1
|
Qi X, Jin W, Tang C, Xiao X, Li R, Ma Y, Ma L. pH monitoring in high ionic concentration environments: performance study of graphene-based sensors. ANAL SCI 2025; 41:127-135. [PMID: 39487954 DOI: 10.1007/s44211-024-00682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Graphene-based pH sensors, acclaimed for their exceptional sensitivity to environmental variations, have garnered significant interest in scientific research. However, the sensor performance in high ionic concentration environments is limited, due to the Debye length ion screening effect. In this study, an innovative graphene channel pH sensing device was developed and modified by cross-linked poly(methyl methacrylate) (PMMA). Furthermore, even in high ionic concentrations, the pH value can be precisely measured by this sensor. The sensor has remarkable sensitivity, and high response rate of - 70.49 mV/pH within the pH range from 7 to 10. Notably, the sensors retain uniform response direction and sensitivity under different ionic concentrations environmental and maintain consistent reversibility and stability. This advancement in sensor technology paves the way for broader applications in complex ionic environments.
Collapse
Affiliation(s)
- Xin Qi
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Wei Jin
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Cao Tang
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Xue Xiao
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Rui Li
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Yanqing Ma
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.
- Tianjin Key Laboratory of Low-Dimensional Electronic Materials and Advanced Instrumentation, Tianjin, 300072, People's Republic of China.
- School of Precision Instrument and Opto-Electronic Engineering, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Lei Ma
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.
- Tianjin Key Laboratory of Low-Dimensional Electronic Materials and Advanced Instrumentation, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
2
|
Sierra L, Martín-Illán JÁ, Zamora F, Ocón P. Boosting the Capacitance of Covalent Organic Framework Supercapacitors by Hydroquinone Redox Electrolyte Addition. Gels 2024; 10:705. [PMID: 39590061 PMCID: PMC11594047 DOI: 10.3390/gels10110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Rapidly escalating energy demands have spurred a relentless quest for innovative materials and methodologies in energy storage technologies. Covalent organic frameworks (COFs) have emerged as promising candidates for energy storage applications owing to their customizable structure and inherent properties, including enduring porosity and expansive surface area. In this study, we introduce imine-based COF aerogels fashioned into flexible COF electrodes, employing redox electrolytes based on hydroquinone (HQ) dissolved in H2SO4 aqueous solution and 0.25 M TBAPF6 at concentration in acetonitrile. This strategic selection of electrolytes aims to augment capacitance and energy density when compared to non-redox electrolytes. Remarkably, our COF electrodes exhibit an outstanding areal capacitance of 843 mF cm-2 when utilizing HQ with 0.10 M H2SO4, operating at 1.3 mA cm-2, while maintaining approximately 100% capacity retention after 10,000 cycles. Notably, the capacitance of the 0.38 M HQ + 0.10 M H2SO4 is eight times greater than that achieved with organic electrolytes (111 mF cm-2).
Collapse
Affiliation(s)
- Laura Sierra
- Departamento de Química-Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Jesús Á. Martín-Illán
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Félix Zamora
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Institute of Condensed Physic Matter (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pilar Ocón
- Departamento de Química-Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
3
|
Hassan Akhtar M, Azhar Hayat Nawaz M, Abbas M, Liu N, Han W, Lv Y, Yu C. Advances in pH Sensing: From Traditional Approaches to Next-Generation Sensors in Biological Contexts. CHEM REC 2024; 24:e202300369. [PMID: 38953343 DOI: 10.1002/tcr.202300369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/18/2024] [Indexed: 07/04/2024]
Abstract
pH has been considered one of the paramount factors in bodily functions because most cellular tasks exclusively rely on precise pH values. In this context, the current techniques for pH sensing provide us with the futuristic insight to further design therapeutic and diagnostic tools. Thus, pH-sensing (electrochemically and optically) is rapidly evolving toward exciting new applications and expanding researchers' interests in many chemical contexts, especially in biomedical applications. The adaptation of cutting-edge technology is subsequently producing the modest form of these biosensors as wearable devices, which are providing us the opportunity to target the real-time collection of vital parameters, including pH for improved healthcare systems. The motif of this review is to provide insight into trending tech-based systems employed in real-time or in-vivo pH-responsive monitoring. Herein, we briefly go through the pH regulation in the human body to help the beginners and scientific community with quick background knowledge, recent advances in the field, and pH detection in real-time biological applications. In the end, we summarize our review by providing an outlook; challenges that need to be addressed, and prospective integration of various pH in vivo platforms with modern electronics that can open new avenues of cutting-edge techniques for disease diagnostics and prevention.
Collapse
Affiliation(s)
- Mahmood Hassan Akhtar
- College of Animal Science, Jilin University, Changchun, 130062, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS, University Islamabad, 54000, Lahore, Campus, Pakistan
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Ning Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Wenzhao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yan Lv
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Krasnova AO, Glebova NV, Kastsova AG, Pelageikina AO, Redkov AV, Tomkovich MV, Nechitailov AA. Stability of Graphene/Nafion Composite in PEM FC Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:922. [PMID: 38869547 PMCID: PMC11173984 DOI: 10.3390/nano14110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Ensuring the stable operation of proton exchange membrane fuel cells is conducive to their real-world application. A promising direction for stabilizing electrodes is the stabilization of the ionomer via the formation of surface compounds with graphene. A comprehensive study of the (electrochemical, chemical, and thermal) stability of composites for fuel cell electrodes containing a modifying additive of few-layer graphene was carried out. Electrochemical stability was studied by cycling the potential on a disk electrode for 5000 cycles. Chemical stability was assessed via the resistance of the composites to H2O2 treatment using ion-selective potentiometry. Thermal stability was studied using differential thermal analysis. Composites were characterized by UV-Vis spectroscopy, Raman spectroscopy, EDX, and SEM. It was shown that graphene inhibits Nafion degradation when exposed to heat. Contrariwise, Nafion is corrosive to graphene. During electrochemical and chemical exposure, the determining change for carbon-rich composites is the carbon loss (oxidation) of the carbon material. In the case of carbon-poor composites, the removal of fluorine and sulfur from the Nafion polymer with their partial replacement by oxygen prevails. In all cases, the F/S ratio is stable. The dispersity of Nafion in a sample affects its chemical stability more than the G/Nafion ratio does.
Collapse
Affiliation(s)
- Anna O. Krasnova
- Department of Solid State Electronics, Ioffe Institute, 194021 St. Petersburg, Russia; (N.V.G.); (A.G.K.); (A.O.P.)
| | - Nadezhda V. Glebova
- Department of Solid State Electronics, Ioffe Institute, 194021 St. Petersburg, Russia; (N.V.G.); (A.G.K.); (A.O.P.)
| | - Angelina G. Kastsova
- Department of Solid State Electronics, Ioffe Institute, 194021 St. Petersburg, Russia; (N.V.G.); (A.G.K.); (A.O.P.)
| | - Anna O. Pelageikina
- Department of Solid State Electronics, Ioffe Institute, 194021 St. Petersburg, Russia; (N.V.G.); (A.G.K.); (A.O.P.)
| | - Alexey V. Redkov
- Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, 199178 St. Petersburg, Russia;
| | - Maria V. Tomkovich
- Department of Solid State Electronics, Ioffe Institute, 194021 St. Petersburg, Russia; (N.V.G.); (A.G.K.); (A.O.P.)
| | - Andrey A. Nechitailov
- Department of Solid State Electronics, Ioffe Institute, 194021 St. Petersburg, Russia; (N.V.G.); (A.G.K.); (A.O.P.)
| |
Collapse
|
5
|
Poorahong S, Oin W, Buapoon S, Nijpanich S, Harding DJ, Siaj M. Construction of an electrochemical pH sensor using one-pot synthesis of a molybdenum diselenide/nitrogen doped graphene oxide screen-printed electrode. RSC Adv 2024; 14:14616-14623. [PMID: 38708120 PMCID: PMC11066617 DOI: 10.1039/d4ra01708k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024] Open
Abstract
In this study, a one-pot synthesis of a molybdenum diselenide/nitrogen-doped graphene oxide (MoSe2/NGO) composite was demonstrated and used for the fabrication of an electrochemical pH sensor. The MoSe2/NGO composite was characterized using powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller analysis. The electrochemical behavior at different pH values was determined by recording the open-circuit potential. When applied for pH detection, the MoSe2/NGO modified screen-printed electrode (SPE) showed good linearity with a sensitivity of 61.3 mV pH-1 over a wide pH range of 2-14. In addition, the pH sensor exhibited a remarkably stable response, high reproducibility, and selectivity. The sensor was used to measure the acidity or alkalinity of real food and beverage samples. The results for these samples showed a relative error of less than 10% compared with the results obtained with the commercial pH meter. The portable sensor produced by screen printing electrodes paves the way for the development of simple, cost-effective, real-time, and robust pH sensors for the pH analysis of various sample matrices for clinical diagnostics, biosensing, and cost-effective applications.
Collapse
Affiliation(s)
- Sujittra Poorahong
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Department of Chemistry, School of Science, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Wipawee Oin
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Saowaluk Buapoon
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Supinya Nijpanich
- Synchrotron Light Research Institute (Public Organization) Nakhon Ratchasima 30000 Thailand
| | - David J Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Mohamed Siaj
- Department of Chemistry, Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| |
Collapse
|
6
|
Lorestani F, Zhang X, Abdullah AM, Xin X, Liu Y, Rahman M, Biswas MAS, Li B, Dutta A, Niu Z, Das S, Barai S, Wang K, Cheng H. A highly sensitive and long-term stable wearable patch for continuous analysis of biomarkers in sweat. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2306117. [PMID: 38525448 PMCID: PMC10959519 DOI: 10.1002/adfm.202306117] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 03/26/2024]
Abstract
Although increasing efforts have been devoted to the development of non-invasive wearable or stretchable electrochemical sweat sensors for monitoring physiological and metabolic information, most of them still suffer from poor stability and specificity over time and fluctuating temperatures. This study reports the design and fabrication of a long-term stable and highly sensitive flexible electrochemical sensor based on nanocomposite-modified porous graphene by simple and facile laser treatment for detecting biomarkers such as glucose in sweat. The laser-reduced and patterned stable conductive nanocomposite on the porous graphene electrode provides the resulting glucose sensor with an excellent sensitivity of 1317.69 μAmM-1cm-2 with an ultra-low limit of detection (LOD) of 0.079 μM. The sensor can also detect pH and exhibit extraordinary stability to maintain more than 91% sensitivity over 21 days in ambient conditions. Taken together with a temperature sensor based on the same material system, the dual glucose and pH sensor integrated with a flexible microfluidic sweat sampling network further results in accurate continuous on-body glucose detection calibrated by the simultaneously measured pH and temperature. The low-cost, highly sensitive, and long-term stable platform could facilitate and pave the way for the early identification and continuous monitoring of different biomarkers for non-invasive disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Farnaz Lorestani
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Xianzhe Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Abu Musa Abdullah
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Xin Xin
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Yushen Liu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Mashfiqur Rahman
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Md Abu Sayeed Biswas
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Bowen Li
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Ankan Dutta
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhenyuan Niu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Shuvendu Das
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Shishir Barai
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Ke Wang
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| |
Collapse
|
7
|
Zhang Y, Yu W, Wang J, Zhan T, Kamran MA, Wang K, Zhu X, Chu C, Zhu X, Chen B. Long-Term Exposure of Graphene Oxide Suspension to Air Leading to Spontaneous Radical-Driven Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14407-14416. [PMID: 37695219 DOI: 10.1021/acs.est.3c05788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Understanding the environmental transformation and fate of graphene oxide (GO) is critical to estimate its engineering applications and ecological risks. While there have been numerous investigations on the physicochemical stability of GO in prolonged air-exposed solution, the potential generation of reactive radicals and their impact on the structure of GO remain unexplored. In this study, using liquid-PeakForce-mode atomic force microscopy and quadrupole time-of-flight mass spectroscopy, we report that prolonged exposure of GO to the solution leads to the generation of nanopores in the 2D network and may even cause the disintegration of its bulk structure into fragment molecules. These fragments can assemble themselves into films with the same height as the GO at the interface. Further mediated electrochemical analysis supports that the electron-donating active components of GO facilitate the conversion of O2 to •O2- radicals on the GO surface, which are subsequently converted to H2O2, ultimately leading to the formation of •OH. We experimentally confirmed that attacks from •OH radicals can break down the C-C bond network of GO, resulting in the degradation of GO into small fragment molecules. Our findings suggest that GO can exhibit chemical instability when released into aqueous solutions for prolonged periods of time, undergoing transformation into fragment molecules through self-generated •OH radicals. This finding not only sheds light on the distinctive fate of GO-based nanomaterials but also offers a guideline for their engineering applications as advanced materials.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut 06511, United States
| | - Wentao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jian Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, United States
| | - Muhammad Aqeel Kamran
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
8
|
Li Z, Jiang H, Wang X, Wang C, Wei X. Effect of pH on Adsorption of Tetracycline Antibiotics on Graphene Oxide. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2448. [PMID: 36767813 PMCID: PMC9915905 DOI: 10.3390/ijerph20032448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Graphene oxide (GO) has good dispersibility and adsorption capacity for antibiotics adsorption, a complex process influenced by many factors. In this work, the adsorption mechanism of GO on tetracycline antibiotics at different pH was studied to address its attenuated effects on the microbial growth. The results showed that the adsorption process of GO on three antibiotics, namely, tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC), followed the pseudo-second-order kinetic model. The maximum adsorption capacities were observed at pH5 which were 133.0 mg/g for TC, 125.4 mg/g for OTC, and 167.0 mg/g for CTC. Furthermore, the reaction was uniform adsorption with a single layer on the surface of GO, and heating was conducive to the reaction. In the microbial growth experiment, the growth of E. coli and B. subtilis senses was optimal at pH5, which was consistent with the adsorption experiment. This study analyzed the effect of pH on the adsorption of antibiotics by GO and provided a theoretical basis for the further application of GO in various aquatic environments.
Collapse
Affiliation(s)
- Zhenghao Li
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hua Jiang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xipeng Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Cunfang Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiangsheng Wei
- Shandong Aifudi Biological Co., Ltd., Jining 272000, China
| |
Collapse
|
9
|
Angizi S, Huang X, Hong L, Akbar MA, Selvaganapathy PR, Kruse P. Defect Density-Dependent pH Response of Graphene Derivatives: Towards the Development of pH-Sensitive Graphene Oxide Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1801. [PMID: 35683657 PMCID: PMC9181870 DOI: 10.3390/nano12111801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
In this study, we demonstrate that a highly pH-sensitive substrate could be fabricated by controlling the type and defect density of graphene derivatives. Nanomaterials from single-layer graphene resembling a defect-free structure to few-layer graphene and graphene oxide with high defect density were used to demonstrate the pH-sensing mechanisms of graphene. We show the presence of three competing mechanisms of pH sensitivity, including the availability of functional groups, the electrochemical double layer, and the ion trapping that determines the overall pH response. The graphene surface was selectively functionalized with hydroxyl, amine, and carboxyl groups to understand the role and density of the graphene pH-sensitive functional groups. Later, we establish the development of highly pH-sensitive graphene oxide by controlling its defect density. This research opens a new avenue for integrating micro-nano-sized pH sensors based on graphene derivatives into next-generation sensing platforms.
Collapse
Affiliation(s)
- Shayan Angizi
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada; (S.A.); (X.H.); (L.H.); (M.A.A.)
| | - Xianxuan Huang
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada; (S.A.); (X.H.); (L.H.); (M.A.A.)
| | - Lea Hong
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada; (S.A.); (X.H.); (L.H.); (M.A.A.)
| | - Md Ali Akbar
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada; (S.A.); (X.H.); (L.H.); (M.A.A.)
| | - P. Ravi Selvaganapathy
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada;
| | - Peter Kruse
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada; (S.A.); (X.H.); (L.H.); (M.A.A.)
| |
Collapse
|
10
|
Chen H, Liu F, Cai C, Wu H, Yang L. Removal of Hg 2+ from desulfurization wastewater by tannin-immobilized graphene oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17964-17976. [PMID: 34677779 DOI: 10.1007/s11356-021-16993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
A novel adsorbent consisting of tannic acid (TA) immobilized on graphene oxide (GO) was proposed and used to remove Hg2+ from desulfurization wastewater. The morphology and physicochemical properties of tannin-immobilized graphene oxide (TAIGO) were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The characterization results showed that TA was successfully immobilized on GO, and that new functional groups were introduced on TAIGO. The effects of contact time, adsorbent dose, pH, and ion components on removal efficiency were evaluated. The adsorption process was found to be complete within 15 min, and the removal efficiency increased with increasing adsorbent dosage. The pH value affected the protonation of TAIGO and the form of Hg2+ in wastewater. High concentrations of Cl- and SO32- hindered the adsorption performance, whereas SO42- and cations had a negligible effect. In addition, the excellent economic benefits of TAIGO were analyzed in an economic evaluation, and the Hg2+ removal efficiency remained at 88% after three recycles. A pseudo-second-order kinetic model (R = 0.9995) was used to fit the adsorption process, and the oxygen-containing functional groups and chelation reaction played critical roles in adsorption. TAIGO is a low-cost adsorbent with high Hg2+ removal efficiency and could be further used in practical desulfurization wastewater.
Collapse
Affiliation(s)
- Heng Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, China
| | - Fengjun Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, China
| | - Chenjian Cai
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, China
| | - Hao Wu
- School of Energy & Mechanical Engineering, Nanjing Normal University, Nanjing, China
| | - Linjun Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, China.
| |
Collapse
|