1
|
Huang Y, You J, Ding Y, Xie Y, Wang T, Zhu F, Gong W, Zhao Z. A Hierarchical Core-Shell Structure of NiO@Cu 2O-CF for Effective Non-Enzymatic Electrochemical Glucose Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:47. [PMID: 39791806 PMCID: PMC11723071 DOI: 10.3390/nano15010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core-shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)2@Cu(OH)2-CF) was fabricated and derived from NiO@Cu2O-CF for glucose sensing. Cyclic voltammetry and amperometry experiments have demonstrated the efficient electrochemical catalysis of glucose under alkaline conditions. The measurement displays that the fabricated sensor exhibits a detection scale of 0.005-4.5 mM with a detection sensitivity of 4.67 µA/µM/cm2. It has remarkable response/recovery times in respect of 750 μM glucose (1.0 s/3.5 s). Moreover, the NiO@Cu2O-CF shows significant selectivity, reliable reproducibility and long-term stability for glucose determination, suggesting it is a suitable candidate for further applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhenting Zhao
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China; (Y.H.); (J.Y.); (Y.D.); (Y.X.); (T.W.); (F.Z.); (W.G.)
| |
Collapse
|
2
|
Yang L, Hu Z, Xiang Z, Zhou J, Wang X, Liu Q, Gan L, Shi S, Yang W, Zhang Y, Wu J. A high-entropy electrode material for electrobiochemical and eletrophysiological signals detection. CHEMICAL ENGINEERING JOURNAL 2024; 499:156209. [DOI: 10.1016/j.cej.2024.156209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
|
3
|
Guati C, Gomez-Coma L, Fallanza M, Ortiz I. Progress on the influence of non-enzymatic electrodes characteristics on the response to glucose detection: a review (2016–2022). REV CHEM ENG 2023. [DOI: 10.1515/revce-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Abstract
Glucose sensing devices have experienced significant progress in the last years in response to the demand for cost-effective monitoring. Thus, research efforts have been focused on achieving reliable, selective, and sensitive sensors able to monitor the glucose level in different biofluids. The development of enzyme-based devices is challenged by poor stability, time-consuming, and complex purification procedures, facts that have given rise to the synthesis of enzyme-free sensors. Recent advances focus on the use of different components: metal-organic frameworks (MOFs), carbon nanomaterials, or metal oxides. Motivated by this topic, several reviews have been published addressing the sensor materials and synthesis methods, gathering relevant information for the development of new nanostructures. However, the abundant information has not concluded yet in commercial devices and is not useful from an engineering point of view. The dependence of the electrode response on its physico-chemical nature, which would determine the selection and optimization of the materials and synthesis method, remains an open question. Thus, this review aims to critically analyze from an engineering vision the existing information on non-enzymatic glucose electrodes; the analysis is performed linking the response in terms of sensitivity when interferences are present, stability, and response under physiological conditions to the electrode characteristics.
Collapse
Affiliation(s)
- Carlota Guati
- Chemical and Biomolecular Engineering Department , University of Cantabria , 39005 Santander , Spain
| | - Lucía Gomez-Coma
- Chemical and Biomolecular Engineering Department , University of Cantabria , 39005 Santander , Spain
| | - Marcos Fallanza
- Chemical and Biomolecular Engineering Department , University of Cantabria , 39005 Santander , Spain
| | - Inmaculada Ortiz
- Chemical and Biomolecular Engineering Department , University of Cantabria , 39005 Santander , Spain
| |
Collapse
|
4
|
Qi C, Zhang C, Yang Z. Engineering Co3O4 with Co defects for highly sensitive nonenzymatic detection of glucose. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Sun Z, Lu J, Zhang X, Shan X, Wu Q, Li C, Li H, Yang S, Tian L. Electrospun nanofibres containing Zn-MOF for electrochemiluminescent determination of fenpropathrin residues in fruit juices. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Zhao J, Lu S, Bastos-Arrieta J, Palet C, Sun Y, Wang R, Qian Z, Fan S. Enhanced terahertz sensitivity for glucose detection with a hydrogel platform embedded with Au nanoparticles. BIOMEDICAL OPTICS EXPRESS 2022; 13:4021-4031. [PMID: 35991910 PMCID: PMC9352292 DOI: 10.1364/boe.461414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
We presented a strategy for enhancing the sensitivity of terahertz glucose sensing with a hydrogel platform pre-embedded with Au nanoparticles. Physiological-level glucose solutions ranging from 0 to 0.8 mg/mL were measured and the extracted absorption coefficients can be clearly distinguished compared to traditional terahertz time domain spectroscopy performed directly on aqueous solutions. Further, Isotherm models were applied to successfully describe the relationship between the absorption coefficient and the glucose concentration (R2 = 0.9977). Finally, the origin of the sensitivity enhancement was investigated and verified to be the pH change induced by the catalysis of Au nanoparticles to glucose oxidation.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
- Contributed equally to this work
| | - Shaohua Lu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
- Contributed equally to this work
| | - Julio Bastos-Arrieta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Recerca de l’Aigua (IdRA), University of Barcelona, 08028 Barcelona, Spain
| | - Cristina Palet
- Group of Separation Techniques in Chemistry, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalunya, Spain
| | - Yiling Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| | - Renheng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| | - Zhengfang Qian
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| | - Shuting Fan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| |
Collapse
|
7
|
Youcef M, Hamza B, Nora H, Walid B, Salima M, Ahmed B, Malika F, Marc S, Christian B, Wassila D, Djamel Eddine M, Larbi Z. A novel green synthesized NiO nanoparticles modified glassy carbon electrode for non-enzymatic glucose sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Muslu E, Eren E, Oksuz AU. Prussian Blue-Based Flexible Thin Film Nanoarchitectonics for Non-enzymatic Electrochemical Glucose Sensor. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02290-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Ayaz S, Karakaya S, Emir G, Uşaklıgil N, Giray Dilgin D, Dilgin Y. Flow-Injection Amperometric Determination of Glucose Using Nickel Oxide-Cobalt (II,III) Oxide and Nickel Oxide-Copper Nanoparticle Modified Pencil Graphite Electrodes. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2043890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Selen Ayaz
- Department of Chemistry, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serkan Karakaya
- Department of Chemistry, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Gamze Emir
- Department of Chemistry, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Nihan Uşaklıgil
- Department of Biochemistry, Medical Park Hospital Çanakkale, Çanakkale, Turkey
| | - Didem Giray Dilgin
- Department of Mathematics and Science Education, Faculty of Education, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Yusuf Dilgin
- Department of Chemistry, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
10
|
Wang R, Liu X, Zhao Y, Qin J, Xu H, Dong L, Gao S, Zhong L. Novel electrochemical non-enzymatic glucose sensor based on 3D Au@Pt core–shell nanoparticles decorated graphene oxide/multi-walled carbon nanotubes composite. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Lin WJ, Lin YS, Chang HT, Unnikrishnan B, Huang CC. Electrocatalytic CuBr@CuO nanoparticles based salivary glucose probes. Biosens Bioelectron 2021; 194:113610. [PMID: 34500227 DOI: 10.1016/j.bios.2021.113610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022]
Abstract
Highly electrocatalytic cuprous halide/copper oxide nanoparticles (CuX@CunO NPs; X = Cl, Br or I; n = 1 or 2) have been fabricated on copper foils for sensitive detection of glucose. Formation of CuX@CunO NPs involves two steps- in situ electrochemical deposition of CuX on the foil and then conversion of CuX to CunO. The deposited CuX converts to CunO, leading to the generation of abundant oxygen vacancies in the CuO lattice, enhancing the number of catalytically active sites, and improving the charge transfer efficiency. Among the as-prepared electrodes, CuBr@CuO NP ones provide the highest electrocatalytic activity toward the oxidation of glucose. The electrode provides electrocatalytic activity toward the oxidation of glucose at a low overpotential of 0.25 V (vs. SCE), which is lower than that (0.40 V) of unmodified copper electrodes. The generated anodic current is proportional to glucose concentration in an alkaline medium, with a good linear range from 5.0 μM to 3.51 mM (R2 = 0.995). Its reliability has been validated by detecting the glucose concentration in saliva samples at different time intervals after a meal. The results are in good correlation with the blood glucose level determined by using a commercial blood glucose meter. Our CuBr@CuO NP electrode possesses great potential for monitoring salivary glucose to achieve the purpose of noninvasive glucose monitoring for patients with diabetes in the future.
Collapse
Affiliation(s)
- Wei-Jan Lin
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Syuan Lin
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
12
|
Covalent Immobilisation of a Nanoporous Platinum Film onto a Gold Screen-Printed Electrode for Highly Stable and Selective Non-Enzymatic Glucose Sensing. Catalysts 2021. [DOI: 10.3390/catal11101161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Progress in the development of commercially available non-enzymatic glucose sensors continues to be problematic due to issues regarding selectivity, reproducibility and stability. Overcoming these issues is a research challenge of significant importance. This study reports a novel fabrication process using a double-layer self-assembly of (3 mercaptopropyl)trimethoxysilane (MPTS) on a gold substrate and co-deposition of a platinum–copper alloy. The subsequent electrochemical dealloying of the less noble copper resulted in a nanoporous platinum structure on the uppermost exposed thiol groups. Amperometric responses at 0.4 V vs. Ag/AgCl found the modification to be highly selective towards glucose in the presence of known interferants. The sensor propagated a rapid response time <5 s and exhibited a wide linear range from 1 mM to 18 mM. Additionally, extremely robust stability was attributed to enhanced attachment due to the strong chemisorption between the gold substrate and the exposed thiol of MPTS. Incorporation of metallic nanomaterials using the self-assembly approach was demonstrated to provide a more reproducible and controlled molecular architecture for sensor fabrication. The successful application of the sensor in real blood serum samples displayed a strong correlation with clinically obtained glucose levels.
Collapse
|
13
|
Phan LMT, Vo TAT, Hoang TX, Selvam SP, Pham HL, Kim JY, Cho S. Trending Technology of Glucose Monitoring during COVID-19 Pandemic: Challenges in Personalized Healthcare. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2100020. [PMID: 34179343 PMCID: PMC8212092 DOI: 10.1002/admt.202100020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Indexed: 05/11/2023]
Abstract
The COVID-19 pandemic has continued to spread rapidly, and patients with diabetes are at risk of experiencing rapid progression and poor prognosis for appropriate treatment. Continuous glucose monitoring (CGM), which includes accurately tracking fluctuations in glucose levels without raising the risk of coronavirus exposure, becomes an important strategy for the self-management of diabetes during this pandemic, efficiently contributing to the diabetes care and the fight against COVID-19. Despite being less accurate than direct blood glucose monitoring, wearable noninvasive systems can encourage patient adherence by guaranteeing reliable results through high correlation between blood glucose levels and glucose concentrations in various other biofluids. This review highlights the trending technologies of glucose sensors during the ongoing COVID-19 pandemic (2019-2020) that have been developed to make a significant contribution to effective management of diabetes and prevention of coronavirus spread, from off-body systems to wearable on-body CGM devices, including nanostructure and sensor performance in various biofluids. The advantages and disadvantages of various human biofluids for use in glucose sensors are also discussed. Furthermore, the challenges faced by wearable CGM sensors with respect to personalized healthcare during and after the pandemic are deliberated to emphasize the potential future directions of CGM devices for diabetes management.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic EngineeringGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
- School of Medicine and PharmacyThe University of DanangDanang550000Vietnam
| | - Thuy Anh Thu Vo
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Thi Xoan Hoang
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Sathish Panneer Selvam
- Department of Electronic EngineeringGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
| | - Hoang Lan Pham
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Jae Young Kim
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Sungbo Cho
- Department of Electronic EngineeringGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
- Department of Health Sciences and TechnologyGAIHSTGachon UniversityIncheon21999Republic of Korea
| |
Collapse
|
14
|
Lin FY, Lee PY, Chu TF, Peng CI, Wang GJ. Neutral Nonenzymatic Glucose Biosensors Based on Electrochemically Deposited Pt/Au Nanoalloy Electrodes. Int J Nanomedicine 2021; 16:5551-5563. [PMID: 34429599 PMCID: PMC8379712 DOI: 10.2147/ijn.s321480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Background Type I diabetes occurs when the pancreas can only make limited or minimal insulin. Patients with type 1 diabetes need effective approaches to manage diabetes and maintain their blood-glucose concentration. Recently, continuous glucose monitoring (CGM) has been used to help control blood-glucose levels in patients with type 1 diabetes. Patients with type 2 diabetes may also benefit from CGM on multiple insulin injections, basal insulin, or sulfonylureas. Enzyme-free glucose detection in a neutral environment is the recent development trend of CGM. Materials and Methods Pt/Au alloy electrodes for enzyme-free glucose detection in a neutral environment were formed by electrochemically depositing Pt/Au alloy on a thin polycarbonate (PC) membrane surface with a uniformly distributed micro-hemisphere array. The PC membranes were fabricated using semiconductor microelectromechanical manufacturing processes, precision micro-molding, and hot embossing. Amperometry was used to measure the glucose concentration in PBS (pH 7.4) and artificial human serum. Results The Pt/Au nanoalloy electrode had excellent specificity for glucose detection, according to the experimental results. The device had a sensitivity of 2.82 μA mM−1 cm−2, a linear range of 1.39–13.9 mM, and a detection limit of 0.482 mM. Even though the complex interfering species in human blood can degrade the sensing signal, further experiments conducted in artificial serum confirmed the feasibility of the proposed Pt/Au nanoalloy electrode in clinical applications. Conclusion The proposed Pt/Au nanoalloy electrode can catalyze glucose reactions in neutral solutions with enhancing sensing performance by the synergistic effect of bimetallic materials and increasing detection surface area. This novel glucose biosensor has advantages, such as technology foresight, good detection performance, and high mass production feasibility. Thus, the proposed neutral nonenzymatic glucose sensor can be further used in CGMs.
Collapse
Affiliation(s)
- Fang-Yu Lin
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Pei-Yuan Lee
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, 40227, Taiwan.,Department of Orthopedics, Show Chwan Memorial Hospital, Changhua, 50008, Taiwan
| | - Tien-Fu Chu
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Chang-I Peng
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Gou-Jen Wang
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, 40227, Taiwan.,Department of Mechanical Engineering, National Chung-Hsing University, Taichung, 40227, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
15
|
Developments of the Electroactive Materials for Non-Enzymatic Glucose Sensing and Their Mechanisms. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2020025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A comprehensive review of the electroactive materials for non-enzymatic glucose sensing and sensing devices has been performed in this work. A general introduction for glucose sensing, a facile electrochemical technique for glucose detection, and explanations of fundamental mechanisms for the electro-oxidation of glucose via the electrochemical technique are conducted. The glucose sensing materials are classified into five major systems: (1) mono-metallic materials, (2) bi-metallic materials, (3) metallic-oxide compounds, (4) metallic-hydroxide materials, and (5) metal-metal derivatives. The performances of various systems within this decade have been compared and explained in terms of sensitivity, linear regime, the limit of detection (LOD), and detection potentials. Some promising materials and practicable methodologies for the further developments of glucose sensors have been proposed. Firstly, the atomic deposition of alloys is expected to enhance the selectivity, which is considered to be lacking in non-enzymatic glucose sensing. Secondly, by using the modification of the hydrophilicity of the metallic-oxides, a promoted current response from the electro-oxidation of glucose is expected. Lastly, by taking the advantage of the redistribution phenomenon of the oxide particles, the usage of the noble metals is foreseen to be reduced.
Collapse
|
16
|
Lakhdari D, Guittoum A, Benbrahim N, Belgherbi O, Berkani M, Vasseghian Y, Lakhdari N. A novel non-enzymatic glucose sensor based on NiFe(NPs)-polyaniline hybrid materials. Food Chem Toxicol 2021; 151:112099. [PMID: 33677039 DOI: 10.1016/j.fct.2021.112099] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
This article was focused on the elaboration of NiFe-Polyaniline glucose sensors via electrochemical technique. Firstly, the PANi (polyaniline) fibers were synthesized by oxidation of the monomer aniline on FTO (fluorine tin oxide) substrate. Secondly, the Nickel-Iron nanoparticles (NiFe (NPs)) were obtained by the Chronoamperometry method on the Polyaniline surface. The NiFe-PANi hybrid electrode was characterized by scanning electron microscopy (SEM), force atomic microscopy (AFM), Fourier-transformed infrared (FTIR), and X-ray diffraction (XRD). The electrochemical glucose sensing performance of the NiFe alloy nanoparticle was studied by cyclic voltammetry and amperometry. The fabricated glucose sensor Ni-Fe hybrid material exhibited many remarkable sensing performances, such as low-response time (4 s), sensitivity (1050 μA mM-1 cm-2), broad linear range (from 10 μM -1 mM), and low limit of detection (LOD) (0.5 μM, S/N = 3). The selectivity, reliability, and stability of the NiFe hybrid material for glucose oxidation were also investigated. All the results demonstrated that the NiFe-PANi/FTO hybrid electrode is very promising for application in electrochemical glucose sensing.
Collapse
Affiliation(s)
- Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria; Laboratoire de Physique et Chimie des Matériaux (LPCM), Université Mouloud Mammeri de Tizi-Ouzou, RP 15000, Algeria.
| | - Abderrahim Guittoum
- Nuclear Research Centre of Algiers, 2 Bd Frantz Fanon, Bp 399, Alger-Gare, Algiers, Algeria
| | - Nassima Benbrahim
- Laboratoire de Physique et Chimie des Matériaux (LPCM), Université Mouloud Mammeri de Tizi-Ouzou, RP 15000, Algeria
| | - Ouafia Belgherbi
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam.
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| |
Collapse
|
17
|
Synthesis of Au–Cu Alloy Nanoparticles as Peroxidase Mimetics for H2O2 and Glucose Colorimetric Detection. Catalysts 2021. [DOI: 10.3390/catal11030343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The detection of hydrogen peroxide (H2O2) is essential in many research fields, including medical diagnosis, food safety, and environmental monitoring. In this context, Au-based bimetallic alloy nanomaterials have attracted increasing attention as an alternative to enzymes due to their superior catalytic activity. In this study, we report a coreduction synthesis of gold–copper (Au–Cu) alloy nanoparticles in aqueous phase. By controlling the amount of Au and Cu precursors, the Au/Cu molar ratio of the nanoparticles can be tuned from 1/0.1 to 1/2. The synthesized Au–Cu alloy nanoparticles show good peroxidase-like catalytic activity and high selectivity for the H2O2-mediated oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB, colorless) to TMB oxide (blue). The Au–Cu nanoparticles with an Au/Cu molar ratio of 1/2 exhibit high catalytic activity in the H2O2 colorimetric detection, with a limit of detection of 0.141 μM in the linear range of 1–10 μM and a correlation coefficient R2 = 0.991. Furthermore, the Au–Cu alloy nanoparticles can also efficiently detect glucose in the presence of glucose oxidase (GOx), and the detection limit is as low as 0.26 μM.
Collapse
|
18
|
Glucose-sensing abilities of mixed-metal (Ni Co) Prussian blue analogs hollow nanocubes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114507] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Ngamaroonchote A, Sanguansap Y, Wutikhun T, Karn-Orachai K. Highly branched gold-copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide. Mikrochim Acta 2020; 187:559. [PMID: 32915302 DOI: 10.1007/s00604-020-04542-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022]
Abstract
The development of highly sensitive and highly selective sensors for non-enzymatic glucose and hydrogen peroxide (H2O2) detection using gold-copper alloy nanoparticles (AuCu alloy NPs) is reported. The AuCu NPs are nanostructures with branches and can be used as an electrochemical catalyst. Series of AuCu alloy NPs with various metal ratios are synthesized through a coreduction reaction. The morphology of AuCu alloy NPs is altered from highly branched structures (nanourchin, nanobramble, nanostar, nanocrystal) to a spherical shape by increasing Au content in the synthesis reaction. Cu-rich AuCu nanobramble and Au-rich AuCu nanostar exhibit selective electrocatalysis behaviors toward electro-oxidation of glucose and electroreduction of H2O2, respectively. The AuCu nanobramble-based sensor holds great potential in glucose detection with a linear working range of 0.25 to 10 mM. The sensor possesses a sensitivity of 339.35 μA mM-1 cm-2, a limit of detection (LOD) of 16.62 μM, which is an acceptable selectivity and good stability. In addition, the AuCu nanostar-based sensor shows excellent electrochemical responses toward H2O2 reduction with good selectivity, reproducibility, and a short response time of about 2-3 s. The linear range for H2O2 determination is 0.05 to 10 mM, with LOD and sensitivity of 10.93 μM and 133.74 μA mM-1 cm-2, respectively. The good sensing performance is a result of the synergistic surface structure and atomic composition effects, which leads AuCu alloys to be a promising nanocatalyst for sensing both glucose and H2O2. Graphical abstract Schematic illustration presents the construction of gold-copper alloy nanoparticles (AuCu alloy NPs) on the surface of screen-printed carbon electrode (SPCE). The highly branched nanostructures of AuCu alloys with different surface structure and metal ratios give selective electrocatalysis behaviors. Cu-rich AuCu nanobramble-based sensor reveals prominent electrocatalytic activity for glucose detection. Au-rich AuCu nanostar-based sensor provides good electrochemical response for H2O2 detection.
Collapse
Affiliation(s)
- Aroonsri Ngamaroonchote
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Yanisa Sanguansap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Tuksadon Wutikhun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kullavadee Karn-Orachai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
20
|
Yang B, Qiao J, Yu Y, Yuan L, Hu X. The simple-preparation of Cu–Ni/CuO–NiO using solution plasma for application in a glucose enzyme-free sensor. NEW J CHEM 2020. [DOI: 10.1039/d0nj01464h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The design of composite catalysts with two metals and their oxides for the detection of glucose is a particularly novel method to couple together the advantages of different kinds of metals.
Collapse
Affiliation(s)
- Bingqian Yang
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Jingyuan Qiao
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Yawei Yu
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Lefan Yuan
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Xiulan Hu
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| |
Collapse
|
21
|
Wei M, Qiao Y, Zhao H, Liang J, Li T, Luo Y, Lu S, Shi X, Lu W, Sun X. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem Commun (Camb) 2020; 56:14553-14569. [DOI: 10.1039/d0cc05650b] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in the development of electrocatalysts for non-enzymatic glucose detection. The sensing mechanism and influencing factors are discussed, and the perspectives and challenges are also addressed.
Collapse
Affiliation(s)
- Ming Wei
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Yanxia Qiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Haitao Zhao
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Yonglan Luo
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xifeng Shi
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| |
Collapse
|