1
|
Kilimci U, Öndeş B, Sunna Ç, Uygun M, Aktaş Uygun D. Development of label-free immunosensors based on AuNPs-fullerene nanocomposites for the determination of cancer antigen 125. Bioelectrochemistry 2025; 163:108863. [PMID: 39642770 DOI: 10.1016/j.bioelechem.2024.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
In this study, gold nanoparticles (AuNPs) were synthesized and combined with fullerene, resulting in the formation of nanocomposite structures. The structures were then characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques. The nanostructures were functionalized with MPA and employed for covalent binding of CA125 antibody, whereby the antibody-bound nanocomposite structure was utilized for modification of the surface of the SPE. The surface of the immunosensor was protected by Nafion, and the individual stages of the immunosensor design were characterized by CV and EIS. CA125 determination was conducted using the EIS technique, which revealed a linear concentration range of 1-100 U·mL-1 and a LOD value of 0.016 U·mL-1. The immunosensor demonstrated selective recognition of CEA, NSE, HSA, and IgG proteins, exhibiting good reproducibility. The prepared immunosensor demonstrated 80.9% activity even after a 30-day period. Moreover, this immunosensor can be successfully employed in conventional clinical human serum applications. A comparison with existing literature reveals that the superior features of this immunosensor are its low LOD and high stability. Additionally, the short analysis time in comparison to commercial kits is considered a significant advantage. The prepared immunosensor displays valuable characteristics for the determination of CA125, and it has the potential to be developed for use in health applications.
Collapse
Affiliation(s)
- Ulviye Kilimci
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Turkey
| | - Baha Öndeş
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Turkey
| | - Çağdaş Sunna
- Dokuz Eylül University, Efes Vocational School, Food Technology Department, İzmir, Turkey
| | - Murat Uygun
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Turkey
| | - Deniz Aktaş Uygun
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Turkey.
| |
Collapse
|
2
|
Chen T, Liu C, Liu X, Zhu C, Zheng D. Simultaneous Electrochemical Detection of Catechol and Hydroquinone Based on a Carbon Nanotube Paste Electrode Modified with Electro-Reduced Graphene Oxide. Int J Mol Sci 2024; 25:9829. [PMID: 39337317 PMCID: PMC11432359 DOI: 10.3390/ijms25189829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Effectively detecting catechol (CC) and hydroquinone (HQ) simultaneously is crucial for environmental protection and human health monitoring. In the study presented herein, a novel electrochemical sensor for the sensitive simultaneous detection of CC and HQ was constructed based on an electrochemically reduced graphene oxide (ERGO)-modified multi-walled carbon nanotube paste electrode (MWCNTPE). Scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and electrochemical techniques were utilized to characterize the sensing interface and investigate the sensing mechanism. Under the optimal detection conditions, the oxidation peak currents of CC and HQ show a good linear relationship with their concentrations in the range of 0.4-400 μM with a detection limit of 0.083 μM for CC and 0.028 μM for HQ (S/N = 3). Moreover, the sensor exhibits good performance and can be applied successfully in the simultaneous detection of CC and HQ in tap water samples and urine samples with satisfactory results, indicating its promising application prospects.
Collapse
Affiliation(s)
- Tingfei Chen
- School of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China; (T.C.); (C.L.); (X.L.); (C.Z.)
| | - Chao Liu
- School of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China; (T.C.); (C.L.); (X.L.); (C.Z.)
- Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Xiaojun Liu
- School of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China; (T.C.); (C.L.); (X.L.); (C.Z.)
- Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Chunnan Zhu
- School of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China; (T.C.); (C.L.); (X.L.); (C.Z.)
- Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Dongyun Zheng
- School of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China; (T.C.); (C.L.); (X.L.); (C.Z.)
- Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| |
Collapse
|
3
|
Gabrielle Sutanto L, Sabilla S, Wardhana BY, Ramadani A, Sari AP, Anjani QK, Basirun WJ, Amrillah T, Amalina I, Jiwanti PK. Carbon nanomaterials as electrochemical sensors for theophylline: a review. RSC Adv 2024; 14:28927-28942. [PMID: 39263434 PMCID: PMC11388037 DOI: 10.1039/d4ra03585b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/26/2024] [Indexed: 09/13/2024] Open
Abstract
Theophylline (TP) is a methylxanthine derivative, which serves as a valuable compound in treating respiratory disorders and acts as a bronchodilator agent. However, TP has a limited therapeutic range (20-100 μmol L-1), demanding precise monitoring to prevent potential drug toxicity even with slight level fluctuations during treatment. Thus, to overcome this limitation, electrochemical methods have been extensively used due to their efficacy in achieving sensitivity, selectivity, and accuracy. In the context of electrochemical sensors, nanocarbon-based materials have gained widespread recognition for their extensive applications. Therefore, this review aims to explore the latest advancements in carbon-based electrodes particularly used for the precise determination of TP through electrochemical methods. The results are expected to provide insights into the profound significance of the methods in enhancing the accuracy and sensitivity for the detection of TP.
Collapse
Affiliation(s)
- Laurencia Gabrielle Sutanto
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Syarifa Sabilla
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Brasstira Yuva Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Anggi Ramadani
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Anis Puspita Sari
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Wan Jeffrey Basirun
- Nanotechnology and Catalysis Research Center (NANOCAT), University Malaya Kuala Lumpur 50603 Malaysia
- Department of Chemistry, Faculty of Science, University Malaya Kuala Lumpur 50603 Malaysia
| | - Tahta Amrillah
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Ilma Amalina
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Prastika Krisma Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| |
Collapse
|
4
|
Meskher H, Achi F. Electrochemical Sensing Systems for the Analysis of Catechol and Hydroquinone in the Aquatic Environments: A Critical Review. Crit Rev Anal Chem 2024; 54:1354-1367. [PMID: 36007064 DOI: 10.1080/10408347.2022.2114784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Because of their unique physical, chemical, and biological characteristics, conductive nanomaterials have a lot of potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/biosensors, and other fields. Recent breakthroughs in the manufacture of carbon materials, conductive polymers, metals, and metal oxide nanoparticles based electrochemical sensors and biosensors for applications in environmental monitoring by detection of catechol (CC) and hydroquinone (HQ) are presented in this review. To achieve this goal, we first introduced recent works that discuss the effects of phenolic compounds and the need for accurate, inexpensive, and quick monitoring, and then we focused on the use of the most important applications of nanomaterials, such as carbon-based materials, metals, and metal oxides nanoparticles, and conductive polymers, to develop sensors to monitor catechol and hydroquinone. Finally, we identified challenges and limits in the field of sensors and biosensors, as well as possibilities and recommendations for developing the field for better future applications. Meanwhile, electrochemical sensors and biosensors for catechol and hydroquinone measurement and monitoring were highlighted and discussed particularly. This review, we feel, will aid in the promotion of nanomaterials for the development of innovative electrical sensors and nanodevices for environmental monitoring.
Collapse
Affiliation(s)
- Hicham Meskher
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| | - Fethi Achi
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| |
Collapse
|
5
|
Ali S, Sikdar S, Basak S, Mondal M, Tudu A, Roy D, Haydar MS, Ghosh S, Rahaman H, Sil S, Roy MN. Multienzyme Mimicking Cascade Mn 3O 4 Catalyst to Augment Reactive Oxygen Species Elimination and Colorimetric Detection: A Study of Phase Variation upon Calcination Temperature. Inorg Chem 2024; 63:10542-10556. [PMID: 38805686 DOI: 10.1021/acs.inorgchem.4c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Over decades, nanozyme has served as a better replacement of bioenzymes and fulfills most of the shortcomings and intrinsic disadvantages of bioenzymes. Recently, manganese-based nanomaterials have been highly noticed for redox-modulated multienzyme mimicking activity and wide applications in biosensing and biomedical science. The redox-modulated multienzyme mimicking activity was highly in tune with their size, surface functionalization, and charge on the surface and phases. On the subject of calcination temperature to Mn3O4 nanoparticles (NPs), its phase has been transformed to Mn2O3 NPs and Mn5O8 NPs upon different calcination temperatures. Assigning precise structure-property connections is made easier by preparing the various manganese oxides in a single step. The present study has focused on the variation of multienzyme mimicking activity with different phases of Mn3O4 NPs, so that they can be equipped for multifunctional activity with greater potential. Herein, spherical Mn3O4 NPs have been synthesized via a one-step coprecipitation method, and other phases are obtained by direct calcination. The calcination temperature varies to 100, 200, 400, and 600 °C and the corresponding manganese oxide NPs are named M-100, M-200, M-400, and M-600, respectively. The phase transformation and crystalline structure are evaluated by powder X-ray diffraction and selected-area electron diffraction analysis. The different surface morphologies are easily navigated by Fourier transform infrared, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy analysis. Fortunately, for the mixed valence state of Mn3O4 NPs, all phases of manganese oxide NPs showed multienzyme mimicking activity including superoxide dismutase (SOD), catalase, oxidase (OD), and peroxidase; therefore, it offers a synergistic antioxidant ability to overexpose reactive oxygen species. Mn3O4 NPs exhibited good SOD-like enzyme activity, which allowed it to effectively remove the active oxygen (O2•-) from cigarette smoke. A sensitive colorimetric sensor with a low detection limit and a promising linear range has been designed to detect two isomeric phenolic pollutants, hydroquinone (H2Q) and catechol (CA), by utilizing optimized OD activity. The current probe has outstanding sensitivity and selectivity as well as the ability to visually detect two isomers with the unaided eye.
Collapse
Affiliation(s)
- Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Suranjan Sikdar
- Department of Chemistry, Government General Degree College at Kushmandi, Dakshin Dinajpur 733125, India
| | - Shatarupa Basak
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Modhusudan Mondal
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Ajit Tudu
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Md Salman Haydar
- Department of Botany, University of North Bengal, Darjeeling 734013, India
| | - Shibaji Ghosh
- CSIR Central Salt and Marine Chemical Research Institute, G. B. Marg Bhavnagar, Gujrat 364002, India
| | - Habibur Rahaman
- A. P. C. Roy Government College Matigara, Siliguri, Darjeeling 734010, India
| | - Sanchita Sil
- Defence Bioengineering and Electromedical Laboratory, C. V. Raman Nagar, Bangalore 560093, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| |
Collapse
|
6
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
7
|
Gao S, Liu K, Ji X, Cui Y, Li R, Ma G, Zhang Y, Wang L. Biocompatible Palladium Nanoparticles Prepared Using Vancomycin for Colorimetric Detection of Hydroquinone. Polymers (Basel) 2023; 15:3148. [PMID: 37514537 PMCID: PMC10386051 DOI: 10.3390/polym15143148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Hydroquinone poses a major threat to human health and is refractory to degradation, so it is important to establish a convenient detection method. In this paper, we present a novel colorimetric method for the detection of hydroquinone based on a peroxidase-like Pd nanozyme. The vancomycin-stabilized palladium nanoparticles (Van-Pdn NPs, n = 0.5, 1, 2) were prepared using vancomycin as a biological template. The successful synthesis of Van-Pdn NPs (n = 0.5, 1, 2) was demonstrated by UV-vis spectrophotometry, transmission electron microscopy, and X-ray diffraction. The sizes of Pd nanoparticles inside Van-Pd0.5 NPs, Van-Pd1 NPs, and Van-Pd2 NPs were 2.6 ± 0.5 nm, 2.9 ± 0.6 nm, and 4.3 ± 0.5 nm, respectively. Furthermore, Van-Pd2 NPs exhibited excellent biocompatibility based on the MTT assay. More importantly, Van-Pd2 NPs had good peroxidase-like activity. A reliable hydroquinone detection method was established based on the peroxidase-like activity of Van-Pd2 NPs, and the detection limit was as low as 0.323 μM. Therefore, vancomycin improved the peroxidase-like activity and biocompatibility of Van-Pd2 NPs. Van-Pd2 NPs have good application prospects in the colorimetric detection of hydroquinone.
Collapse
Affiliation(s)
- Shoubei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Kai Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Xianbing Ji
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Yanshuai Cui
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Ruyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Guanglong Ma
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Yongqiang Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
8
|
Bas SZ, Cetiner R, Teke D, Ozmen M. A lab-made screen-printed sensing strip for sensitive and selective electrochemical detection of butylated hydroxyanisole. LAB ON A CHIP 2023; 23:1664-1673. [PMID: 36752530 DOI: 10.1039/d3lc00060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study describes the fabrication of a lab-made screen-printed electrode (LabSPE) and its sensing ability for the detection of butylated hydroxyanisole (BHA) which is a synthetic antioxidant utilized widely in food industries. The lab-made screen-printed electrodes were printed on a polycarbonate substrate stepwise via a screen-printing technique using various inks suitable for electrode templates and then modified for the detection of BHA. As for the design of the sensor, firstly, graphitic carbon nitride (g-C3N4) was synthesized electrochemically through the one-pot synthesis method. After the synthesis of Fe3O4 nanoparticles (Fe3O4 NPs), the surface of SPE was modified with the dual composite consisting of g-C3N4 and Fe3O4 NPs. Lastly, platinum nanoparticles (Pt NPs) were deposited electrochemically on the modified electrode in 0.5 M HCl solution containing 2 mM H2PtCl6 at a constant potential of 0.25 V for 45 s. After optimization of varied parameters such as pH of the electrolyte solution, deposition time, and deposition potential, the current responses of the sensor (Pt/g-C3N4-Fe3O4/LabSPE) toward BHA displayed linearity in the wide concentration range of 0.25 μM to 90 μM with a low detection limit of 0.053 μM. The selectivity of Pt/g-C3N4-Fe3O4/SPE was tested successfully in the presence of other antioxidants (BHT, TBHQ, GA, and PG). Moreover, the applicability of the proposed sensor for practical tests was verified by the detection of BHA in commercial samples.
Collapse
Affiliation(s)
- Salih Zeki Bas
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Rumeysa Cetiner
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Deniz Teke
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Mustafa Ozmen
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| |
Collapse
|
9
|
Huang L, Wang C, Yang Y, Wang Y, Li C, Xie Y, Zhao P, Fei J. A light-driven photoelectrochemical sensor for highly selective detection of hydroquinone based on type-II heterojunction formed by carbon nanotubes immobilized in 3D honeycomb CdS/SnS2. J Colloid Interface Sci 2023; 643:585-599. [PMID: 37003870 DOI: 10.1016/j.jcis.2023.03.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
The ecological environment and public safety are seriously threatened by the typical phenolic contaminant hydroquinone (HQ). Here, using a straightforward physical mixing technique, we created an n-n heterojunction by uniformly immobilizing cadmium sulfide (CdS) nanoparticles on the surface of a three-dimensionally layered, flower-like structure made of tin sulfide (SnS2). Then, as photosensitizers, carbon nanotubes (CNTs) were added to the CdS/SnS2 complex to create a type-II heterostructure of CdS/SnS2/CNTs with synergistic effects. Subsequently, the detector HQ was bound to the modified photoelectrodes, which was accompanied by the hole oxidation of the bound HQ, leading to a significant increase in the photocurrent signal, thus allowing specific and sensitive detection of HQ. Under optimized detection conditions, the proposed photoelectrochemical sensor shows a wide detection range of 0.2 to 100 μM for HQ with a detection limit as low as 0.1 μM. The high accuracy of the sensor was demonstrated by comparison with the detection results of UV-vis spectrophotometry. In addition, the photoelectrochemical sensor exhibits good reproducibility, stability, selectivity, and specificity, providing a light-driven method to detect HQ.
Collapse
|
10
|
Hareesha N, Manjunatha J, Tighezza AM, Albaqami MD, Sillanpää M. Electrochemical detection and quantification of catechol based on a simple and sensitive poly(riboflavin) modified carbon nanotube paste electrode. Heliyon 2023; 9:e14378. [PMID: 36942251 PMCID: PMC10023950 DOI: 10.1016/j.heliyon.2023.e14378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
In the present research work, selective and sensitive catechol (CT) detection and quantification were shown in the presence of resorcinol (RS) in 0.2 M phosphate buffer (PB) solution by preparing a low-cost, simple, and green carbon nanotube paste electrode (CNTPE) surface activated with electropolymerized riboflavin (PRF). The morphological, conductivity, and electrochemical features of the modified electrode (PRFMCNTPE) and bare carbon nanotube paste electrode (BCNTPE) materials were analyzed using electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). The PRF-activated electrode displays outstanding sensitivity, stability, selectivity, reproducibility, and repeatability for the redox feature of CT with improved electrochemical current and declined electrochemical potential compared to BCNTPE. The peak currents of CT are correlated to the different CT concentrations (CV method: 6.0-60.0 μM & DPV method: 0.5-7.0 μM), and the obtained detection limit (DL) and quantification limit (QL) are found to be 0.025 μM and 0.085 μM (CV method) and 0.0039 μM and 0.0132 μM (DPV method), respectively. The prepared PRFMCNTPE material was advantageous for the examination of CT in environmentally important tap water sample as a real-time application.
Collapse
Affiliation(s)
- N. Hareesha
- Department of Chemistry, FMKMC College, Constituent College of Mangalore University, Madikeri, Karnataka, India
| | - J.G. Manjunatha
- Department of Chemistry, FMKMC College, Constituent College of Mangalore University, Madikeri, Karnataka, India
- Corresponding author.
| | - Ammar M. Tighezza
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Munirah D. Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Norrebrogade 44, 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Zuo J, Shen Y, Wang L, Yang Q, Cao Z, Song H, Ye Z, Zhang S. Flexible Electrochemical Sensor Constructed Using an Active Copper Center Instead of Unstable Molybdenum Carbide for Simultaneous Detection of Toxic Catechol and Hydroquinone. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Bağlayan Ö, Parlak C, Dikmen G, Alver Ö. The quest of the most stable structure of a carboxyfullerene and its drug delivery limits: A DFT and QTAIM approach. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Jiwanti PK, Wardhana BY, Sutanto LG, Dewi DMM, Putri IZD, Savitri INI. Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review. Molecules 2022; 27:7578. [PMID: 36364403 PMCID: PMC9654677 DOI: 10.3390/molecules27217578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Carbon nanomaterials have attracted researchers in pharmaceutical applications due to their outstanding properties and flexible dimensional structures. Carbon nanomaterials (CNMs) have electrical properties, high thermal surface area, and high cellular internalization, making them suitable for drug and gene delivery, antioxidants, bioimaging, biosensing, and tissue engineering applications. There are various types of carbon nanomaterials including graphene, carbon nanotubes, fullerenes, nanodiamond, quantum dots and many more that have interesting applications in the future. The functionalization of the carbon nanomaterial surface could modify its chemical and physical properties, as well as improve drug loading capacity, biocompatibility, suppress immune response and have the ability to direct drug delivery to the targeted site. Carbon nanomaterials could also be fabricated into composites with proteins and drugs to reduce toxicity and increase effectiveness in the pharmaceutical field. Thus, carbon nanomaterials are very effective for applications in pharmaceutical or biomedical systems. This review will demonstrate the extraordinary properties of nanocarbon materials that can be used in pharmaceutical applications.
Collapse
Affiliation(s)
- Prastika K. Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Brasstira Y. Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Laurencia G. Sutanto
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Diva Meisya Maulina Dewi
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Ilmi Nur Indira Savitri
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
14
|
Wang Y, Fu Q, Chen J, Lin Y, Yang Y, Wang C, Xie Y, Zhao P, Fei J. Temperature-controlled electrochemical sensor based on environmentally responsive polymer/BiPO4/BiOCl/multi-walled carbon nanotube composite for the detection of catechol in water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Afonnikova SD, Popov AA, Bauman YI, Plyusnin PE, Mishakov IV, Trenikhin MV, Shubin YV, Vedyagin AA, Korenev SV. Porous Co-Pt Nanoalloys for Production of Carbon Nanofibers and Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7456. [PMID: 36363048 PMCID: PMC9658849 DOI: 10.3390/ma15217456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The controllable synthesis of carbon nanofibers (CNF) and composites based on CNF (Metals/CNF) is of particular interest. In the present work, the samples of CNF were produced via ethylene decomposition over Co-Pt (0-100 at.% Pt) microdispersed alloys prepared by a reductive thermolysis of multicomponent precursors. XRD analysis showed that the crystal structure of alloys in the composition range of 5-35 at.% Pt corresponds to a fcc lattice based on cobalt (Fm-3m), while the CoPt (50 at.% Pt) and CoPt3 (75 at.% Pt) samples are intermetallics with the structure P4/mmm and Pm-3m, respectively. The microstructure of the alloys is represented by agglomerates of polycrystalline particles (50-150 nm) interconnected by the filaments. The impact of Pt content in the Co1-xPtx samples on their activity in CNF production was revealed. The interaction of alloys with ethylene is accompanied by the generation of active particles on which the growth of nanofibers occurs. Plane Co showed low productivity (~5.5 g/gcat), while Pt itself exhibited no activity at all. The addition of 15-25 at.% Pt to cobalt catalyst leads to an increase in activity by 3-5 times. The maximum yield of CNF reached 40 g/gcat for Co0.75Pt0.25 sample. The local composition of the active alloyed particles and the structural features of CNF were explored.
Collapse
Affiliation(s)
- Sofya D. Afonnikova
- Boreskov Institute of Catalysis SB RAS, 5 Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Anton A. Popov
- Nikolaev Institute of Inorganic Chemistry of SB RAS, 3 Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Yury I. Bauman
- Boreskov Institute of Catalysis SB RAS, 5 Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Pavel E. Plyusnin
- Nikolaev Institute of Inorganic Chemistry of SB RAS, 3 Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Ilya V. Mishakov
- Boreskov Institute of Catalysis SB RAS, 5 Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Mikhail V. Trenikhin
- Center of New Chemical Technologies BIC SB RAS, 54 Neftezavodskaya St., 644060 Omsk, Russia
| | - Yury V. Shubin
- Nikolaev Institute of Inorganic Chemistry of SB RAS, 3 Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Aleksey A. Vedyagin
- Boreskov Institute of Catalysis SB RAS, 5 Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Sergey V. Korenev
- Nikolaev Institute of Inorganic Chemistry of SB RAS, 3 Lavrentyev Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
16
|
Arshad F, Mohd-Naim NF, Chandrawati R, Cozzolino D, Ahmed MU. Nanozyme-based sensors for detection of food biomarkers: a review. RSC Adv 2022; 12:26160-26175. [PMID: 36275095 PMCID: PMC9475342 DOI: 10.1039/d2ra04444g] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Nanozymes have piqued the curiosity of scientists in recent years because of their ability to demonstrate enzyme-like activity combined with advantages such as high stability, inexpensive availability, robust activity, and tunable properties. These attributes have allowed the successful application of nanozymes in sensing to detect various chemical and biological target analytes, overcoming the shortcomings of conventional detection techniques. In this review, we discuss recent developments of nanozyme-based sensors to detect biomarkers associated with food quality and safety. First, we present a brief introduction to this topic, followed by discussing the different types of sensors used in food biomarker detection. We then highlight recent studies on nanozyme-based sensors to detect food markers such as toxins, pathogens, antibiotics, growth hormones, metal ions, additives, small molecules, and drug residues. In the subsequent section, we discuss the challenges and possible solutions towards the development of nanozyme-based sensors for application in the food industry. Finally, we conclude the review by discussing future perspectives of this field towards successful detection and monitoring of food analytes.
Collapse
Affiliation(s)
- Fareeha Arshad
- Biosensors and Nanobiotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam Integrated Science Building Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam Integrated Science Building Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam Gadong Brunei Darussalam
| | - Rona Chandrawati
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney NSW 2052 Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, The University of Queensland Australia
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam Integrated Science Building Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| |
Collapse
|
17
|
Manoj D, Rajendran S, Hoang TKA, Soto-Moscoso M. The role of MOF based nanocomposites in the detection of phenolic compounds for environmental remediation- A review. CHEMOSPHERE 2022; 300:134516. [PMID: 35398074 DOI: 10.1016/j.chemosphere.2022.134516] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Phenolic compounds would be the emerging pollutant by 2050, because of their wide spread applicability in daily life and therefore the adoption of suitable detection methods in which identification and separation of isomers is highly desirable. Owing to the fascinating features, Metal-organic framework (MOF), a class of reticular materials holds a large surface area with tunable shape and adjustable porosity will provide strong interaction with analytes through abundant functional groups resulting in high selectivity towards electrochemical determination of phenolic isomers. Nevertheless, the sensing performance can still be further improved by building MOF network (intrinsic resistance) with functional (conducting) materials, resulting in MOF based nanocomposite. Herein, this review provides the summary of MOF based nanocomposites for electrochemical sensing of phenolic compounds developed from 2015. In this review, we discussed the demerits of pristine MOF as electrode materials, and the requirement of new class of MOF with functional materials such as nanomaterials, carbon nanotubes, graphene and MXene. The history and evolution of MOF nanocomposite-based materials are discussed and also featured the impressive physical and chemical properties. Besides this review discusses the factors influencing the conducting pathway and mass transport of MOF based nanocomposite for enhanced sensing performance of phenolic compounds with suitable mechanistic illustrations. Finally, the major challenges governing the determination of phenolic compounds and the future advancements required for the development of MOF based electrodes for various applications are highlighted.
Collapse
Affiliation(s)
- Devaraj Manoj
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | | |
Collapse
|
18
|
Meskher H, Achi F, Zouaoui A, Ha S, Peacock M, Belkhalfa H. Simultaneous and Selective Electrochemical Determination of Catechol and Hydroquinone on A Nickel Oxide (NiO) Reduced Graphene Oxide (rGO) Doped Multiwalled Carbon Nanotube (fMWCNT) Modified Platinum Electrode. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2008951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hicham Meskher
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| | - Fethi Achi
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| | - Ahmed Zouaoui
- Growth and Characterization of New Semiconductors Laboratory (LCCNS), Ferhat Abbas University, Setif, Algeria
| | - Sohmyung Ha
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
| | | | - Hakim Belkhalfa
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Bou-Ismail, Alegria
| |
Collapse
|
19
|
Karadurmus L, Dogan-Topal B, Kurbanoglu S, Shah A, Ozkan SA. The Interaction between DNA and Three Intercalating Anthracyclines Using Electrochemical DNA Nanobiosensor Based on Metal Nanoparticles Modified Screen-Printed Electrode. MICROMACHINES 2021; 12:mi12111337. [PMID: 34832748 PMCID: PMC8619472 DOI: 10.3390/mi12111337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
The screen-printed electrodes have gained increasing importance due to their advantages, such as robustness, portability, and easy handling. The manuscript presents the investigation of the interaction between double-strand deoxyribonucleic acid (dsDNA) and three anthracyclines: epirubicin (EPI), idarubicin (IDA), and doxorubicin (DOX) by differential pulse voltammetry on metal nanoparticles modified by screen-printed electrodes. In order to investigate the interaction, the voltammetric signals of dsDNA electroactive bases were used as an indicator. The effect of various metal nanomaterials on the signals of guanine and adenine was evaluated. Moreover, dsDNA/PtNPs/AgNPs/SPE (platinum nanoparticles/silver nanoparticles/screen-printed electrodes) was designed for anthracyclines–dsDNA interaction studies since the layer-by-layer modification strategy of metal nanoparticles increases the surface area. Using the signal of multi-layer calf thymus (ct)-dsDNA, the within-day reproducibility results (RSD%) for guanine and adenine peak currents were found as 0.58% and 0.73%, respectively, and the between-day reproducibility results (RSD%) for guanine and adenine peak currents were found as 1.04% and 1.26%, respectively. The effect of binding time and concentration of three anthracyclines on voltammetric signals of dsDNA bases were also evaluated. The response was examined in the range of 0.3–1.3 ppm EPI, 0.1–1.0 ppm IDA and DOX concentration on dsDNA/PtNPs/AgNPs/SPE. Electrochemical studies proposed that the interaction mechanism between three anthracyclines and dsDNA was an intercalation mode.
Collapse
Affiliation(s)
- Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
- Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey
| | - Burcu Dogan-Topal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
- Correspondence: (B.D.-T.); (S.A.O.)
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
- Correspondence: (B.D.-T.); (S.A.O.)
| |
Collapse
|
20
|
Chetankumar K, Kumara Swamy BE, Sharma SC, Hariprasad SA. An efficient electrochemical sensing of hazardous catechol and hydroquinone at direct green 6 decorated carbon paste electrode. Sci Rep 2021; 11:15064. [PMID: 34301960 PMCID: PMC8302748 DOI: 10.1038/s41598-021-93749-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
In this proposed work, direct green 6 (DG6) decorated carbon paste electrode (CPE) was fabricated for the efficient simultaneous and individual sensing of catechol (CA) and hydroquinone (HY). Electrochemical deeds of the CA and HY were carried out by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at poly-DG6-modfied carbon paste electrode (Po-DG6-MCPE). Using scanning electron microscopy (SEM) studied the surface property of unmodified CPE (UCPE) and Po-DG6-MCPE. The decorated sensor displayed admirable electrocatalytic performance with fine stability, reproducibility, selectivity, low limit of detection (LLOD) for HY (0.11 μM) and CC (0.09 μM) and sensor process was originated to be adsorption-controlled phenomena. The Po-DG6-MCPE sensor exhibits well separated two peaks for HY and CA in CV and DPV analysis with potential difference of 0.098 V. Subsequently, the sensor was practically applied for the analysis in tap water and it consistent in-between for CA 93.25–100.16% and for HY 97.25–99.87% respectively.
Collapse
Affiliation(s)
- K Chetankumar
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Shivamogga, Karnataka, India
| | - B E Kumara Swamy
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Shivamogga, Karnataka, India.
| | - S C Sharma
- National Assessment and Accreditation Council (NAAC), Naagarabhaavi, Bengaluru, 560072, Karnataka, India. .,Jain University, Bengaluru, 560069, Karnataka, India. .,School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, India.
| | | |
Collapse
|
21
|
Abu Nayem SM, Shaheen Shah S, Sultana N, Abdul Aziz M, Saleh Ahammad AJ. Electrochemical Sensing Platforms of Dihydroxybenzene: Part 2 – Nanomaterials Excluding Carbon Nanotubes and Graphene. CHEM REC 2021; 21:1073-1097. [DOI: 10.1002/tcr.202100044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Indexed: 12/18/2022]
Affiliation(s)
- S. M. Abu Nayem
- Department of Chemistry Jagannath University 1100 Dhaka Bangladesh
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals KFUPM Box 5040 31261 Dhahran Saudi Arabia
- Physics Department King Fahd University of Petroleum & Minerals KFUPM Box 5047 31261 Dhahran Saudi Arabia
| | - Nasrin Sultana
- Department of Chemistry Jagannath University 1100 Dhaka Bangladesh
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals KFUPM Box 5040 31261 Dhahran Saudi Arabia
| | | |
Collapse
|
22
|
MoS2/Ni(OH)2 composites derived from in situ grown Ni-MOF coating MoS2 as electrode materials for supercapacitor and electrochemical sensor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|