1
|
Chen P, Wang J, Xue Y, Wang C, Sun W, Yu J, Guo H. From challenge to opportunity: Revolutionizing the monitoring of emerging contaminants in water with advanced sensors. WATER RESEARCH 2024; 265:122297. [PMID: 39208686 DOI: 10.1016/j.watres.2024.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Emerging contaminants in water represent long-term and unpredictable threats to both environmental and human health due to their persistence and bioaccumulation. Current research predominantly focuses on their removal rather than sustained monitoring. This review comprehensively investigates advanced sensor technologies for detecting these contaminants in water, critically evaluating biosensors, optical sensors, electrochemical sensors, and nanomaterial sensors. Elucidating the operational principles, performance metrics such as detection thresholds, and the pros and cons of their practical applications, the review addresses a significant research gap in environmental monitoring. Moreover, it enhances understanding of sensor effectiveness, which in turn guides researchers in selecting the right sensor types for various environmental scenarios. Furthermore, by emphasizing the integration of nanotechnology and the standardization of evaluation protocols, it promotes the development of robust, deployable sensing solutions. Ultimately, this leads to the proposal of a strategic framework aimed at significantly improving the detection capabilities of emerging contaminants and supporting the preservation of environmental health.
Collapse
Affiliation(s)
- Peng Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chunmiao Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianwei Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Yang Y, Li J, Luo Z, Zhang L, Wang Y, Liu Z, Ge C, Xie Y, Zhao P, Fei J. 2D/3D hierarchical porous structure of mNPC/SMOH@C to construct an electrochemical sensor for the simultaneous determination of p-acetylaminophenol and p-aminophenol. Anal Chim Acta 2024; 1320:343021. [PMID: 39142790 DOI: 10.1016/j.aca.2024.343021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND As persistent organic pollutants (POPs), the accumulation of p-acetylaminophenol (PAT) and p-aminophenol (PAP) in water can seriously damage the health of plants and animals, ultimately leading to threats to human health and safety. Electrochemical sensors have the advantages of being fast, inexpensive, and accurate compared to the complex, expensive, and cumbersome conventional analytical methods. In this study, we designed and synthesized composites with two-dimensional/three-dimensional (2D/3D) porous structures to construct an efficient electrochemical platform for the simultaneous detection of PAT and PAP. RESULTS In this work, a novel 3D foamy birnessite Na0.55Mn2O4·1.5H2O@C (SMOH@C) was synthesized, which was composited with 2D ordered mesoporous nanosheets (mNPC) to construct electrochemical sensors detecting PAT and PAP simultaneously. The prepared 2D/3D porous structure of mNPC/SMOH@C increased the exposure of active sites due to its large specific surface area. The introduction of a 3D carbon skeleton altered the charge transfer rate of SMOH@C, and the rich pore structure and oxygen-rich vacancies created favorable conditions for the diffusion and adsorption of PAP and PAT, which enabled the sensitive detection of PAT and PAP. The constructed mNPC/SMOH@C electrochemical sensor could simultaneously detect PAT (1 × 10-7 - 1 × 10-4 M) and PAP (5 × 10-8 - 1 × 10-4 M) with detection limits of 20.4 nM and 30.1 nM, respectively. The sensor has good repeatability (RSD <4 %) and reproducibility (RSD <4 %), and satisfactory recoveries (96.7-102.8 %) were obtained in the analysis of natural water samples. SIGNIFICANCE In this paper, for the first time, we present the synthesis of 3D foam birnessite and its composite with mNPC for the electrochemical simultaneous detection of PAT and PAP. Our proposed strategy for fabricating 2D/3D porous composites lays the foundation for the design and synthesis of other porous materials. In addition, this study provides new ideas for developing efficient and practical electrochemical sensors for detecting pollutants in aquatic environments.
Collapse
Affiliation(s)
- Yaqi Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, PR China
| | - Jiejun Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Zhiwang Luo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Li Zhang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, PR China
| | - Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Zhifang Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Caiyu Ge
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, PR China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, PR China.
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
3
|
Saylan Y, Aliyeva N, Eroglu S, Denizli A. Nanomaterial-Based Sensors for Coumarin Detection. ACS OMEGA 2024; 9:30015-30034. [PMID: 39035881 PMCID: PMC11256117 DOI: 10.1021/acsomega.4c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Sensors are widely used owing to their advantages including excellent sensing performance, user-friendliness, portability, rapid response, high sensitivity, and specificity. Sensor technologies have been expanded rapidly in recent years to offer many applications in medicine, pharmaceuticals, the environment, food safety, and national security. Various nanomaterial-based sensors have been developed for their exciting features, such as a powerful absorption band in the visible region, excellent electrical conductivity, and good mechanical properties. Natural and synthetic coumarin derivatives are attracting attention in the development of functional polymers and polymeric networks for their unique biological, optical, and photochemical properties. They are the most abundant organic molecules in medicine because of their biological and pharmacological impacts. Furthermore, coumarin derivatives can modulate signaling pathways that affect various cellular processes. This review covers the discovery of coumarins and their derivatives, the integration of nanomaterial-based sensors, and recent advances in nanomaterial-based sensing for coumarins. This review also explains how sensors work, their types, their pros and cons, and sensor studies for coumarin detection in recent years.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Nilufer Aliyeva
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Seckin Eroglu
- Department
of Biological Sciences, Middle East Technical
University, 06800 Ankara, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
4
|
Oezau Gomes N, de Campos AM, Calegaro ML, Machado SAS, Oliveira ON, Raymundo-Pereira PA. Core-Shell Nanocables Decorated with Carbon Spherical Shells and Silver Nanoparticles for Sensing Ethinylestradiol Hormone in Water Sources and Pills. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10897-10907. [PMID: 38364212 DOI: 10.1021/acsami.3c16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The selective, rapid detection of low levels of hormones in drinking water and foodstuffs requires materials suitable for inexpensive sensing platforms. We report on core-shell Ag@C nanocables (NCs) decorated with carbon spherical shells (CSSs) and silver nanoparticles (AgNPs) by using a hydrothermal green approach. Sensors were fabricated with homogeneous, porous films on screen-printed electrodes, which comprised a 115 nm silver core covered by a 122 nm thick carbon layer and CSSs with 168 nm in diameter. NCs and CSSs were also decorated with 10-25 nm AgNPs. The NC/CSS/AgNP sensor was used to detect ethinylestradiol using square wave voltammetry in 0.1 M phosphate buffer (pH 7.0) over the 1.0-10.0 μM linear range with a detection limit of 0.76 μM. The sensor was then applied to detect ethinylestradiol in tap water samples and a contraceptive pill with recovery percentages between 93 and 101%. The high performance in terms of sensitivity and selectivity for hormones is attributed to the synergy between the carbon nanomaterials and AgNPs, which not only increased the sensor surface area and provided sites for electron exchange but also imparted an increased surface area.
Collapse
Affiliation(s)
- Nathalia Oezau Gomes
- São Carlos Institute of Chemistry, University of São Paulo, CEP 13566-590 São Carlos, SP, Brazil
| | - Anderson M de Campos
- Chair of Physical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandstr. 5-13, 81377 Munich, Germany
| | - Marcelo L Calegaro
- São Carlos Institute of Chemistry, University of São Paulo, CEP 13566-590 São Carlos, SP, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, CEP 13566-590 São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CEP 13560-970 São Carlos, SP, Brazil
| | | |
Collapse
|
5
|
Kozak J, Tyszczuk-Rotko K, Keller A, Wójciak M, Sowa I. Activated Screen-Printed Boron-Doped Diamond Electrode for Rapid and Highly Sensitive Determination of Curcumin in Food Products. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6826. [PMID: 37959423 PMCID: PMC10649004 DOI: 10.3390/ma16216826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Due to a great interest in the beneficial properties of polyphenolic antioxidant curcumin (CCM), sensitive and accurate methods for determining CCM are needed. The purpose of our research was to develop a very simple, fast, and sensitive differential pulse adsorptive stripping voltammetric (DPAdSV) procedure using an electrochemically activated screen-printed boron-doped diamond electrode (aSPBDDE) for the determination of CCM. The activation of the SPBDDE was accomplished in a solution of 0.1 mol/L NaOH by performing five cyclic voltammetric scans in the range of 0-2 V, at ν of 100 mV/s. The changes in surface morphology and the reduction of the charge transfer resistance due to the activation of the electrode resulted in the amplification of the CCM analytical signal on the aSPBDDE. As a result, an extremely sensitive measurement tool was formed, which under optimized conditions (0.025 mol/L PBS of pH = 2.6, Eacc of 0.3 V, tacc of 90 s, ΔEA of 100 mV, ν of 150 mV/s, and tm of 10 ms) allowed us to obtain a limit of detection (LOD) of 5.0 × 10-13 mol/L. The aSPBDDE has proven to be a highly effective tool for the direct determination of CCM in food samples with high accuracy and precision. The results are in agreement with those obtained using ultra-high-performance liquid chromatography coupled with mass spectrometry and electrospray ionization (UHPLC-ESI/MS).
Collapse
Affiliation(s)
- Jędrzej Kozak
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Aleksy Keller
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
6
|
Deng D, Wang Y, Wen S, Kang Y, Cui X, Tang R, Yang X. Metal-organic framework composite Mn/Fe-MOF@Pd with peroxidase-like activities for sensitive colorimetric detection of hydroquinone. Anal Chim Acta 2023; 1279:341797. [PMID: 37827690 DOI: 10.1016/j.aca.2023.341797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
The construction of highly sensitive detection methods for hydroquinone (HQ) in environment and cosmetics is of great significance for environmental protection and human health. In this work, a novel detection method for HQ was successfully developed by constructing a metal-organic framework mimic enzyme colorimetric sensor (Mn/Fe-MOF@Pd1.0) with excellent peroxidase-like activity, which was synthesized by doping manganese ions into Fe-MOF by introducing bimetallic active centers, thereby improving the peroxidase-like activity of Fe-MOF, and the acid resistance and stability of Mn/Fe-MOF were improved by supporting palladium (Pd NPs). It is proven that Mn/Fe-MOF@Pd1.0 promoted the decomposition of hydrogen peroxide (H2O2) to generate active species, therefore, oxidized chromogenic substrate discoloration. On this basis, the detection of HQ based on the Mn/Fe-MOF@Pd1.0 colorimetric sensor was constructed, in which the limit of detection (LOD) was 0.09 μM in the linear range of 0.3-30 μM. Furthermore, Mn/Fe-MOF@Pd1.0 was successfully used for detecting HQ in hydroquinone whitening cream and actual water samples. The successful synthesis of Mn/Fe-MOF@Pd1.0 may provide new insights for further study of the enzyme-like activity of metal-organic framework composites, and the constructed facile and sensitive sensor system could broaden the application prospects of HQ detection.
Collapse
Affiliation(s)
- Die Deng
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Ya Wang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Shaohua Wen
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China; School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yujie Kang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Xiaoyan Cui
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China; Nanchong Food and Drug Inspection Institute, Nanchong, 637000, China
| | - Rong Tang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China.
| |
Collapse
|
7
|
SARS-CoV-2 detection enabled by a portable and label-free photoelectrochemical genosensor using graphitic carbon nitride and gold nanoparticles. Electrochim Acta 2023; 451:142271. [PMID: 36974119 PMCID: PMC10024957 DOI: 10.1016/j.electacta.2023.142271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023]
Abstract
Fast, sensitive, simple, and cheap sensors are highly desirable to be applied in the health system because they improve point-of-care diagnostics, which can reduce the number of cases of infection or even deaths. In this context, here we report the development of a label-free genosensor using a screen-printed electrode modified with 2D-carbonylated graphitic carbon nitride (c-g-C3N4), poly(diallyldimethylammonium) chloride (PDDA), and glutathione-protected gold nanoparticles (GSH-AuNPs) for photoelectrochemical (PEC) detection of SARS-CoV-2. We also made use of Arduino and 3D printing to miniaturize the sensor device. The electrode surface was characterized by AFM and SEM techniques, and the gold nanoparticles by UV–Vis spectrophotometry. For SARS-CoV-2 detection, capture probe DNA was immobilized on the electrode surface. The hybridization of the final genosensor was tested with a synthetic single-strand DNA target and with natural saliva samples using the photoelectrochemistry method. The device presented a linear range from 1 to 10,000 fmol L−1 and a limit of detection of 2.2 and 3.4 fmol L−1 using cpDNA 1A and 3A respectively. The sensibility and accuracy found for the genosensor using cpDNA 1A using biological samples were 93.3 and 80% respectively, indicating the potential of the label-free and portable genosensor to detect SARS-CoV-2 RNA in saliva samples.
Collapse
|
8
|
Musa AM, Kiely J, Luxton R, Honeychurch KC. An Electrochemical Screen-Printed Sensor Based on Gold-Nanoparticle-Decorated Reduced Graphene Oxide-Carbon Nanotubes Composites for the Determination of 17-β Estradiol. BIOSENSORS 2023; 13:bios13040491. [PMID: 37185565 PMCID: PMC10136424 DOI: 10.3390/bios13040491] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
In this study, a screen-printed electrode (SPE) modified with gold-nanoparticle-decorated reduced graphene oxide-carbon nanotubes (rGO-AuNPs/CNT/SPE) was used for the determination of estradiol (E2). The AuNPs were produced through an eco-friendly method utilising plant extract, eliminating the need for severe chemicals, and remove the requirements of sophisticated fabrication methods and tedious procedures. In addition, rGO-AuNP serves as a dispersant for the CNT to improve the dispersion stability of CNTs. The composite material, rGO-AuNPs/CNT, underwent characterisation through scanning electron microscopy (SEM), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier-transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The electrochemical performance of the modified SPE for estradiol oxidation was characterised using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The rGO-AuNPs/CNT/SPE exhibited a notable improvement compared to bare/SPE and GO-CNT/SPE, as evidenced by the relative peak currents. Additionally, we employed a baseline correction algorithm to accurately adjust the sensor response while eliminating extraneous background components that are typically present in voltammetric experiments. The optimised estradiol sensor offers linear sensitivity from 0.05-1.00 µM, with a detection limit of 3 nM based on three times the standard deviation (3δ). Notably, this sensing approach yields stable, repeatable, and reproducible outcomes. Assessment of drinking water samples indicated an average recovery rate of 97.5% for samples enriched with E2 at concentrations as low as 0.5 µM%, accompanied by only a modest coefficient of variation (%CV) value of 2.7%.
Collapse
Affiliation(s)
- Auwal M Musa
- Institute of Bio-Sensing Technology (IBST), University of the West of England, Bristol BS16 1QY, UK
| | - Janice Kiely
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Richard Luxton
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Kevin C Honeychurch
- Institute of Bio-Sensing Technology (IBST), University of the West of England, Bristol BS16 1QY, UK
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
9
|
Huang L, Wang C, Yang Y, Wang Y, Li C, Xie Y, Zhao P, Fei J. A light-driven photoelectrochemical sensor for highly selective detection of hydroquinone based on type-II heterojunction formed by carbon nanotubes immobilized in 3D honeycomb CdS/SnS2. J Colloid Interface Sci 2023; 643:585-599. [PMID: 37003870 DOI: 10.1016/j.jcis.2023.03.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
The ecological environment and public safety are seriously threatened by the typical phenolic contaminant hydroquinone (HQ). Here, using a straightforward physical mixing technique, we created an n-n heterojunction by uniformly immobilizing cadmium sulfide (CdS) nanoparticles on the surface of a three-dimensionally layered, flower-like structure made of tin sulfide (SnS2). Then, as photosensitizers, carbon nanotubes (CNTs) were added to the CdS/SnS2 complex to create a type-II heterostructure of CdS/SnS2/CNTs with synergistic effects. Subsequently, the detector HQ was bound to the modified photoelectrodes, which was accompanied by the hole oxidation of the bound HQ, leading to a significant increase in the photocurrent signal, thus allowing specific and sensitive detection of HQ. Under optimized detection conditions, the proposed photoelectrochemical sensor shows a wide detection range of 0.2 to 100 μM for HQ with a detection limit as low as 0.1 μM. The high accuracy of the sensor was demonstrated by comparison with the detection results of UV-vis spectrophotometry. In addition, the photoelectrochemical sensor exhibits good reproducibility, stability, selectivity, and specificity, providing a light-driven method to detect HQ.
Collapse
|
10
|
Gomes NO, Raymundo-Pereira PA. On-Site Therapeutic Drug Monitoring of Paracetamol Analgesic in Non-Invasively Collected Saliva for Personalized Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206753. [PMID: 36642790 DOI: 10.1002/smll.202206753] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Paracetamol or acetaminophen is the main non-opioid analgesic recommended for mild pain by the World Health Organization (WHO) analgesic ladder. However, the high levels used of paracetamol are associated with the hepatotoxicity and nephrotoxicity caused by accumulation of toxic metabolites. The sensor is produced on a polyester substrate containing a full electrochemical device with working, auxiliary, and reference electrodes in which, guiding personalized medicine solutions are not reported. Temporal paracetamol profiles in human saliva are performed with the subject taking different amounts of commercial analgesic pills. The variation of saliva paracetamol levels is demonstrated to be interference free from electroactive interfering species and human saliva constituents. In addition, the sensor displays to be useful as a disposable device for the fast detection of paracetamol in untreated raw saliva following pill intake. The maximum concentration (Cmax ) and half-life time (t1/2 ) for paracetamol are 143.27 µm and 110 min. The results demonstrate the potential of a simple strategy with electrochemical devices for noninvasive personalized therapy toward guiding drug interventions through tracking of active substance, detecting, and correcting insufficiency of absorption to meet individual needs avoiding overdoses, side effects, and intoxication.
Collapse
Affiliation(s)
- Nathalia O Gomes
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, CEP 13566-590, Brazil
| | - Paulo A Raymundo-Pereira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, CEP 13560-970, Brazil
| |
Collapse
|
11
|
Cardoso RM, Pereira TS, Santos DMD, Migliorini FL, Mattoso LH, Correa DS. Laser-induced graphitized electrodes enabled by a 3D printer/diode laser setup for voltammetric detection of hormones. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Development of a Chemically Modified Electrode with Magnetic Molecularly Imprinted Polymer (MagMIP) for 17-β-Estradiol Determination in Water Samples. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The present work consisted of the development of an electrode based on carbon paste modified with magnetic molecularly imprinted polymer (CPE-MagMIP) for 17-β-estradiol (E2) detection. The incorporation of magnetic material (MagMIP) improved sensor performance, an increase of over 317%. The proposed method resulted in a linear response range from 0.5 to 14.0 μM, and the detection limit (LOD) and quantification limit (LOQ) were equal to 0.13 and 0.44 μM, respectively. Under optimized conditions, the developed sensor obtained satisfactory parameters in E2 determination in water samples, demonstrating selectivity, accuracy, and precision, making it a promising method for monitoring E2 in environmental samples.
Collapse
|
13
|
Prospective analytical role of sensors for environmental screening and monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Martimiano do Prado T, Catunda LGDS, Calegaro ML, Correa DS, Machado SAS. Synthesis and characterization of 2D-carbonylated graphitic carbon nitride: A promising organic semiconductor for miniaturized sensing devices. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Kozak J, Tyszczuk-Rotko K, Wójciak M, Sowa I, Rotko M. Electrochemically Pretreated Sensor Based on Screen-Printed Carbon Modified with Pb Nanoparticles for Determination of Testosterone. MATERIALS 2022; 15:ma15144948. [PMID: 35888414 PMCID: PMC9320313 DOI: 10.3390/ma15144948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023]
Abstract
Testosterone (TST), despite its good properties, may be harmful to the human organism and the environment. Therefore, monitoring biological fluids and environmental samples is important. An electrochemically pretreated screen-printed carbon sensor modified with Pb nanoparticles (pSPCE/PbNPs) was successfully prepared and used for the determination of TST. The surface morphology and electrochemical properties of unmodified and modified sensors were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning and transmission electron microscopy (SEM and TEM), and energy-dispersive X-ray spectroscopy (EDS). Selective determinations of TST at the pSPCE/PbNPs were carried out by differential pulse adsorptive stripping voltammetry (DPAdSV, EPb dep.and TST acc. of −1.1 V, t Pb dep.and TST acc. of 120 s, ΔEA of 50 mV, ν of 175 mV s−1, and tm of 5 ms) in a solution containing 0.075 mol L−1 acetate buffer of pH = 4.6 ± 0.1, and 7.5 × 10−5 mol L−1 Pb(NO3)2. The analytical signal obtained at the potential around −1.42 V (vs. silver pseudo-reference electrode) is related to the reduction process of TST adsorbed onto the electrode surface. The use of pSPCE/PbNPs allows obtaining a very low limit of TST detection (2.2 × 10−12 mol L−1) and wide linear ranges of the calibration graph (1.0 × 10−11–1.0 × 10−10, 1.0 × 10−10–2.0 × 10−9, and 2.0 × 10−9–2.0 × 10−8 mol L−1). The pSPCE/PbNPs were successfully applied for the determination of TST in reference material of human urine and wastewater purified in a sewage treatment plant without preliminary preparation.
Collapse
Affiliation(s)
- Jędrzej Kozak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland; (J.K.); (M.R.)
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland; (J.K.); (M.R.)
- Correspondence:
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.); (I.S.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.); (I.S.)
| | - Marek Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland; (J.K.); (M.R.)
| |
Collapse
|
16
|
Fratilescu I, Lascu A, Taranu BO, Epuran C, Birdeanu M, Macsim AM, Tanasa E, Vasile E, Fagadar-Cosma E. One A 3B Porphyrin Structure-Three Successful Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1930. [PMID: 35683785 PMCID: PMC9182125 DOI: 10.3390/nano12111930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Porphyrins are versatile structures capable of acting in multiple ways. A mixed substituted A3B porphyrin, 5-(3-hydroxy-phenyl)-10,15,20-tris-(3-methoxy-phenyl)-porphyrin and its Pt(II) complex, were synthesised and fully characterised by 1H- and 13C-NMR, TLC, UV-Vis, FT-IR, fluorescence, AFM, TEM and SEM with EDX microscopy, both in organic solvents and in acidic mediums. The pure compounds were used, firstly, as sensitive materials for sensitive and selective optical and fluorescence detection of hydroquinone with the best results in the range 0.039-6.71 µM and a detection limit of 0.013 µM and, secondly, as corrosion inhibitors for carbon-steel (OL) in an acid medium giving a best performance of 88% in the case of coverings with Pt-porphyrin. Finally, the electrocatalytic activity for the hydrogen and oxygen evolution reactions (HER and OER) of the free-base and Pt-metalated A3B porphyrins was evaluated in strong alkaline and acidic electrolyte solutions. The best results were obtained for the electrode modified with the metalated porphyrin, drop-casted on a graphite substrate from an N,N-dimethylformamide solution. In the strong acidic medium, the electrode displayed an HER overpotential of 108 mV, at i = -10 mA/cm2 and a Tafel slope value of 205 mV/dec.
Collapse
Affiliation(s)
- Ion Fratilescu
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Ave. 24, 300223 Timisoara, Romania
| | - Anca Lascu
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Ave. 24, 300223 Timisoara, Romania
| | - Bogdan Ovidiu Taranu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Street 1, 300224 Timisoara, Romania
| | - Camelia Epuran
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Ave. 24, 300223 Timisoara, Romania
| | - Mihaela Birdeanu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Street 1, 300224 Timisoara, Romania
| | - Ana-Maria Macsim
- Institute of Macromolecular Chemistry "Petru Poni", Grigore Ghica Vodă Alley, No. 41A, 700487 Iasi, Romania
| | - Eugenia Tanasa
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Splaiul Independentei 313, Sector 6, 060042 Bucharest, Romania
| | - Eugeniu Vasile
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Splaiul Independentei 313, Sector 6, 060042 Bucharest, Romania
| | - Eugenia Fagadar-Cosma
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Ave. 24, 300223 Timisoara, Romania
| |
Collapse
|
17
|
Di Tinno A, Cancelliere R, Mantegazza P, Cataldo A, Paddubskaya A, Ferrigno L, Kuzhir P, Maksimenko S, Shuba M, Maffucci A, Bellucci S, Micheli L. Sensitive Detection of Industrial Pollutants Using Modified Electrochemical Platforms. NANOMATERIALS 2022; 12:nano12101779. [PMID: 35631001 PMCID: PMC9142962 DOI: 10.3390/nano12101779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Water pollution is nowadays a global problem and the effective detection of pollutants is of fundamental importance. Herein, a facile, efficient, robust, and rapid (response time < 2 min) method for the determination of important quinone-based industrial pollutants such as hydroquinone and benzoquinone is reported. The recognition method is based on the use of screen-printed electrodes as sensing platforms, enhanced with carbon-based nanomaterials. The enhancement is achieved by modifying the working electrode of such platforms through highly sensitive membranes made of Single- or Multi-Walled Carbon Nanotubes (SWNTs and MWNTs) or by graphene nanoplatelets. The modified sensing platforms are first carefully morphologically and electrochemically characterized, whereupon they are tested in the detection of different pollutants (i.e., hydroquinone and benzoquinone) in water solution, by using both cyclic and square-wave voltammetry. In particular, the sensors based on film-deposited nanomaterials show good sensitivity with a limit of detection in the nanomolar range (0.04 and 0.07 μM for SWNT- and MWNT-modified SPEs, respectively) and a linear working range of 10 to 1000 ppb under optimal conditions. The results highlight the improved performance of these novel sensing platforms and the large-scale applicability of this method for other analytes (i.e., toxins, pollutants).
Collapse
Affiliation(s)
- Alessio Di Tinno
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.D.T.); (R.C.); (P.M.)
| | - Rocco Cancelliere
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.D.T.); (R.C.); (P.M.)
| | - Pietro Mantegazza
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.D.T.); (R.C.); (P.M.)
| | - Antonino Cataldo
- DISPREV Laboratory, Casaccia Research Center, ENEA, 00185 Rome, Italy;
- National Institute of Nuclear Physics, Frascati National Laboratories, 00044 Frascati, Italy;
| | - Alesia Paddubskaya
- Institute for Nuclear Problems, Belarusian State University, 220007 Minsk, Belarus; (A.P.); (S.M.); (M.S.)
| | - Luigi Ferrigno
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (L.F.); (A.M.)
| | - Polina Kuzhir
- Department of Physics and Mathematics, Institute of Photonics, University of Eastern Finland, 80200 Joensuu, Finland;
| | - Sergey Maksimenko
- Institute for Nuclear Problems, Belarusian State University, 220007 Minsk, Belarus; (A.P.); (S.M.); (M.S.)
| | - Mikhail Shuba
- Institute for Nuclear Problems, Belarusian State University, 220007 Minsk, Belarus; (A.P.); (S.M.); (M.S.)
| | - Antonio Maffucci
- National Institute of Nuclear Physics, Frascati National Laboratories, 00044 Frascati, Italy;
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (L.F.); (A.M.)
| | - Stefano Bellucci
- National Institute of Nuclear Physics, Frascati National Laboratories, 00044 Frascati, Italy;
| | - Laura Micheli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.D.T.); (R.C.); (P.M.)
- Correspondence:
| |
Collapse
|
18
|
Asgari Kheirabadi Z, Rabbani M, Samiei Foroushani M. Green Fabrication of Nonenzymatic Glucose Sensor Using Multi-Walled Carbon Nanotubes Decorated with Copper (II) Oxide Nanoparticles for Tear Fluid Analysis. Appl Biochem Biotechnol 2022; 194:3689-3705. [PMID: 35488956 DOI: 10.1007/s12010-022-03936-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
In this report, a green, simple, inexpensive, and effective nonenzymatic electrochemical glucose sensor was fabricated using multi-walled carbon nanotubes (MWCNT) decorated with copper (II) oxide nanoparticles (CuO NPs). Basil seed mucilage (BSM) was served as reducing, capping, and stabilizing agents in the synthesis of CuO NPs.The prepared MWCNT/CuO nanocomposite was characterized using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and electrochemical methods. The FTIR results indicated that the nanocomposite surface was covered by BSM. The FESEM results show that the CuO NPs with an average particle size lower than 10 nm have been well distributed on the walls of the MWCNT. The electrochemical behavior of the nanocomposite was explored by studying the electrocatalytic behavior of the screen-printed carbon electrode (SPCE) modified by the nanocomposite (SPCE-MWCNT/CuO) toward the glucose oxidation. In the optimum conditions, the electrode indicated a wide linear response from 5.0 to 620.0 μM with regression coefficients of 0.992, the sensitivity of 1050 μA mM-1 cm-2, a limit of detection (LOD) of 1.7 μM, and a reproducibility with relative standard deviation (RSD) variations from 3.5 to 11% for three measurements at each point. The obtained results also showed good selectivity to glucose against interfering species such as lactate (LA), L-ascorbic acid (AA), and urea (U) due to the use of the negatively charged BSM in the form of a coating on the nanocomposite surface. The applicability of the sensor was successfully verified by the determination of glucose concentration in artificial tears with a certain amount of glucose.
Collapse
Affiliation(s)
| | - Mohsen Rabbani
- Department of Biomedical Engineering, University of Isfahan, Isfahan, 81746-73441, Iran.
| | | |
Collapse
|
19
|
Yang Y, Liu S, Shi P, Zhao G. A Highly Sensitive and Selective Label‐free Electrochemical Biosensor with a Wide Range of Applications for Bisphenol A Detection. ELECTROANAL 2022. [DOI: 10.1002/elan.202100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yingying Yang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power Shanghai University of Electric Power Shanghai 200090 China
| | - Siyao Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability Tongji University Shanghai 200092 China
| | - Penghui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power Shanghai University of Electric Power Shanghai 200090 China
| | - Guohua Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power Shanghai University of Electric Power Shanghai 200090 China
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability Tongji University Shanghai 200092 China
| |
Collapse
|
20
|
Martimiano do Prado T, Gomes da Silva Catunda L, Correa DS, Antonio Spinola Machado S. Homemade Silver/Silver Chloride ink with low curing temperature for screen-printed electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
da Silva DN, Pereira AC. An electrochemical sensor modified with a molecularly imprinted polymer and carbon black for 17-β-estradiol detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1208-1213. [PMID: 35234224 DOI: 10.1039/d1ay02062e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The purpose of this work was to apply an electrochemical sensor modified with a molecularly imprinted polymer (MIP) and carbon black (CB) for 17β-estradiol (E2) detection in river water samples. The synthesized MIP was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).The modification of the electrode with the MIP and CB contributed to increased sensitivity, an increase of over 173% in relation to that of the bare electrode. The experimental parameters, amount of modifiers, pH and possible interfering species were evaluated. The method showed linearity from 0.10 to 23.0 μmol L-1 and detection and quantification limits of 0.03 and 0.10 μmol L-1, respectively. The application of the developed sensor was considered simple, resulting in a fast, low operating cost method, with recovery values between 103 and 105%.
Collapse
Affiliation(s)
- Daniela Nunes da Silva
- Departamento de Ciências Naturais, Universidade Federal de São João Del Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74, Fá-bricas, 36301-160, São João del Rei, MG, Brazil.
| | - Arnaldo César Pereira
- Departamento de Ciências Naturais, Universidade Federal de São João Del Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74, Fá-bricas, 36301-160, São João del Rei, MG, Brazil.
| |
Collapse
|
22
|
Tyszczuk-Rotko K, Kozak J, Czech B. Screen-Printed Voltammetric Sensors-Tools for Environmental Water Monitoring of Painkillers. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22072437. [PMID: 35408052 PMCID: PMC9003516 DOI: 10.3390/s22072437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 05/03/2023]
Abstract
The dynamic production and usage of pharmaceuticals, mainly painkillers, indicates the growing problem of environmental contamination. Therefore, the monitoring of pharmaceutical concentrations in environmental samples, mostly aquatic, is necessary. This article focuses on applying screen-printed voltammetric sensors for the voltammetric determination of painkillers residues, including non-steroidal anti-inflammatory drugs, paracetamol, and tramadol in environmental water samples. The main advantages of these electrodes are simplicity, reliability, portability, small instrumental setups comprising the three electrodes, and modest cost. Moreover, the electroconductivity, catalytic activity, and surface area can be easily improved by modifying the electrode surface with carbon nanomaterials, polymer films, or electrochemical activation.
Collapse
|
23
|
David M, Şerban A, Adrian Enache T, Florescu M. Electrochemical quantification of levothyroxine at disposable screen-printed electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Kozak J, Tyszczuk-Rotko K, Sadok I, Sztanke K, Sztanke M. Application of a Screen-Printed Sensor Modified with Carbon Nanofibers for the Voltammetric Analysis of an Anticancer Disubstituted Fused Triazinone. Int J Mol Sci 2022; 23:2429. [PMID: 35269572 PMCID: PMC8910141 DOI: 10.3390/ijms23052429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 01/01/2023] Open
Abstract
In this paper, we propose the first analytical procedure-using a screen-printed carbon electrode modified with carbon nanofibers (SPCE/CNFs)-for the detection and quantitative determination of an electroactive disubstituted fused triazinone, namely 4-Cl-PIMT, which is a promising anticancer drug candidate. The electrochemical performances of the sensor were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and square-wave adsorptive stripping voltammetry (SWAdSV). The presence of carbon nanofibers on the sensor surface caused a decrease in charge-transfer resistance and an increase in the active surface compared to the bare SPCE. Under the optimised experimental conditions, the proposed voltammetric procedure possesses a good linear response for the determination of 4-Cl-PIMT in the two linear ranges of 0.5-10 nM and 10-100 nM. The low limits of detection and quantification were calculated at 0.099 and 0.33 nM, respectively. In addition, the sensor displays high reproducibility and repeatability, as well as good selectivity. The selectivity was improved through the use of a flow system and a short accumulation time. The SWAdSV procedure with SPCE/CNFs was applied to determine 4-Cl-PIMT in human serum samples. The SWAdSV results were compared to those obtained by the ultra-high-performance liquid chromatography coupled with electrospray ionization/single-quadrupole mass spectrometry (UHPLC-ESI-MS) method.
Collapse
Affiliation(s)
- Jędrzej Kozak
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland; (J.K.); (K.T.-R.)
| | - Katarzyna Tyszczuk-Rotko
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland; (J.K.); (K.T.-R.)
| | - Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| | - Krzysztof Sztanke
- Laboratory of Bioorganic Synthesis and Analysis, Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Małgorzata Sztanke
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland;
| |
Collapse
|
25
|
Munir MA, Badri KH, Heng LY, Inayatullah A, Nurinda E, Estiningsih D, Fatmawati A, Aprilia V, Syafitri N. The Application of Polyurethane-LiClO 4 to Modify Screen-Printed Electrodes Analyzing Histamine in Mackerel Using a Voltammetric Approach. ACS OMEGA 2022; 7:5982-5991. [PMID: 35224359 PMCID: PMC8867486 DOI: 10.1021/acsomega.1c06295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2022] [Indexed: 05/03/2023]
Abstract
Histamine is an important substance that can be applied as a parameter for allergic reactions and food freshness. This study develops a method to produce a histamine sensor based on electrodes modified using polyurethane-LiClO4. A sensor method was developed where this sensor was produced from polyurethane. The application of 4,4'-diphenylmethane diisocyanate (hard compound) and palm kernel oil-based monoester polyol (soft compound) to produce polyurethane (PU) based on bio-polyol. The addition of lithium perchlorate (LiClO4) was done in order to increase the conductivity of PU. The oxidation process was detected using cyclic voltammetry, whereas the electrochemical impedance spectroscopy was used to analyze the conductivity of the polymer. The polyurethane-LiClO4 was attached on a screen-printed electrode (SPE) within 45 min. Moreover, the 1% LiClO4-PU-SPE presented satisfactory selectivity for the detection of histamine in the pH 7.5 solution. The LiClO4-PU-SPE presented a good correlation coefficient (R = 0.9991) in the range 0.015-1 mmol·L-1. The detection limit was 0.17 mmol·L-1. Moreover, the histamine concentration of mackerel samples was detected by the PU-SEP-LiClO4. Several amine compounds were chosen to study the selectivity of histamine detection using SPE-PU-LiClO4. The interference was from several major interfering compounds such as aniline, cadaverine, hexamine, putrescine, and xanthine. The technique showed a satisfactory selective analysis compared to the other amines. A satisfactory recovery performance toward varying concentrations of histamine was obtained at 94 and 103% for histamine at 0.01 and 0.1 mmol·L-1, respectively. The application of PU-SEP-LiClO4 as an electrochemical sensor has a great prospect to analyze histamine content in fish mackerel as a consequence of PU-SEP-LiClO4 having good selectivity and simplicity.
Collapse
Affiliation(s)
- Muhammad Abdurrahman Munir
- Department
of Pharmacy, Faculty of Health Science, Alma Ata University, Daerah Istimewa Yogyakarta, Bantul 55183, Indonesia
| | - Khairiah Haji Badri
- Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Polymer
Research Center, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Lee Yook Heng
- Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ahlam Inayatullah
- Faculty
of Science and Technology, Universiti Sains
Islam Malaysia, Nilai 71800, Malaysia
| | - Eva Nurinda
- Department
of Pharmacy, Faculty of Health Science, Alma Ata University, Daerah Istimewa Yogyakarta, Bantul 55183, Indonesia
| | - Daru Estiningsih
- Department
of Pharmacy, Faculty of Health Science, Alma Ata University, Daerah Istimewa Yogyakarta, Bantul 55183, Indonesia
| | - Annisa Fatmawati
- Department
of Pharmacy, Faculty of Health Science, Alma Ata University, Daerah Istimewa Yogyakarta, Bantul 55183, Indonesia
| | - Veriani Aprilia
- Department
of Nutrition Science, Alma Ata School of Health Sciences, Alma Ata University, Daerah Istimewa Yogyakarta, Bantul 55183, Indonesia
| | - Nur Syafitri
- Department
of Pharmacy, Faculty of Health Science, Alma Ata University, Daerah Istimewa Yogyakarta, Bantul 55183, Indonesia
| |
Collapse
|
26
|
Gavrilaș S, Ursachi CȘ, Perța-Crișan S, Munteanu FD. Recent Trends in Biosensors for Environmental Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:1513. [PMID: 35214408 PMCID: PMC8879434 DOI: 10.3390/s22041513] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 05/07/2023]
Abstract
The monitoring of environmental pollution requires fast, reliable, cost-effective and small devices. This need explains the recent trends in the development of biosensing devices for pollutant detection. The present review aims to summarize the newest trends regarding the use of biosensors to detect environmental contaminants. Enzyme, whole cell, antibody, aptamer, and DNA-based biosensors and biomimetic sensors are discussed. We summarize their applicability to the detection of various pollutants and mention their constructive characteristics. Several detection principles are used in biosensor design: amperometry, conductometry, luminescence, etc. They differ in terms of rapidity, sensitivity, profitability, and design. Each one is characterized by specific selectivity and detection limits depending on the sensitive element. Mimetic biosensors are slowly gaining attention from researchers and users due to their advantages compared with classical ones. Further studies are necessary for the development of robust biosensing devices that can successfully be used for the detection of pollutants from complex matrices without prior sample preparation.
Collapse
Affiliation(s)
| | | | | | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, Tourism and Environmental Protection, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.G.); (C.Ș.U.); (S.P.-C.)
| |
Collapse
|
27
|
Brazaca LC, Imamura AH, Gomes NO, Almeida MB, Scheidt DT, Raymundo-Pereira PA, Oliveira ON, Janegitz BC, Machado SAS, Carrilho E. Electrochemical immunosensors using electrodeposited gold nanostructures for detecting the S proteins from SARS-CoV and SARS-CoV-2. Anal Bioanal Chem 2022; 414:5507-5517. [PMID: 35169906 PMCID: PMC8853172 DOI: 10.1007/s00216-022-03956-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/29/2022]
Abstract
This paper reports the development of a low-cost (< US$ 0.03 per device) immunosensor based on gold-modified screen-printed carbon electrodes (SPCEs). As a proof of concept, the immunosensor was tested for a fast and sensitive determination of S proteins from both SARS-CoV and SARS-CoV-2, by a single disposable device. Gold nanoparticles were electrochemically deposited via direct reduction of gold ions on the electrode using amperometry. Capture antibodies from spike (S) protein were covalently immobilized on carboxylic groups of self-assembled monolayers (SAM) of mercaptoacetic acid (MAA) attached to the gold nanoparticles. Label-free detection of S proteins from both SARS-CoV and SARS-CoV-2 was performed with electrochemical impedance spectroscopy (EIS). The immunosensor fabricated with 9 s gold deposition had a high performance in terms of selectivity, sensitivity, and low limit of detection (LOD) (3.16 pmol L-1), thus permitting the direct determination of the target proteins in spiked saliva samples. The complete analysis can be carried out within 35 min using a simple one-step assay protocol with small sample volumes (10 µL). With such features, the immunoplatform presented here can be deployed for mass testing in point-of-care settings.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| | - Amanda Hikari Imamura
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | - Nathalia Oezau Gomes
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Mariana Bortholazzi Almeida
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | - Desirée Tamara Scheidt
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | | | - Osvaldo N Oliveira
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | | | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
28
|
Paschoalin RT, Gomes NO, Almeida GF, Bilatto S, Farinas CS, Machado SAS, Mattoso LHC, Oliveira ON, Raymundo-Pereira PA. Wearable sensors made with solution-blow spinning poly(lactic acid) for non-enzymatic pesticide detection in agriculture and food safety. Biosens Bioelectron 2021; 199:113875. [PMID: 34922318 DOI: 10.1016/j.bios.2021.113875] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
On-site monitoring the presence of pesticides on crops and food samples is essential for precision and post-harvest agriculture, which demands nondestructive analytical methods for rapid, low-cost detection that is not achievable with gold standard methods. The synergy between eco-friendly substrates and printed devices may lead to wearable sensors for decentralized analysis of pesticides in precision agriculture. In this paper we report on a wearable non-enzymatic electrochemical sensor capable of detecting carbamate and bipyridinium pesticides on the surface of agricultural and food samples. The low-cost devices (<US$ 0.08 per unit) contained three-electrode systems deposited via screen-printing technology (SPE) on solution-blow spinning mats of poly (lactic acid) (PLA). The flexible PLA/SPE sensors can be used on flat, curved and irregular surfaces of leaves, vegetables and fruits. Detection was performed using differential pulse voltammetry and square wave voltammetry with detection limits of 43 and 57 nM for carbendazim and diquat, respectively. The wearable non-enzymatic sensor can discriminate and quantify carbendazim and diquat on apple and cabbage skins with no interference from other pesticides. The use of such wearable sensors may be extended to other agrochemicals, including with incorporation of active bio (sensing) layers for online monitoring of any type of agricultural products and foods.
Collapse
Affiliation(s)
- Rafaella T Paschoalin
- São Carlos Institute of Physics, University of São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | - Nathalia O Gomes
- São Carlos Institute of Chemistry, University of São Paulo, CEP 13566-590, São Carlos, SP, Brazil
| | - Gabriela F Almeida
- Nanotechnology National Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970, São Carlos, SP, Brazil
| | - Stanley Bilatto
- Nanotechnology National Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970, São Carlos, SP, Brazil
| | - Cristiane S Farinas
- Nanotechnology National Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970, São Carlos, SP, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, CEP 13566-590, São Carlos, SP, Brazil
| | - Luiz H C Mattoso
- Nanotechnology National Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970, São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | - Paulo A Raymundo-Pereira
- São Carlos Institute of Physics, University of São Paulo, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
29
|
Gomes NO, Mendonça CD, Machado SAS, Oliveira ON, Raymundo-Pereira PA. Flexible and integrated dual carbon sensor for multiplexed detection of nonylphenol and paroxetine in tap water samples. Mikrochim Acta 2021; 188:359. [PMID: 34599426 DOI: 10.1007/s00604-021-05024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Multiplex detection of emerging pollutants is essential to improve quality control of water treatment plants, which requires portable systems capable of real-time monitoring. In this paper we describe a flexible, dual electrochemical sensing device that detects nonylphenol and paroxetine in tap water samples. The platform contains two voltammetric sensors, with different working electrodes that were either pretreated or functionalized. Each working electrode was judiciously tailored to cover the concentration range of interest for nonylphenol and paroxetine, and square wave voltammetry was used for detection. An electrochemical pretreatment with sulfuric acid on the printed electrode enabled a selective detection of nonylphenol in 1.0-10 × 10-6 mol L-1 range with a limit of detection of 8.0 × 10-7 mol L-1. Paroxetine was detected in the same range with a limit of detection of 6.7 × 10-7 mol L-1 using the printed electrode coated with a layer of carbon spherical shells. Simultaneous detection of the two analytes was achieved in tap water samples within 1 min, with no fouling and no interference effects. The long-term monitoring capability of the dual sensor was demonstrated in phosphate buffer for 45 days. This performance is statistically equivalent to that of high-performance liquid chromatography (HPLC) for water analysis. The dual-sensor platform is generic and may be extended to other water pollutants and clinical biomarkers in real-time monitoring of the environment and health conditions. Silver pseudo-reference electrodes for paroxetine (REP) and nonylphenol (REN), working electrodes for paroxetine (WP) and nonylphenol (WN), and auxiliary electrode (AE). USP refers to the University of Sao Paulo. "Red" is reduced form and "Oxi" is oxidized form of analytes.
Collapse
Affiliation(s)
- Nathalia O Gomes
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, CEP 13566-590, Brazil
| | - Camila D Mendonça
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, CEP 13566-590, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, CEP 13566-590, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, CEP 13560-970, Brazil
| | - Paulo A Raymundo-Pereira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, CEP 13560-970, Brazil.
| |
Collapse
|
30
|
Kozak J, Tyszczuk-Rotko K, Wójciak M, Sowa I. Electrochemically Activated Screen-Printed Carbon Sensor Modified with Anionic Surfactant (aSPCE/SDS) for Simultaneous Determination of Paracetamol, Diclofenac and Tramadol. MATERIALS 2021; 14:ma14133581. [PMID: 34206920 PMCID: PMC8269727 DOI: 10.3390/ma14133581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022]
Abstract
In this work, an electrochemically activated screen-printed carbon electrode modified with sodium dodecyl sulfate (aSPCE/SDS) was proposed for the simultaneous determination of paracetamol (PA), diclofenac (DF), and tramadol (TR). Changes of surface morphology and electrochemical behaviour of the electrode after the electrochemical activation with H2O2 and SDS surface modification were studied by scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The influence of various parameters on the responses of the aSPCE/SDS such as pH and concentration of the buffer, SDS concentration, and techniques parameters were investigated. Using optimised conditions (Eacc. of −0.4 V, tacc. of 120 s, ΔEA of 150 mV, ν of 250 mV s−1, and tm of 10 ms), the aSPCE/SDS showed a good linear response in the concentration ranges of 5.0 × 10−8–2.0 × 10−5 for PA, 1.0 × 10−9–2.0 × 10−7 for DF, and 1.0 × 10−8–2.0 × 10−7 and 2.0 × 10−7–2.0 × 10−6 mol L−1 for TR. The limits of detection obtained during the simultaneous determination of PA, DF, and TR are 1.49 × 10−8 mol L−1, 2.10 × 10−10 mol L−1, and 1.71 × 10−9 mol L−1, respectively. The selectivity of the aSPCE/SDS was evaluated by examination of the impact of some inorganic and organic substances that are commonly present in environmental and biological samples on the responses of PA, DF, and TR. Finally, the differential pulse adsorptive stripping voltammetric (DPAdSV) procedure using the aSPCE/SDS was successfully applied for the determination of PA, DF, and TR in river water and serum samples as well as pharmaceuticals.
Collapse
Affiliation(s)
- Jędrzej Kozak
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland;
| | - Katarzyna Tyszczuk-Rotko
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland;
- Correspondence: (K.T.-R.); (M.W.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: (K.T.-R.); (M.W.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
31
|
Musa AM, Kiely J, Luxton R, Honeychurch KC. Recent progress in screen-printed electrochemical sensors and biosensors for the detection of estrogens. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Silver nanoparticles decorated phthalocyanine doped polyaniline for the simultaneous electrochemical detection of hydroquinone and catechol. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
González-Costas JM, Gómez-Fernández S, García J, González-Romero E. Screen-printed electrodes-based technology: Environmental application to real time monitoring of phenolic degradation by phytoremediation with horseradish roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140782. [PMID: 32693277 DOI: 10.1016/j.scitotenv.2020.140782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The following is a description of a simple strategy for monitoring phenolic pollutants from highly-contaminated water samples. These phenolic compounds are removed from tap water using horseradish roots (Raphanus sativus) that contain peroxidase as catalyst and H2O2 to generate hydroxyl radicals. The later (•OH) acts on the aromatic structure, causing them to degrade to non-toxic by-products. The tool used to follow up the evolution of the process is based on screen-printed carbon electrodes (SPCEs) as electrochemical sensor for simultaneous detection of hydroquinone (Epa at 0.047 V), m-cresol (Epa at 0.506 V) and 4-nitrophenol (Epa at 0.696 V) by differential pulse voltammetry (DPV). This electroanalytical methodology enables close monitoring of the situation and rapid sensor response time. Furthermore, this direct methodology works for opaque and heterogeneous samples, as tap water with chopped horseradish roots, without any treatment of samples previously to the analysis. For better knowledge of the electrodic-transfer process, the electrochemical behavior of these phenolic compounds by cyclic voltammetry (CV) is also included. This simple methodology shows a low detection limit (below to 5 μM) and an excellent selectivity (peak potential separation between them up to 200 mV or greater) in a linear range of three orders of concentration (from 1-5 μM to 1 mM) for all of the analytes studied. The DPV responses of the phenolic compounds during the phytoremediation process are simultaneously monitored by this direct, cheap, reproducible (RSD < 2.3%) and rapid DPV-SPCE electroanalytical methodology. Portable device as electrochemical sensor with this optimized and validated technology can be applied for decentralized analysis, on-site assays and rapid screening purposes. The use of the horseradish roots achieves the total elimination of phenolic pollutants in concentrations 1000 times higher than the legal limits in less than 1 h.
Collapse
Affiliation(s)
- Javier M González-Costas
- Electroanalysis and Biosensors Group, Department of Analytical and Food Chemistry, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain.
| | - Siria Gómez-Fernández
- Electroanalysis and Biosensors Group, Department of Analytical and Food Chemistry, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain
| | - Josefa García
- Department of Applied Physics, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain
| | - Elisa González-Romero
- Electroanalysis and Biosensors Group, Department of Analytical and Food Chemistry, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain.
| |
Collapse
|
34
|
González-Fuentes FJ, Molina GA, Silva R, López-Miranda JL, Esparza R, Hernandez-Martinez AR, Estevez M. Developing a CNT-SPE Sensing Platform Based on Green Synthesized AuNPs, Using Sargassum sp. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6108. [PMID: 33121053 PMCID: PMC7662439 DOI: 10.3390/s20216108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/30/2023]
Abstract
Detection and quantification of diverse analytes such as molecules, cells receptor and even particles and nanoparticles, play an important role in biomedical research, particularly in electrochemical sensing platform technologies. In this study, gold nanoparticles (AuNPs) prepared by green synthesis from Sargassum sp. were characterized using ultraviolet-visible (UV-Vis) and Fourier transform-infrared (FT-IR) spectroscopies, X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS) and zeta potential (ζ) obtaining organic capped face-centered cubic 80-100 nm AuNPs with an excellent stability in a wide range of pH. The AuNPs were used to modify a carbon nanotubes-screen printed electrode (CNT-SPE), through the drop-casting method, to assemble a novel portable electrochemical sensing platform for glucose, using a novel combination of components, which together have not been employed. The ability to sense and measure glucose was demonstrated, and its electrochemical fundamentals was studied using cyclic voltammetry (CV). The limits of detection (LOD) and quantification (LOQ) to glucose were 50 μM and 98 μM, respectively, and these were compared to those of other sensing platforms.
Collapse
Affiliation(s)
- Fanny J. González-Fuentes
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, Mexico; (F.J.G.-F.); (J.L.L.-M.); (R.E.); (A.R.H.-M.)
| | - Gustavo A. Molina
- Posgrado en Ciencia e Ingeniería de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, Mexico;
| | - Rodolfo Silva
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Edificio 17, Ciudad Universitaria, Coyoacán 04510, Mexico;
| | - José Luis López-Miranda
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, Mexico; (F.J.G.-F.); (J.L.L.-M.); (R.E.); (A.R.H.-M.)
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, Mexico; (F.J.G.-F.); (J.L.L.-M.); (R.E.); (A.R.H.-M.)
| | - Angel R. Hernandez-Martinez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, Mexico; (F.J.G.-F.); (J.L.L.-M.); (R.E.); (A.R.H.-M.)
| | - Miriam Estevez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, Mexico; (F.J.G.-F.); (J.L.L.-M.); (R.E.); (A.R.H.-M.)
| |
Collapse
|
35
|
Flexible Carbon Electrodes for Electrochemical Detection of Bisphenol-A, Hydroquinone and Catechol in Water Samples. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The detection of pollutant traces in the public water supply and aquifers is essential for the safety of the population. In this article, we demonstrate that a simple electrochemical procedure in acidic solution can be employed for enhancing the sensitivity of flexible screen-printed carbon electrodes (SPEs) to detect bisphenol-A (BPA), hydroquinone, and catechol, simultaneously. The SPEs were pretreated electrochemically in a H2SO4 solution, which did not affect their morphology, yielding high current signals with well separated oxidation peaks. The sensitivity values were 0.28, 0.230, and 0.056 µA L µmol−1 with detection limits of 0.12, 0.82, and 0.95 µmol L−1 for hydroquinone, catechol, and BPA, respectively. The sensors were reproducible and selective for detecting BPA in plastic cups, and with adequate specificity not to be affected by interferents from water samples. The simple, inexpensive, and flexible SPE may thus be used to detect emerging pollutants and monitor the water quality.
Collapse
|
36
|
Tyszczuk-Rotko K, Kozak J, Sztanke M, Sztanke K, Sadok I. A Screen-Printed Sensor Coupled with Flow System for Quantitative Determination of a Novel Promising Anticancer Agent Candidate. SENSORS 2020; 20:s20185217. [PMID: 32933116 PMCID: PMC7571158 DOI: 10.3390/s20185217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022]
Abstract
A carbon nanofibers modified screen-printed carbon sensor (SPCE/CNFs) was applied for the determination of a novel promising anticancer agent candidate (ethyl 8-(4-methoxyphenyl)-4-oxo-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazine-3-carboxylate, EIMTC) using square-wave voltammetry (SWV). It is the first method for the quantitative determination of EIMTC. The modified screen-printed sensor exhibited excellent electrochemical activity in reducing EIMTC. The peak current of EIMTC was found to be linear in two concentration ranges of 2.0 × 10−9 – 2.0 × 10−8 mol L−1 and 2.0 × 10−8 – 2.0 × 10−7 mol L−1, with a detection limit of 5.0 × 10−10 mol L−1. The connection of flow-cell for the SPCE/CNFs with SWV detection allowed for the successful determination of EIMTC in human serum samples. Ultra-high-performance liquid chromatography coupled to electrospray ionization triple quadrupole mass spectrometry (UHPLC-ESI-MS/MS) acted as a comparative method in the serum samples analysis.
Collapse
Affiliation(s)
- Katarzyna Tyszczuk-Rotko
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland;
- Correspondence:
| | - Jędrzej Kozak
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland;
| | - Małgorzata Sztanke
- Chair and Department of Medical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Krzysztof Sztanke
- Laboratory of Bioorganic Synthesis and Analysis, Chair and Department of Medical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Application, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| |
Collapse
|
37
|
Raymundo‐Pereira PA, Gomes NO, Carvalho JHS, Machado SAS, Oliveira ON, Janegitz BC. Simultaneous Detection of Quercetin and Carbendazim in Wine Samples Using Disposable Electrochemical Sensors. ChemElectroChem 2020. [DOI: 10.1002/celc.202000788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Nathalia O. Gomes
- São Carlos Institute of ChemistryUniversity of Sao Paulo CEP 13566–590 Sao Carlos, SP Brazil
| | - Jefferson H. S. Carvalho
- Department of Nature Sciences Mathematics and EducationFederal University of São Carlos CEP 13600–970 Araras, SP Brazil
| | - Sergio A. S. Machado
- São Carlos Institute of ChemistryUniversity of Sao Paulo CEP 13566–590 Sao Carlos, SP Brazil
| | - Osvaldo N. Oliveira
- São Carlos Institute of PhysicsUniversity of Sao Paulo CEP 13560–970 Sao Carlos, SP Brazil
| | - Bruno C. Janegitz
- Department of Nature Sciences Mathematics and EducationFederal University of São Carlos CEP 13600–970 Araras, SP Brazil
| |
Collapse
|
38
|
Shehata M, Fekry AM, Walcarius A. Moxifloxacin Hydrochloride Electrochemical Detection at Gold Nanoparticles Modified Screen-Printed Electrode. SENSORS 2020; 20:s20102797. [PMID: 32423013 PMCID: PMC7287685 DOI: 10.3390/s20102797] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023]
Abstract
It appeared that either the carbon paste or the screen-printed carbon electrodes that were modified with gold nanoparticles (AuNPs) gave rise to the largest current responses after a rapid screening of various nanomaterials as modifiers of carbon composite electrodes in view of designing an electrochemical sensor for Moxifloxacin Hydrochloride (Moxi). The screen-printed electrode (SPE) support was preferred over the carbon paste one for its ability to be used as disposable single-use sensor enabling the circumvention of the problems of surface fouling encountered in the determination of Moxi. The response of AuNPs modified SPE to Moxi was investigated by cyclic voltammetry (CV) (including the effect of the potential scan rate and the pH of the medium), chronoamperometry, and differential pulse voltammetry (DPV) after morphological and physico-chemical characterization. DPV was finally applied to Moxi detection in phosphate buffer at pH 7, giving rise to an accessible concentration window ranging between 8 µM and 0.48 mM, and the detection and quantification limits were established to be 11.6 µM and 38.6 µM, correspondingly. In order to estimate the applicability of Moxi identification scheme in actual trials, it was practiced in a human baby urine sample with excellent recoveries between 99.8 % and 101.6 % and RSDs of 1.1-3.4%, without noticeable interference.
Collapse
Affiliation(s)
- M. Shehata
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Amany M. Fekry
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- LCPME, Université de Lorraine, CNRS, F-54000 Nancy, France
- Correspondence: (A.M.F.); (A.W.); Tel.: +202-0101-545-331 (A.M.F.); +33-3-7274-7375 (A.W.)
| | - Alain Walcarius
- LCPME, Université de Lorraine, CNRS, F-54000 Nancy, France
- Correspondence: (A.M.F.); (A.W.); Tel.: +202-0101-545-331 (A.M.F.); +33-3-7274-7375 (A.W.)
| |
Collapse
|