1
|
Almeida JMS, Pedro ZSB, Buoro RM, Brett CMA. Binary and Ternary Deep Eutectic Solvents for Methylene Green Electropolymerization on Multiwalled Carbon Nanotubes: Optimization, Characterization and Application. Chemistry 2024; 30:e202401752. [PMID: 38900538 DOI: 10.1002/chem.202401752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
Choline chloride (ChCl) based binary and ternary deep eutectic solvents (DES) were evaluated for methylene green electropolymerization with oxalic acid (OA) and ethylene glycol (EG) as hydrogen bond donors. Binary DES ChCl : OA in molar ratios 1 : 1 and 2 : 1 and ChCl : EG 1 : 2 and ternary DES (tDES) in different molar ratios and percentages of water were evaluated. The highest polymer growth was in ChCl : OA : EG-tDES with 13% added water, that had a lower viscosity and higher ionic conductivity when associated with HCl as dopant. This enhanced the formation of more cation radicals and, consequently, more polymer formation. The PMG/MWCNT/GCE-tDES sensor was successfully applied to the simultaneous determination of 5-aminosalicylic acid (5-ASA) and acetaminophen (APAP) by differential pulse voltammetry in the concentration range 1 μM-200 μM, with detection limits of 0.37 μM and 0.49 μM for 5-ASA and APAP, respectively. The sensor demonstrated good repeatability, reproducibility and stability, and was successfully applied in pharmaceutical formulations.
Collapse
Affiliation(s)
- Joseany M S Almeida
- Department of Chemistry, CEMMPRE, ARISE, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Zeferino S B Pedro
- Department of Chemistry, CEMMPRE, ARISE, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Rafael M Buoro
- Department of Chemistry and Molecular Physics, São Carlos Chemistry Institute, University of São Paulo, 13566-590, São Carlos, Brazil
| | - Christopher M A Brett
- Department of Chemistry, CEMMPRE, ARISE, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| |
Collapse
|
2
|
Crapnell R, Adarakatti PS, Banks CE. Electroanalytical Overview: The Sensing of Mesalamine (5-Aminosalicylic Acid). ACS MEASUREMENT SCIENCE AU 2024; 4:42-53. [PMID: 38404492 PMCID: PMC10885326 DOI: 10.1021/acsmeasuresciau.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 02/27/2024]
Abstract
Mesalamine, known as 5-aminosalicylic acid, is a medication used primarily in the treatment of inflammatory bowel disease, including ulcerative colitis and Crohn's disease. 5-Aminosalicylic acid can be measured using various benchtop laboratory techniques which involve liquid chromatography-mass spectroscopy, but these are sophisticated and large, meaning that they cannot be used on-site because transportation of the samples, chemicals, and physical and biological reactions can potentially occur, which can affect the sample's composition and potentially result in inaccurate results. An alternative approach is the use of electrochemical based sensing platforms which has the advantages of portability, cost-efficiency, facile miniaturization, and rapid analysis while nonetheless providing sensitivity and selectivity. We provide an overview of the use of the electroanalytical techniques for the sensing of 5-aminosalicylic acid and compare them to other laboratory-based measurements. The applications, challenges faced, and future opportunities for electroanalytical based sensing platforms are presented in this review.
Collapse
Affiliation(s)
- Robert
D. Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester
Street, Manchester M1 5GD, United Kingdom
| | - Prashanth S. Adarakatti
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester
Street, Manchester M1 5GD, United Kingdom
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester
Street, Manchester M1 5GD, United Kingdom
| |
Collapse
|
3
|
Bounegru AV, Bounegru I. Chitosan-Based Electrochemical Sensors for Pharmaceuticals and Clinical Applications. Polymers (Basel) 2023; 15:3539. [PMID: 37688165 PMCID: PMC10490380 DOI: 10.3390/polym15173539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Chitosan (CTS), a biocompatible and multifunctional material derived from chitin, has caught researchers' attention in electrochemical detection due to its unique properties. This review paper provides a comprehensive overview of the recent progress and applications of CTS-based electrochemical sensors in the analysis of pharmaceutical products and other types of samples, with a particular focus on the detection of medicinal substances. The review covers studies and developments from 2003 to 2023, highlighting the remarkable properties of CTS, such as biocompatibility, chemical versatility, and large surface area, that make it an excellent candidate for sensor modification. Combining CTS with various nanomaterials significantly enhances the detection capabilities of electrochemical sensors. Various types of CTS-based sensors are analyzed, including those utilizing carbon nanomaterials, metallic nanoparticles, conducting polymers, and molecularly imprinted CTS. These sensors exhibit excellent sensitivity, selectivity, and stability, enabling the precise and reliable detection of medications. The manufacturing strategies used for the preparation of CTS-based sensors are described, the underlying detection mechanisms are elucidated, and the integration of CTS sensors with transducer systems is highlighted. The prospects of CTS-based electrochemical sensors are promising, with opportunities for miniaturization, simultaneous detection, and real-time monitoring applications.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
- Faculty of Medicine and Pharmacy, "Dunărea de Jos" University of Galati, 35 Al. I. Cuza Street, 800010 Galati, Romania
| |
Collapse
|
4
|
Kumar A, Rani P. A Quick Visible Spectrophotometry Approach For The Assessment Of Mesalazine In Pharmaceutical Preparations. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Chadchan KS, Teradale AB, Ganesh PS, Das SN. Simultaneous sensing of mesalazine and folic acid at poly (murexide) modified glassy carbon electrode surface. MATERIALS CHEMISTRY AND PHYSICS 2022; 290:126538. [DOI: 10.1016/j.matchemphys.2022.126538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
6
|
Abad-Gil L, Brett CM. Poly(methylene blue)-ternary deep eutectic solvent/Au nanoparticle modified electrodes as novel electrochemical sensors: optimization, characterization and application. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Sabahi-Agabager L, Eskandari H, Nasiri F, Shamkhali AN, Baghi Sefidan S. Properties of a furan ring-opening reaction in aqueous micellar solutions for selective sensing of mesalazine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119846. [PMID: 33933944 DOI: 10.1016/j.saa.2021.119846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
A novel and efficient non-azo formation based method was developed for trace sensing of mesalazine (MES), a pharmaceutical aromatic amine. MES was simply coupled with a Meldrum's activated furan (MAF) reagent via a furan ring opening reaction to form a colored product. The intense purple colored solution was detected at 575 nm. The reaction of MES with MAF was monitored by employing 1H NMR spectroscopy and mass spectrometry. In addition, density functional theory (DFT) was applied to optimize the structure of the colored product and its λmax (the wavelength of maximum absorbance) in dimethyl sulfoxide and water. The colored product was considered in three possible structures, and the most possible structures in dimethyl sulfoxide and in water were identified by employing the DFT calculations. Both of the most possible structures indicated only a local excitation in their λmax and no charge transfer was observed. However, one of the structures in dimethyl sulfoxide presented charge transfer properties occurring through NCCC moiety. A univariate optimization method was also used to attain the optimum condition for analysis. In addition, the dependence of the analytical response on the three main affecting parameters (reaction time (X1), Triton X-100 concentration (X2) and MAF concentration (X3)) was identified by employing a central composite design (CCD) approach. The CCD study showed that the analytical response depends complexly on the parameters. Beer's law was obeyed within the range of 0.06-9.30 μg mL-1 of MES (155 fold linearity) at 575 nm, under the optimum condition introduced by the CCD approach. Also, the limit of detection was obtained 0.04 μg mL-1 of MES. The method showed precision (as relative standard deviation) and accuracy (as recovery) within the ranges of 0.6-3.2 % and 96.3-100.8%, respectively. Various organic and inorganic species, amino-pharmaceuticals, and amino acids were tested to evaluate the selectivity of the method. The selectivity of the analytical method was satisfactory. The method was successfully applied for detection of MES in various water matrices and pharmaceutical tablets.
Collapse
Affiliation(s)
- Leila Sabahi-Agabager
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Habibollah Eskandari
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran.
| | - Farough Nasiri
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Amir Nasser Shamkhali
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Somayyeh Baghi Sefidan
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| |
Collapse
|
8
|
Bakirhan NK, Kaya SI, Jabbarov R, Gahramanova G, Abdullayeva S, Dedeoglu A, Ozkan CK, Savaser A, Ozkan Y, Ozkan SA. The Power of Carbon Nanotubes on Sensitive Drug Determination Methods. Crit Rev Anal Chem 2021; 53:374-383. [PMID: 34334078 DOI: 10.1080/10408347.2021.1958296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, carbon nanotubes (CNTs) due to their inorganic conducting, semiconducting, and organic π-π stacking properties are becoming innovative materials. CNTs have an adjustable size, large surface area, and other significant chemical properties. Due to their excellent electrical, optical, and mechanical properties, CNTs play an important role in various application fields. In the past decade, many unique intrinsic physical and chemical properties have been intensively explored for pharmaceutical, biological, and biomedical applications. The functionalization of CNTs results in a remarkably reduced cytotoxicity and at the same time increased biocompatibility. The toxicity studies reveal that highly water-soluble and serum stable nanotubes are biocompatible, nontoxic, and potentially useful for biomedical applications. Ultrasensitive drug determination from its dosage form and/or biological samples with carbon nanotubes can be realized after surface modification. The main purpose of this review is to present recent achievements on CNTs which are investigated in electrochemical and chromatographically sensing technologies.
Collapse
Affiliation(s)
- Nurgul K Bakirhan
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey.,Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Rasim Jabbarov
- Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.,Research and Development Center for High Technologies, Ministry of Transport, Communication and High Technologies of Azerbaijan Republic, Baku, Azerbaijan
| | - Gulnaz Gahramanova
- Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.,Research and Development Center for High Technologies, Ministry of Transport, Communication and High Technologies of Azerbaijan Republic, Baku, Azerbaijan
| | - Sevda Abdullayeva
- Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.,Research and Development Center for High Technologies, Ministry of Transport, Communication and High Technologies of Azerbaijan Republic, Baku, Azerbaijan
| | - Aylin Dedeoglu
- Knowledge, Innovation and Technology Transfer Office, Başkent University, Ankara, Turkey
| | - Cansel Kose Ozkan
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Ayhan Savaser
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Yalcin Ozkan
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
9
|
Nataraj N, Krishnan SK, Chen TW, Chen SM, Lou BS. Ni-Doped ZrO2 nanoparticles decorated MW-CNT nanocomposite for the highly sensitive electrochemical detection of 5-amino salicylic acid. Analyst 2021; 146:664-673. [DOI: 10.1039/d0an01507e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ni-ZrO2/MWCNT/GCE for highly sensitive electrochemical detection of 5-ASA in biofluids.
Collapse
Affiliation(s)
- Nandini Nataraj
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
- Research and Development Center for Smart Textile Technology
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Bih-Show Lou
- Chemistry Division
- Center for General Education
- Chang Gung University
- Taoyuan 333
- Taiwan
| |
Collapse
|
10
|
Electrochemical vitamin sensors: A critical review. Talanta 2021; 222:121645. [DOI: 10.1016/j.talanta.2020.121645] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
|
11
|
Tavares Junior AG, de Araújo JTC, Meneguin AB, Chorilli M. Characteristics, Properties and Analytical/Bioanalytical Methods of 5-Aminosalicylic Acid: A Review. Crit Rev Anal Chem 2020; 52:1000-1014. [PMID: 33258695 DOI: 10.1080/10408347.2020.1848516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Five-aminosalicylic acid (5-ASA) is an anti-inflammatory drug indicated in the treatment of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Among the analytical methods of quantification of 5-ASA described in the literature, the High Efficiency Liquid Chromatography stands out, a sensitive technique but with a high cost. In recent years, alternative methods have been developed, presenting efficiency and reduced cost, such as UV/visible spectrophotometric, spectrofluorescent, and electrochemical methods, techniques recommended for the application in quality control and quantification of 5-ASA in pharmaceutical forms and biological fluids. This article aims to review the physicochemical characteristics, pharmacokinetics, mechanisms of action, controlled release systems, and the different analytical and bioanalytical methods for the quantification of 5-ASA.
Collapse
Affiliation(s)
| | | | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
12
|
Jeličić ML, Brusač E, Klarić DA, Nigović B, Turk N, Mornar A. A chromatographic approach to development of 5-aminosalicylate/folic acid fixed-dose combinations for treatment of Crohn's disease and ulcerative colitis. Sci Rep 2020; 10:20838. [PMID: 33257796 PMCID: PMC7705649 DOI: 10.1038/s41598-020-77654-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Medication adherence is an important factor in inflammatory bowel disease therapy, which includes regular supplementation of malabsorbed vitamins. Absorption of folic acid is limited due to the damaging of the gastrointestinal tract, which can increase the chances to develop megaloblastic anaemia and colorectal cancer. In this work, 5-aminosalicylates (mesalazine, balsalazide, sulfasalazine and olsalazine) and folic acid were characterized regarding their pharmacokinetic related properties (hydrophobicity, phospholipid and plasma protein binding) using the biomimetic chromatographic approach. Despite the high binding percentage of 5-aminosalicylates for human serum albumin (> 61.44%), results have shown that folic acid binding to human serum albumin protein is far greater (69.40%) compared to α1-acid-glycoprotein (3.45%). Frontal analysis and zonal elution studies were conducted to provide an insight into the binding of folic acid to human serum albumin and potential competition with 5-aminosalicylates. The analytical method for the simultaneous determination of assay in proposed fixed-dose combinations was developed and validated according to ICH Q2 (R1) and FDA method validation guidelines. Separation of all compounds was achieved within 16 min with satisfactory resolution (Rs > 3.67) using the XBridge Phenyl column (150 × 4.6 mm, 3.5 µm). High linearity (r > 0.9997) and precision (RSD < 2.29%) was obtained, whilst all recoveries were within the regulatory defined range by British (100.0 ± 5.0%) and United States Pharmacopeia (100.0 ± 10.0%).
Collapse
Affiliation(s)
- Mario-Livio Jeličić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Edvin Brusač
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Daniela Amidžić Klarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Biljana Nigović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Nikša Turk
- Clinical Hospital Center Zagreb, Kišpatićeva 12, 10000, Zagreb, Croatia
| | - Ana Mornar
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
13
|
Jing YF, Young DJ, Huang Q, Mi Y, Zhang SC, Hu FL. Amino group decorated coordination polymers for enhanced detection of folic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118443. [PMID: 32403077 DOI: 10.1016/j.saa.2020.118443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
A series of fluorescent coordination polymers (CPs) {[Cd2(CH3-bpeb)2(BDC)2] CP1, (BDC)0.5/(NH2-BDC)0.5-CP1, (BDC)0.34/(NH2-BDC)0.66-CP1, (BDC)0.25/(NH2-BDC)0.75-CP1, (BDC)0.2/(NH2-BDC)0.8-CP1, (NH2-BDC)-CP1} were prepared from conjugated ligand 4,4'-((2-methyl-1,4-phenylene)bis(ethene-2,1-diyl))bipyridine (CH3-bpeb), terephthalic acid (BDC), aminoterephthalic acid (NH2-BDC) and CdSO4 under solvothermal conditions. The fluorescence of aqueous suspensions of these CPs was quenched by folic acid (FA) in a concentration dependent manner. The efficiency of quenching increasing with an increased proportion of NH2-BDC ligand in the CP with (NH2-BDC)-CP1 exhibiting a low detection limit of 1.7 × 10-7 M.
Collapse
Affiliation(s)
- Yan-Fang Jing
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - David James Young
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia
| | - Qin Huang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China.
| | - Yan Mi
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Shu-Cong Zhang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Fei-Long Hu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China; Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
| |
Collapse
|
14
|
Determination of levofloxacin in pharmaceutical formulations and urine at reduced graphene oxide and carbon nanotube-modified electrodes. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04589-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Selective Detection of Folic Acid Using 3D Polymeric Structures of 3-Carboxylic Polypyrrole. SENSORS 2020; 20:s20082315. [PMID: 32325655 PMCID: PMC7219238 DOI: 10.3390/s20082315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022]
Abstract
The detection of folic acid in biological samples or pharmaceutical products is of great importance due to its implications in the biological functions of the human body, along with the development and growth of the fetus. The deficiency of folic acid can be reversed by the intake of different pharmaceutical formulations or alimentary products fortified with this molecule. The elaboration of sensing platforms represents a continuous work in progress, a task in which the use of conductive polymers modified with different functionalities represents one of the outcoming strategies. The possibility of manipulating their morphology with the use of templates or surfactants represents another advantage. A sensing platform based on carboxylic functionalized polypyrrole was synthesized via the electrochemical approach in the presence of a polymeric surfactant on a graphite-based surface. The sensor was able to detect the folic acid from 2.5 μM to 200 μM with a calculated limited of detection of 0.8 μM. It was employed for the detection of the analyte from commercial human serum and pharmaceutical products with excellent recovery rates. The results were double checked using an optimized spectrophotometric procedure that confirmed furthermore the performances of the sensor related to real samples assessment.
Collapse
|