Macpherson JV. Electron Paramagnetic Resonance for the Detection of Electrochemically Generated Hydroxyl Radicals: Issues Associated with Electrochemical Oxidation of the Spin Trap. ACS MEASUREMENT SCIENCE AU 2023; 3:21-31. [PMID: 36817006 PMCID: PMC9936800 DOI: 10.1021/acsmeasuresciau.2c00049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 06/18/2023]
Abstract
For the detection of electrochemically produced hydroxyl radicals (HO·) from the oxidation of water on a boron-doped diamond (BDD) electrode, electron paramagnetic resonance spectroscopy (EPR) in combination with spin trap labels is a popular technique. Here, we show that quantification of the concentration of HO· from water oxidation via spin trap electrochemical (EC)-EPR is problematic. This is primarily due to the spin trap oxidizing at potentials less positive than water, resulting in the same spin trap-OH· adduct as formed from the solution reaction of OH· with the spin trap. We illustrate this through consideration of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap for OH·. DMPO oxidation on a BDD electrode in an acidic aqueous solution occurs at a peak current potential of +1.90 V vs SCE; the current for water oxidation starts to rise rapidly at ca. +2.3 V vs SCE. EC-EPR spectra show signatures due to the spin trap adduct (DMPO-OH·) at potentials lower than that predicted thermodynamically (for water/HO·) and in the region for DMPO oxidation. Increasing the potential into the water oxidation region, surprisingly, shows a lower DMPO-OH· concentration than when the potential is in the DMPO oxidation region. This behavior is attributed to further oxidation of DMPO-OH·, production of fouling products on the electrode surface, and bubble formation. Radical scavengers (ethanol) and other spin traps, here N-tert-butyl-α-phenylnitrone, α-(4-pyridyl N-oxide)-N-tert-butylnitrone, and 2-methyl-2-nitrosopropane dimer, also show electrochemical oxidation signals less positive than that of water on a BDD electrode. Such behavior also complicates their use for the intended application.
Collapse
Affiliation(s)
- Emily Braxton
- Department
of Chemistry, University of Warwick, CoventryCV4 7AL, U.K.
- Molecular
Analytical Science Centre for Doctoral Training, University of Warwick, CoventryCV4 7AL, U.K.
| | - David J. Fox
- Department
of Chemistry, University of Warwick, CoventryCV4 7AL, U.K.
| | - Ben G. Breeze
- Department
of Physics, University of Warwick, CoventryCV4 7AL, U.K.
| | - Joshua J. Tully
- Department
of Chemistry, University of Warwick, CoventryCV4 7AL, U.K.
| | - Katherine J. Levey
- Department
of Chemistry, University of Warwick, CoventryCV4 7AL, U.K.
- Centre
for Doctoral Training in Diamond Science and Technology, University of Warwick, CoventryCV4 7AL, U.K.
| | - Mark E. Newton
- Department
of Physics, University of Warwick, CoventryCV4 7AL, U.K.
| | | |
Collapse
|
9
|
Luo Q, Su Y, Zhang H. Sensitive dopamine sensor based on electrodeposited gold nanoparticles and electro-modulated MoS2 nanoflakes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Irkham, Nasa K, Kurnia I, Hartati YW, Einaga Y. Low-interference norepinephrine signal on dopamine detection using nafion-coated boron doped diamond electrodes. Biosens Bioelectron 2022; 220:114892. [DOI: 10.1016/j.bios.2022.114892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
|
11
|
Huang WC, Hung CH, Lin YW, Zheng YC, Lei WL, Lu HE. Electrically Copolymerized Polydopamine Melanin/Poly(3,4-ethylenedioxythiophene) Applied for Bioactive Multimodal Neural Interfaces with Induced Pluripotent Stem Cell-Derived Neurons. ACS Biomater Sci Eng 2022; 8:4807-4818. [PMID: 36222713 DOI: 10.1021/acsbiomaterials.2c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multimodal neural interfaces include combined functions of electrical neuromodulation and synchronic monitoring of neurochemical and physiological signals in one device. The remarkable biocompatibility and electrochemical performance of polystyrene sulfonate-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) have made it the most recommended conductive polymer neural electrode material. However, PEDOT:PSS formed by electrochemical deposition, called PEDOT/PSS, often need multiple doping to improve structural instability in moisture, resolve the difficulties of functionalization, and overcome the poor cellular affinity. In this work, inspired by the catechol-derived adhesion and semiconductive properties of polydopamine melanin (PDAM), we used electrochemical oxidation polymerization to develop PDAM-doped PEDOT (PEDOT/PDAM) as a bioactive multimodal neural interface that permits robust electrochemical performance, structural stability, analyte-trapping capacity, and neural stem cell affinity. The use of potentiodynamic scans resolved the problem of copolymerizing 3,4-ethylenedioxythiophene (EDOT) and dopamine (DA), enabling the formation of PEDOT/PDAM self-assembled nanodomains with an ideal doping state associated with remarkable current storage and charge transfer capacity. Owing to the richness of hydrogen bond donors/acceptors provided by the hydroxyl groups of PDAM, PEDOT/PDAM presented better electrochemical and mechanical stability than PEDOT/PSS. It has also enabled high sensitivity and selectivity in the electrochemical detection of DA. Different from PEDOT/PSS, which inhibited the survival of human induced pluripotent stem cell-derived neural progenitor cells, PEDOT/PDAM maintained cell proliferation and even promoted cell differentiation into neuronal networks. Finally, PEDOT/PDAM was modified on a commercialized microelectrode array system, which resulted in the reduction of impedance by more than one order of magnitude; this significantly improved the resolution and reduced the noise of neuronal signal recording. With these advantages, PEDOT/PDAM is anticipated to be an efficient bioactive multimodal neural electrode material with potential application to brain-machine interfaces.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ching-Heng Hung
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yueh-Wen Lin
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yu-Cheng Zheng
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Wan-Lou Lei
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Huai-En Lu
- Food Industry Research and Development Institute, Hsinchu 300, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
12
|
Hu S, Qin D, Meng S, Wu Y, Luo Z, Deng B. Cathodic electrochemiluminescence based on resonance energy transfer between sulfur quantum dots and dopamine quinone for the detection of dopamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Seki M, Wada R, Muguruma H. Electrochemical behavior of intramolecular cyclization reaction of catecholamines at carbon nanotube/carboxymethylcellulose electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Szewczyk J, Aguilar-Ferrer D, Coy E. Polydopamine films: Electrochemical growth and sensing applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
The effects of biologically important divalent and trivalent metal cations on the cyclization step of dopamine autooxidation reaction: a quantum chemical study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Barbosa P, Mastelaro V, Vieira E, Do Carmo D. β‐cyclodextrin PAMAM dendrimer surface doped with silver and hexacyanoferrate (III) and its applications for dopamine detection in synthetic samples. ELECTROANAL 2022. [DOI: 10.1002/elan.202100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Mahanta A, Akond U, Barman K, Sk J. Electrochemical sensing of dopamine and epinephrine using self‐assembled Fe3O4 magnetic nanoparticles on a pyridine‐grafted glassy carbon electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Umme Akond
- Assam University - Dargakona Campus INDIA
| | | | | |
Collapse
|
18
|
Li D, Chen M, Guo W, Li P, Wang H, Ding W, Li M, Xu Y. In Situ Grown Nanohydroxyapatite Hybridized Graphene Oxide: Enhancing the Strength and Bioactivity of Polymer Scaffolds. ACS OMEGA 2022; 7:12242-12254. [PMID: 35449948 PMCID: PMC9016834 DOI: 10.1021/acsomega.2c00629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) and nanohydroxyapatite (nHA) are usually used for improving the strength and bioactivity of polymer scaffolds. However, due to the nano-aggregation effect, these applications often face the problems of uneven dispersion and poor interface bonding. In this work, their hybrids (GO@nHA) were constructed by combining chemical modification and in situ growth methods, realizing the perfect combination of nHA and GO. First, the functionalization of GO was realized through oxidative self-polymerization of dopamine (DA), and the product was denoted GO@DA. Furthermore, the in situ growth of nHA on GO@DA was induced by hydrothermal reactions to prepare GO@nHA hybrids. Then, the obtained hybrid was added to the polymer matrix, and a composite scaffold was prepared through a selective laser sintering process. The results demonstrated that with the addition of GO@DA and GO@nHA, the ultimate strength was increased to 16.8 and 18.6 MPa, respectively, which is 66 and 84% higher than the 10.1 MPa of the polylactic acid (PLA) scaffold. In addition, composite scaffolds exhibited good biomineralization ability in vitro and also promoted the adhesion and proliferation of MG63 cells.
Collapse
|
19
|
Pankratova G, Pan JY, Keller SS. Impact of plasma-induced surface chemistry on electrochemical properties of microfabricated pyrolytic carbon electrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Kornii A, Lisnyak VV, Grishchenko L, Tananaiko O. Synthesis and characterization of hybrid silica/Fe2O3-carbon nanoparticles films electrodeposited onto planar electrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Shao Z, Venton BJ. Different Electrochemical Behavior of Cationic Dopamine from Anionic Ascorbic Acid and DOPAC at CNT Yarn Microelectrodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2022; 169:026506. [PMID: 35221350 PMCID: PMC8871592 DOI: 10.1149/1945-7111/ac4d67] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon nanotube yarn microelectrodes (CNTYMEs) have micron-scale surface crevices that momentarily trap molecules. CNTYMEs improve selectivity among cationic catecholamines because secondary reactions are enhanced, but no anions have been studied. Here, we compared fast-scan cyclic voltammetry (FSCV) of dopamine and anionic interferents 3,4 dihydroxyphenylacetic acid (DOPAC) and L-ascorbic acid (AA) at CNTYMEs and carbon fiber microelectrodes (CFMEs). At CFMEs, dopamine current decreases with increasing FSCV repetition frequency at pH 7.4, whereas DOPAC and AA have increasing currents with increasing frequency, because of less repulsion at the negative holding potential. Both DOPAC and AA have side reactions after being oxidized, which are enhanced by trapping. At pH 4, the current increases for DOPAC and AA because they are not repelled. In addition, AA has a different oxidation pathway at pH 4, and an extra peak in the CV is enhanced by trapping effects at CNTYMEs. At pH 8.5, co-detection of dopamine in the presence of DOPAC and AA is enhanced at 100 Hz frequency because of differences in secondary peaks. Thus, the trapping effects at CNTYMEs affects anions differently than cations and secondary peaks can be used to identify dopamine in mixture of AA and DOPAC with FSCV.
Collapse
Affiliation(s)
- Zijun Shao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| |
Collapse
|
22
|
Gleissner C, Landsiedel J, Bechtold T, Pham T. Surface Activation of High Performance Polymer Fibers: A Review. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2025601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Carolin Gleissner
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Dornbirn, Austria
| | - Justus Landsiedel
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Dornbirn, Austria
| | - Thomas Bechtold
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Dornbirn, Austria
| | - Tung Pham
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Dornbirn, Austria
| |
Collapse
|
23
|
Confined electrochemiluminescence imaging microarray for high-throughput biosensing of single cell-released dopamine. Biosens Bioelectron 2022; 201:113959. [PMID: 34999521 DOI: 10.1016/j.bios.2021.113959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
The quantitative detection of single cell secretions is always limited by their accurate collection and the heterogeneity of different cells. In this work, a confined electrochemiluminescence (ECL) imaging microarray (CEIM) chip was designed to capture single or a few cells in each cylindrical microwell for high-throughput quantitation of cell-secreted dopamine (DA). The ITO surface at the bottom of microwells was functionalized with the film of DA aptamer modified coreactant-embedded polymer dots (Pdots), which endowed the chip with the abilities to both in situ recognize the target DA secreted from the cells and emit the ECL signal for responding the secreted target without need of any additional coreactant. At the applied potential of +1.4 V, the Pdots in the film emitted strong ECL signal, which could be quenched by the electrochemical oxidation product of DA in individual microwell for sensitive detection of single cell-released DA. The practicability of the proposed CEIM chip along with the ECL imaging and biosensing strategy was demonstrated by evaluating the amounts of single cell-released DA in different microwells under hypoxia stimulation. This protocol revealed the heterogeneity of cell secretion, and could be extended for quantitation of other secretions from different kinds of single cells.
Collapse
|
24
|
Mechanistic understanding of catechols and integration into an electrochemically cross-linked mussel foot inspired adhesive hydrogel. Biointerphases 2021; 16:061002. [PMID: 34969252 DOI: 10.1116/6.0001609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Catechol reaction mechanisms form the basis of marine mussel adhesion, allowing for bond formation and cross-linking in wet saline environments. To mimic mussel foot adhesion and develop new bioadhesive underwater glues, it is essential to understand and learn to control their redox activity as well as their chemical reactivity. Here, we study the electrochemical characteristics of functionalized catechols to further understand their reaction mechanisms and find a stable and controllable molecule that we subsequently integrate into a polymer to form a highly adhesive hydrogel. Contradictory to previous hypotheses, 3,4-dihydroxy-L-phenylalanine is shown to follow a Schiff-base reaction whereas dopamine shows an intramolecular ring formation. Dihydrocaffeic acid proved to be stable and was substituted onto a poly(allylamine) backbone and electrochemically cross-linked to form an adhesive hydrogel that was tested using a surface forces apparatus. The hydrogel's compression and dehydration dependent adhesive strength have proven to be higher than in mussel foot proteins (mfp-3 and mfp-5). Controlling catechol reaction mechanisms and integrating them into stable electrochemically depositable macroscopic structures is an important step in designing new biological coatings and underwater and biomedical adhesives.
Collapse
|
25
|
Sukanya SD, Swamy BEK, Shashikumara JK, Sharma SC, Hariprasad SA. Poly (Orange CD) sensor for paracetamol in presence of folic acid and dopamine. Sci Rep 2021; 11:22332. [PMID: 34785686 PMCID: PMC8595450 DOI: 10.1038/s41598-021-01311-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
In the present work, Orange CD was chosen as an intriguing modifier for the electropolymerization on the surface of CPE by the CV technique. A novel, sensitive, and cost-effective poly (Orange CD) MCPE (PoOCD/MCPE) sensor was utilized for the selective detection of paracetamol (PA) in 0.2 M phosphate buffer solution (PBS) of pH 7.4. The oxidation peak current of PA was vastly enhanced at the sensor. The scan rate study is suggested that electro-oxidation of PA was adsorption-controlled. The pH study testifies the redox pathways transport with the same quantity of electrons and protons. The detection limit of PA is found to be 2.64 µM. DPV results show that substantial peak separation between PA, folic acid (FA), and dopamine (DA) could be facilitating their individual and simultaneous determination on the sensor. The decorated sensor demonstrates high sensitivity, stability, reproducibility, repeatability and has been successfully exploited for the detection of PA in a tablet with promising results.
Collapse
Affiliation(s)
- S D Sukanya
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, Karnataka, 577451, India
| | - B E Kumara Swamy
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, Karnataka, 577451, India.
| | - J K Shashikumara
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, Karnataka, 577451, India
| | - S C Sharma
- National Assessment and Accreditation Council (Work Carried Out as Honorary Professor), Jain University, Bangalore, Karnataka, 560 069, India.
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, India.
| | | |
Collapse
|
26
|
Physicochemical and Electrochemical Characterization of Electropolymerized Polydopamine Films: Influence of the Deposition Process. NANOMATERIALS 2021; 11:nano11081964. [PMID: 34443798 PMCID: PMC8400158 DOI: 10.3390/nano11081964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/03/2022]
Abstract
Polydopamine (PDA) is a synthetic eumelanin polymer which is, to date, mostly obtained by dip coating processes. In this contribution, we evaluate the physical and electrochemical properties of electrochemically deposited PDA films obtained by cyclic voltammetry or pulsed deposition. The obtained PDA thin films are investigated with respect to their electrochemical properties, i.e., electron transfer (ET) kinetics and charge transfer resistance using scanning electrochemical microscopy and electrochemical impedance spectroscopy, and their nanomechanical properties, i.e., Young’s modulus and adhesion forces at varying experimental conditions, such as applied potential or pH value of the medium using atomic force microscopy. In particular, the ET behavior at different pH values has not to date been investigated in detail for electrodeposited PDA thin films, which is of particular interest for a multitude of applications. Adhesion forces strongly depend on applied potential and surrounding pH value. Moreover, force spectroscopic measurements reveal a significantly higher percentage of polymeric character compared to films obtained by dip coating. Additionally, distinct differences between the two depositions methods are observed, which indicate that the pulse deposition process leads to denser, more cross-linked films.
Collapse
|
27
|
Butt AS, Baig N, Khan M, Ul‐Hamid A, Sher M, Altaf M, Sohail M. HfO
2
‐CoO nanoparticles for electrochemical dopamine sensing. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Abdul Samad Butt
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology Islamabad Pakistan
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - Munezza Khan
- School of Materials Sciences & Engineering Nanyang Technological University Singapore Singapore
| | - Anwar Ul‐Hamid
- Core Research Facilities King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - Muhammad Sher
- Department of Chemistry Allama Iqbal Open University Islamabad Pakistan
| | - Muhammad Altaf
- Department of Chemistry Government College University Lahore Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology Islamabad Pakistan
| |
Collapse
|
28
|
Direct electrochemical enhanced detection of dopamine based on peroxidase-like activity of Fe3O4@Au composite nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Cernat A, Ştefan G, Tertis M, Cristea C, Simon I. An overview of the detection of serotonin and dopamine with graphene-based sensors. Bioelectrochemistry 2020; 136:107620. [DOI: 10.1016/j.bioelechem.2020.107620] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
|
30
|
Poolakkandy RR, Menamparambath MM. Transition metal oxide based non‐enzymatic electrochemical sensors: An arising approach for the meticulous detection of neurotransmitter biomarkers. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
31
|
Laser scribed graphene: A novel platform for highly sensitive detection of electroactive biomolecules. Biosens Bioelectron 2020; 168:112509. [DOI: 10.1016/j.bios.2020.112509] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 01/05/2023]
|
32
|
Wardak C, Paczosa-Bator B, Malinowski S. Application of cold plasma corona discharge in preparation of laccase-based biosensors for dopamine determination. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111199. [DOI: 10.1016/j.msec.2020.111199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
|
33
|
Zuaznabar-Gardona JC, Fragoso A. Electrochemistry of redox probes at thin films of carbon nano-onions produced by thermal annealing of nanodiamonds. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Senel M, Dervisevic E, Alhassen S, Dervisevic M, Alachkar A, Cadarso VJ, Voelcker NH. Microfluidic Electrochemical Sensor for Cerebrospinal Fluid and Blood Dopamine Detection in a Mouse Model of Parkinson’s Disease. Anal Chem 2020; 92:12347-12355. [DOI: 10.1021/acs.analchem.0c02032] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mehmet Senel
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Sammy Alhassen
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Muamer Dervisevic
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Victorian Node of the Australian National Fabrication Facility, Melbourne Centre for Nanofabrication (MCN), Clayton, Victoria 3168, Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
- Victorian Node of the Australian National Fabrication Facility, Melbourne Centre for Nanofabrication (MCN), Clayton, Victoria 3168, Australia
| |
Collapse
|
35
|
Umapathi S, Masud J, Coleman H, Nath M. Electrochemical sensor based on CuSe for determination of dopamine. Mikrochim Acta 2020; 187:440. [PMID: 32653955 DOI: 10.1007/s00604-020-04405-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/21/2020] [Indexed: 11/26/2022]
Abstract
A simple binary copper selenide, CuSe nanostructure, has been investigated as electrochemical sensor for dopamine detection. The hydrothermally synthesized and electrodeposited CuSe nanostructures showed high sensitivity for dopamine detection with low limit of detection (LOD). A sensitivity of 26 μA/μM.cm2 was obtained with this electrochemical sensor which is ideal to detect even small fluctuations in the transient dopamine concentration. Apart from high sensitivity and low LOD, the dopamine oxidation on the catalyst surface also occurred at a low applied potential (< 0.18 V vs Ag|AgCl), thereby significantly increasing selectivity of the process specifically with respect to ascorbic and uric acids, which are considered to be the most prominent interferents for dopamine detection. Electrochemical redox tunability of the catalytic Cu center along with low coordination geometry is believed to enhance the rate of dopamine attachment and oxidation on the catalyst surface thereby reducing the applied potential. The presence of Cu also increases conductivity of the catalyst composite which further improves the charge transfer thus increasing the sensitivity of the device. This is the first report of electrochemical dopamine sensing with a simple binary selenide comprising earth-abundant elements and can have large significance in designing efficient sensors that can be transformative for understanding neurodegenerative diseases further. Graphical abstract.
Collapse
Affiliation(s)
- Siddesh Umapathi
- Department of Chemistry, Missouri University of Science & Technology, Rolla, MO, 65409, USA
| | - Jahangir Masud
- Department of Chemistry, Missouri University of Science & Technology, Rolla, MO, 65409, USA
| | - Holly Coleman
- Department of Chemical and Biochemical Engineering, Missouri University of Science & Technology, Rolla, MO, 65409, USA
| | - Manashi Nath
- Department of Chemistry, Missouri University of Science & Technology, Rolla, MO, 65409, USA.
| |
Collapse
|
36
|
Senel M, Dervisevic M, Alhassen S, Alachkar A, Voelcker NH. Electrochemical Micropyramid Array-Based Sensor for In Situ Monitoring of Dopamine Released from Neuroblastoma Cells. Anal Chem 2020; 92:7746-7753. [PMID: 32367711 DOI: 10.1021/acs.analchem.0c00835] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abnormal dopamine neurotransmission is associated with several neurological and psychiatric disorders such as Parkinson's disease, schizophrenia, attention deficiency and hyperactivity disorder, and addiction. Developing highly sensitive, selective, and fast dopamine monitoring methods is of high importance especially for the early diagnosis of these diseases. Herein, we report a new ultrasensitive electrochemical sensing platform for in situ monitoring of cell-secreted dopamine using Au-coated arrays of micropyramid structures integrated directly into a Petri dish. This approach enables the monitoring of dopamine released from cells in real-time without the need for relocating cultured cells. According to the electrochemical analyses, our dopamine sensing platform exhibits excellent analytical characteristics with a detection limit of 0.50 ± 0.08 nM, a wide linear range of 0.01-500 μM, and a sensitivity of 0.18 ± 0.01 μA/μM. The sensor also has remarkable selectivity toward DA in the presence of different potentially interfering small molecules. The developed electrochemical sensor has great potential for in vitro analysis of neuronal cells as well as early diagnosis of different neurological diseases related to abnormal levels of dopamine.
Collapse
Affiliation(s)
- Mehmet Senel
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Muamer Dervisevic
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Sammy Alhassen
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia.,Victorian Node of the Australian National Fabrication Facility, Melbourne Centre for Nanofabrication (MCN), Clayton, Victoria 3168, Australia
| |
Collapse
|
37
|
Yan Z, Zhang Y, Yang H, Fan G, Ding A, Liang H, Li G, Ren N, Van der Bruggen B. Mussel-inspired polydopamine modification of polymeric membranes for the application of water and wastewater treatment: A review. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Umek N. Cyclization step of noradrenaline and adrenaline autoxidation: a quantum chemical study. RSC Adv 2020; 10:16650-16658. [PMID: 35498869 PMCID: PMC9053094 DOI: 10.1039/d0ra02713h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Catecholamine autoxidation has been recognized as one of the potential trigger factors for catecholaminergic neuron loss characteristics of neurodegenerative diseases. The cyclization step with intramolecular Michael addition of catecholamine o-quinones has been shown to be the irreversible and rate limiting step of the autoxidation reaction across a broad pH range and has a complex pH dependence that has not yet been fully understood. Using quantum chemical calculations, we demonstrated that in the case of noradrenaline and adrenaline two catecholamine o-quinone species, one with an unprotonated and one with a protonated quinone group can participate in the cyclization reaction and that the mechanisms of these reactions significantly differ, emphasizing the importance of quinone group protonation states in the reaction mechanism. With a thorough exploration of the reaction kinetics, we further showed that at acidic pH the cyclization reaction rate is pH independent, while at alkaline pH the pH dependence is marked, explaining the experimentally observed complex pH dependence. The quinone group protonation state determines the reaction mechanism of noradrenaline and adrenaline o-quinone cyclization.![]()
Collapse
Affiliation(s)
- Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana Korytkova ulica 2 1000 Ljubljana Slovenia +386 15437314
| |
Collapse
|
39
|
Yadav A, Pandey R, Liao TW, Zharinov VS, Hu KJ, Vernieres J, Palmer RE, Lievens P, Grandjean D, Shacham-Diamand Y. A platinum-nickel bimetallic nanocluster ensemble-on-polyaniline nanofilm for enhanced electrocatalytic oxidation of dopamine. NANOSCALE 2020; 12:6047-6056. [PMID: 32129392 DOI: 10.1039/c9nr09730a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a new approach to design flexible functional material platforms based on electropolymerized polyaniline (PANI) polymer nanofilms modified with bimetallic nanoclusters (NCs) for efficient electro-oxidation of small organic molecules. Composition defined ligand free Pt0.75Ni0.25 NCs were synthesized in the gas phase using the Cluster Beam Deposition (CBD) technology and characterized using RToF, HAADF-STEM, XAFS and XPS. NCs were then directly deposited on PANI coated templates to construct electrodes. Dopamine (DP) molecules were used as a representative organic analyte and the influence of the NC-PANI hybrid atomistic structure on the electrochemical and electrocatalytic performance was investigated. The as prepared, nearly monodispersed, Pt0.75Ni0.25 NCs of ca. 2 nm diameter featuring a PtOx surface combined with a shallow platelet-like Ni-O(OH) phase formed a densely packed active surface on PANI at ultralow metal coverages. Electrochemical measurements (EIS and CV) show a 2.5 times decrease in charge transfer resistance and a remarkable 6-fold increase at lower potential in the mass activity for Pt0.75Ni0.25 NCs in comparison with their pure Pt counterparts. The enhanced electrochemical performance of the Pt0.75Ni0.25 NC hybrid's interface is ascribed to the formation of mixed Pt metal and Ni-O(OH) phases at the surface of the alloyed PtNi cores of the bimetallic NCs under electrochemical conditions combined with an efficient charge conduction pathway between NCs.
Collapse
Affiliation(s)
- Anupam Yadav
- Quantum Solid State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bacil RP, Chen L, Serrano SHP, Compton RG. Dopamine oxidation at gold electrodes: mechanism and kinetics near neutral pH. Phys Chem Chem Phys 2020; 22:607-614. [DOI: 10.1039/c9cp05527d] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two-electron electrochemical oxidation of dopamine is studied voltammetrically at Gold macroelectrodes around neutral pH with simulations used to give kinetic and mechanistic data.
Collapse
Affiliation(s)
- Raphael P. Bacil
- University of Oxford
- Physical and Theoretical Chemistry Laboratory
- South Parks Road
- Oxford
- UK
| | - Lifu Chen
- University of Oxford
- Physical and Theoretical Chemistry Laboratory
- South Parks Road
- Oxford
- UK
| | - Silvia H. P. Serrano
- Instituto de Química
- Universidade de São Paulo
- Departamento de Química Fundamental
- Av. Prof. Lineu Prestes
- 748 - Butantã - São Paulo – SP
| | - Richard G. Compton
- University of Oxford
- Physical and Theoretical Chemistry Laboratory
- South Parks Road
- Oxford
- UK
| |
Collapse
|
41
|
Ahmadi N, Bagherzadeh M, Nemati A. Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite. Biosens Bioelectron 2019; 151:111977. [PMID: 31999583 DOI: 10.1016/j.bios.2019.111977] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/28/2019] [Accepted: 12/17/2019] [Indexed: 01/16/2023]
Abstract
In this study, titania-ceria-graphene quantum dot (TC-GQD) nanocomposite was synthesized by hydrothermal method for the first time. The prepared nanomaterials were characterized by XRD, FTIR dynamic light scattering (DLS), FESEM, HRTEM, and EDX spectroscopy along with elemental mapping. The synergistic effect of the nanocomposite components was studied by diffuse reflectance spectroscopy (DRS) and electrical conductivity meter. The results showed that band gap of TC-GQD nanocomposite was shifted to visible lights relative to its components (1.3 eV), and electrical conductivity of the sample was significant increased to 89.5 μS cm-1. After chemical and physical characterization, prepared new nanocomposites were used to design a new electrochemical (EC) and photoelectrochemical (PEC) dopamine (DA) sensors. In both EC and PEC methods effecting experimental parameters were optimized. Due to the synergic effect of the nanocomposite components, an outstanding photocurrent response was observed for DA based on PEC sensor. A linear calibration curve with a lower detection limit of 22 nM DA, and sensitivity of 13.8 mA/mM(DA), in a wider range of 0.3-750 μM DA, was obtained for TC-GQD/GCE electrode in PEC. While, the TC-GQD/GCE electrode detected DA in the range of 1-500 μM DA, with two linear calibration curve, detection limit of 0.22 μM DA, and sensitivity of 4.9 mA/mM(DA), in the EC. Observed results from EC and PEC sensors are presented and compared.
Collapse
Affiliation(s)
- Nasrin Ahmadi
- Department of Materials Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Bagherzadeh
- Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, Isfahan, Iran.
| | - Ali Nemati
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
42
|
Schindler S, Aguiló-Aguayo N, Dornbierer U, Bechtold T. Anodic Coating of 1.4622 Stainless Steel with Polydopamine by Repetitive Cyclic Voltammetry and Galvanostatic Deposition. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sabrina Schindler
- Research Institute of Textile Chemistry and Textile Physics (Member of EPNOE − European Polysaccharide Network of Excellence, www.epnoe.eu),Leopold Franzens-University of Innsbruck, Hoechsterstraße 73, A-6850 Dornbirn, Austria
| | - Noemí Aguiló-Aguayo
- Research Institute of Textile Chemistry and Textile Physics (Member of EPNOE − European Polysaccharide Network of Excellence, www.epnoe.eu),Leopold Franzens-University of Innsbruck, Hoechsterstraße 73, A-6850 Dornbirn, Austria
| | - Urs Dornbierer
- Geobrugg AG, Aachstrasse 11, CH-8590 Romanshorn, Switzerland
| | - Thomas Bechtold
- Research Institute of Textile Chemistry and Textile Physics (Member of EPNOE − European Polysaccharide Network of Excellence, www.epnoe.eu),Leopold Franzens-University of Innsbruck, Hoechsterstraße 73, A-6850 Dornbirn, Austria
| |
Collapse
|
43
|
Bamgbelu L, Holt KB. In Situ Determination of pH at Nanostructured Carbon Electrodes Using IR Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2019; 12:ma12244044. [PMID: 31817326 PMCID: PMC6947561 DOI: 10.3390/ma12244044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Changes in pH at electrode surfaces can occur when redox reactions involving the production or consumption of protons take place. Many redox reactions of biological or analytical importance are proton-coupled, resulting in localized interfacial pH changes as the reaction proceeds. Other important electrochemical reactions, such as hydrogen and oxygen evolution reactions, can likewise result in pH changes near the electrode. However, it is very difficult to measure pH changes located within around 100 µm of the electrode surface. This paper describes the use of in situ attenuated total reflectance (ATR) infrared (IR) spectroscopy to determine the pH of different solutions directly at the electrode interface, while a potential is applied. Changes in the distinctive IR bands of solution phosphate species are used as an indicator of pH change, given that the protonation state of the phosphate ions is pH-dependent. We found that the pH at the surface of an electrode modified with carbon nanotubes can increase from 4.5 to 11 during the hydrogen evolution reaction, even in buffered solutions. The local pH change accompanying the hydroquinone-quinone redox reaction is also determined.
Collapse
|
44
|
Guo LL, Qin LJ, Xu B, Wang XZ, Hsueh CC, Chen BY. Deciphering electron-shuttling characteristics of epinephrine and dopamine for bioenergy extraction using microbial fuel cells. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Affiliation(s)
- Jürgen Liebscher
- Institute of Chemistry; Humboldt-University Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|