1
|
Russell MS, Vasilounis SS, Desroches D, Alenabi T, Drake JDM, Chopp-Hurley JN. Evaluating the Relationship Between Surface and Intramuscular-Based Electromyography Signals: Implications of Subcutaneous Fat Thickness. J Appl Biomech 2025; 41:47-55. [PMID: 39657718 DOI: 10.1123/jab.2024-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 12/12/2024]
Abstract
Intramuscular (iEMG) and surface electromyographic (sEMG) signals have been compared previously using predictive regression equations, finite element modeling, and correlation and cross-correlation analyses. Although subcutaneous fat thickness (SCFT) has been identified as a primary source of sEMG signal amplitude attenuation and low-pass filter equivalence, few studies have explored the potential effect of SCFT on sEMG and iEMG signal characteristics. The purpose of this study was to investigate the relationship between normalized submaximal iEMG and sEMG signal amplitudes collected from 4 muscles (rectus femoris, vastus lateralis, infraspinatus, and erector spinae) and determine whether SCFT explains more variance in this relationship. The effect of sex was also explored. Linear regression models demonstrated that the relationship between sEMG and iEMG was highly variable across the muscles examined (adjusted coefficient of determination [Adj R2] = .02-.74). SCFT improved the model fit for vastus lateralis, although this relationship only emerged with the inclusion of sex as a covariate. Thus, this research suggests that SCFT is not a prominent factor affecting the linearity between sEMG and iEMG. Researchers should investigate other parameters that may affect the linearity between sEMG and iEMG signals.
Collapse
Affiliation(s)
- Matthew S Russell
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Sam S Vasilounis
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Daniel Desroches
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Talia Alenabi
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Janessa D M Drake
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Karacan I, Türker KS. A comparison of electromyography techniques: surface versus intramuscular recording. Eur J Appl Physiol 2025; 125:7-23. [PMID: 39438311 DOI: 10.1007/s00421-024-05640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
This review is a comprehensive guide for electromyography (EMG) researchers, providing a comparison of skin EMG recording (surface EMG: sEMG and high-density sEMG: HD-sEMG) and intramuscular EMG recording (multi-motor unit-MMU and single motor unit electromyography-SMU). We delve into the nuances of techniques, highlighting their strengths and limitations in quantifying muscle activation during dynamic and static conditions. We first examine how EMG signals change with time, focussing on the interplay between motor unit synchronisation and signal amplitude. The review then explores the impact of electrode placement on signal quality. We further discuss the challenges of signal cancellation, crosstalk from neighbouring muscles, and motion artifacts, which can significantly affect signal integrity. Finally, we address the temporal changes in electrode impedance and its implications for data interpretation. Our analysis proposes that specific research objectives should guide the choice amongst sEMG, HD-sEMG, SMU and MMU. MMU, which records the peak counts of individual motor unit action potentials from a localised muscle area, is particularly suited for studying deep or small muscles during static and dynamic activities. Its high sensitivity to motor unit recruitment and discharge rates minimises the impact of factors such as signal cancellation and motion artefacts. Conversely, sEMG is well-suited for short-duration, isometric assessments of large, superficial muscles. HD-sEMG helps study single motor unit properties under isometric conditions. SMU is particularly suited for studying neuronal networks between stimulated sites and motor neurons. This review aims to provide researchers with the information to select the most appropriate EMG technique for their investigations.
Collapse
Affiliation(s)
- Ilhan Karacan
- Hamidiye Medical School, Physical Medicine and Rehabilitation Department, Health Science University Istanbul, Istanbul, Türkiye
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Türkiye
| | - Kemal Sitki Türker
- Faculty of Dentistry, Department of Physiology, Istanbul Gelisim University, Avcilar, Istanbul, Türkiye.
| |
Collapse
|
3
|
M-Mode Ultrasound Examination of Soleus Muscle in Healthy Subjects: Intra- and Inter-Rater Reliability Study. Healthcare (Basel) 2020; 8:healthcare8040555. [PMID: 33322505 PMCID: PMC7763654 DOI: 10.3390/healthcare8040555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: M-mode ultrasound imaging (US) reflects the motion of connective tissue within muscles. The objectives of this study were to evaluate inter-rater and intra-rater reliability of soleus muscle measurements between examiners with different levels of US experience in asymptomatic subjects and to investigate the level of soleus muscle isometric activity in two positions (knee extended and knee flexed at 30°). Methods: Thirty volunteers without a history of ankle pain were evaluated with US examinations of the soleus muscle. Each muscle was scanned independently by two evaluators. Muscle at rest thickness, maximal isometric contraction thickness, time and velocity measures were detailed and blinded to the other examiner. Results: Intra- and inter-rater reliability at rest, in maximal isometric contraction thickness, contraction time and contraction velocity measures for both positions (extended and flexed knee) were reported from good to excellent for all outcome measurements. The position with the knee extended reported a statistically significant increase in thickness after motion showing 1.33 ± 0.27 mm for measurements at rest thickness with knee extended versus 1.50 ± 0.29 mm for measurements at end thickness with the knee in flexed position (p = 0.001), as well as 1.31 ± 0.23 mm for rest thickness with the knee in flexed position measurements with respect to 1.34 ± 0.24 mm for maximal isometric contraction thickness with extended knee measurements (p = 0.058). Conclusions: This study found that intra- and inter-examiner reliability of M-mode ultrasound imaging of the soleus muscle was excellent in asymptomatic subjects and the soleus muscle activity was different between the position with the knee extended and the position with the knee flexed.
Collapse
|
4
|
Tkaczyszyn M, Drozd M, Węgrzynowska-Teodorczyk K, Bojarczuk J, Majda J, Banasiak W, Ponikowski P, Jankowska EA. Iron status, catabolic/anabolic balance, and skeletal muscle performance in men with heart failure with reduced ejection fraction. Cardiol J 2020; 28:391-401. [PMID: 33140393 DOI: 10.5603/cj.a2020.0138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/26/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Metabolic derangements related to tissue energetics constitute an important pathophysiological feature of heart failure. We investigated whether iron deficiency and catabolic/anabolic imbalance contribute to decreased skeletal muscle performance in men with heart failure with reduced ejection fraction (HFrEF), and whether these pathologies are related to each other. METHODS We comprehensively examined 23 men with stable HFrEF (median age [interquartile range]: 63 [59-66] years; left ventricular ejection fraction: 28 [25-35]%; New York Heart Association class I/II/III: 17/43/39%). We analyzed clinical characteristics, iron status, hormones, strength and fatigability of forearm flexors and quadriceps (surface electromyography), and exercise capacity (6-minute walking test). RESULTS None of the patients had anemia whereas 8 were iron-deficient. Flexor carpi radialis fatigability correlated with lower reticulocyte hemoglobin content (CHR, p < 0.05), and there was a trend towards greater fatigability in patients with higher body mass index and lower serum ferritin (both p < 0.1). Flexor carpi ulnaris fatigability correlated with lower serum iron and CHR (both p < 0.05). Vastus medialis fatigability was related to lower free and bioavailable testosterone (FT and BT, respectively, both p < 0.05), and 6-minute walking test distance was shorter in patients with higher cortisol/FT and cortisol/BT ratio (both p < 0.05). Lower ferritin and transferrin saturation correlated with lower percentage of FT and BT. Men with HFrEF and iron deficiency had higher total testosterone, but lower percentage of FT and BT. CONCLUSIONS Iron deficiency correlates with lower bioactive testosterone in men with HFrEF. These two pathologies can both contribute to decreased skeletal muscle performance in such patients.
Collapse
|
5
|
Sensory regulation and mechanical effects of sustained high intensity stretching of the anterior compartment of the thigh. J Bodyw Mov Ther 2020; 24:18-25. [PMID: 32507143 DOI: 10.1016/j.jbmt.2020.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ballet dancers, contortionists, gymnasts, or other sportspeople spend long hours performing stretches while training. Although most studies on stretching consider fascia lengthening to be difficult, athletes manage to lengthen their fascia. AIM To assess the relationship between lengthening fascial structures of the anterior compartment of the thigh and the self-reported sensation of discomfort and pain during a sustained and repeated high intensity stretch. METHODS Our analysis was based on the data of 7 high school male elite rugby players who completed 11 sessions of stretching (10-min quasi-static stretch of the rectus femoris and fascia lata, at the maximum intensity tolerated), performed twice per week. The measured outcomes included hip range of motion, the length of the structures of the anterior compartment, subjective pain and tension during the stretch, and the level of surface electromyography activity. Values were compared before and after completion of the 11 sessions. RESULTS Myofascial length increased by 1 cm. The necessary force applied increased from 124 to 164 N. However, the maximal tolerated stretching intensity did not change significantly (from 205 to 206 N). The increase in length was principally contributed by the rate of fascial creep upon force application, and not by contractile tissue. Subjective levels of tension were related to the stretching force applied and pain was related to the lengthening. CONCLUSION Sensations can be used to adjust the intensity and duration of stretching. Soft matter physics provides a new interpretation of fascia lengthening and strengthening during a high intensity stretch.
Collapse
|
6
|
Kingston DC, Acker SM. Representing fine-wire EMG with surface EMG in three thigh muscles during high knee flexion movements. J Electromyogr Kinesiol 2018; 43:55-61. [DOI: 10.1016/j.jelekin.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 11/27/2022] Open
|
7
|
Talib I, Sundaraj K, Lam CK, Hussain J, Ali MA. A review on crosstalk in myographic signals. Eur J Appl Physiol 2018; 119:9-28. [PMID: 30242464 DOI: 10.1007/s00421-018-3994-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Crosstalk in myographic signals is a major hindrance to the understanding of local information related to individual muscle function. This review aims to analyse the problem of crosstalk in electromyography and mechanomyography. METHODS An initial search of the SCOPUS database using an appropriate set of keywords yielded 290 studies, and 59 potential studies were selected after all the records were screened using the eligibility criteria. This review on crosstalk revealed that signal contamination due to crosstalk remains a major challenge in the application of surface myography techniques. Various methods have been employed in previous studies to identify, quantify and reduce crosstalk in surface myographic signals. RESULTS Although correlation-based methods for crosstalk quantification are easy to use, there is a possibility that co-contraction could be interpreted as crosstalk. High-definition EMG has emerged as a new technique that has been successfully applied to reduce crosstalk. CONCLUSIONS The phenomenon of crosstalk needs to be investigated carefully because it depends on many factors related to muscle task and physiology. This review article not only provides a good summary of the literature on crosstalk in myographic signals but also discusses new directions related to techniques for crosstalk identification, quantification and reduction. The review also provides insights into muscle-related issues that impact crosstalk in myographic signals.
Collapse
Affiliation(s)
- Irsa Talib
- School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| | - Kenneth Sundaraj
- Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Malaysia
| | - Chee Kiang Lam
- School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Jawad Hussain
- Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Malaysia
| | - Md Asraf Ali
- Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
8
|
Ushirozako H, Yoshida G, Kobayashi S, Hasegawa T, Yamato Y, Yasuda T, Banno T, Arima H, Oe S, Mihara Y, Togawa D, Matsuyama Y. Transcranial Motor Evoked Potential Monitoring for the Detection of Nerve Root Injury during Adult Spinal Deformity Surgery. Asian Spine J 2018; 12:639-647. [PMID: 30060371 PMCID: PMC6068406 DOI: 10.31616/asj.2018.12.4.639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/17/2018] [Indexed: 11/23/2022] Open
Abstract
STUDY DESIGN Retrospective study. PURPOSE We aimed to determine the utility of transcranial motor evoked potential (TcMEP) monitoring for the detection of intraoperative nerve root injury. OVERVIEW OF LITERATURE Intraoperative neuromonitoring is important for the prediction of neurological injuries or postoperative paralysis. Nerve root injury can develop as a complication of adult spinal deformity (ASD) surgery. METHODS We analyzed 295 patients who underwent ASD surgery using multi-channel TcMEP monitoring between 2010 and 2016 (58 men, 237 women; median age, 68 years; follow-up period ≥1 year). We defined the alarm point as a TcMEP amplitude <30% of that at baseline, and nerve root injury as meeting the focal TcMEP alerts shortly following surgical procedures with the presence of postoperative motor deficits in the selected muscles. Patients were classified into two groups, as those with nerve root injury and those with true-negatives. RESULTS Seven patients (2.4%) exhibited neurological events related to nerve root injury, comprising six true-positive and one falsenegative cases. TcMEP monitoring from multiple myotomes was effective in detecting nerve root injury. Compared to the 248 truenegative cases, the seven cases of nerve root injury were associated with significantly different preoperative pelvic tilt (PT) values, sacral slope values, and degree of change in PT. The cutoff for the degree of change in PT for predicting nerve root injury, with the best sensitivity and specificity, was 17.5°. Multivariate logistic analyses revealed that a change of >17.5° in PT (odds ratio, 17.5; 95% confidence interval, 1.994-153.560; p =0.010) was independently associated with intraoperative nerve root injury. CONCLUSIONS Multi-channel TcMEP monitoring may be useful for detecting nerve root injuries. A change in PT of >17.5° may be a significant risk factor for neurological events related to intraoperative nerve root injury.
Collapse
Affiliation(s)
- Hiroki Ushirozako
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Go Yoshida
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Sho Kobayashi
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomohiko Hasegawa
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yu Yamato
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuya Yasuda
- Department of Orthopedic Surgery, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Tomohiro Banno
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideyuki Arima
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shin Oe
- Division of Geriatric Musculoskeletal Health, Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuki Mihara
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daisuke Togawa
- Division of Geriatric Musculoskeletal Health, Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukihiro Matsuyama
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
9
|
Sánchez N, Acosta AM, López-Rosado R, Dewald JPA. Neural Constraints Affect the Ability to Generate Hip Abduction Torques When Combined With Hip Extension or Ankle Plantarflexion in Chronic Hemiparetic Stroke. Front Neurol 2018; 9:564. [PMID: 30050495 PMCID: PMC6050392 DOI: 10.3389/fneur.2018.00564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/22/2018] [Indexed: 12/02/2022] Open
Abstract
Stroke lesions interrupt descending corticofugal fibers that provide the volitional control of the upper and lower extremities. Despite the evident manifestation of movement impairments post-stroke during standing and gait, neural constraints in the ability to generate joint torque combinations in the lower extremities are not yet well determined. Twelve chronic hemiparetic participants and 8 age-matched control individuals participated in the present study. In an isometric setup, participants were instructed to combine submaximal hip extension or ankle plantarflexion torques with maximal hip abduction torques. Statistical analyses were run using linear mixed effects models. Results for the protocol combining hip extension and abduction indicate that participants post-stroke have severe limitations in the amount of hip abduction torque they can generate, dependent upon hip extension torque magnitude. These effects are manifested in the paretic extremity by the appearance of hip adduction torques instead of hip abduction at higher levels of hip extension. In the non-paretic extremity, significant reductions of hip abduction were also observed. In contrast, healthy control individuals were capable of combining varied levels of hip extension with maximal hip abduction. When combining ankle plantarflexion and hip abduction, only the paretic extremity showed reductions in the ability to generate hip abduction torques at increased levels of ankle plantarflexion. Our results provide insight into the neural mechanisms controlling the lower extremity post-stroke, supporting previously hypothesized increased reliance on postural brainstem motor pathways. These pathways have a greater dominance in the control of proximal joints (hip) compared to distal joints (ankle) and lead to synergistic activation of musculature due to their diffuse, bilateral connections at multiple spinal cord levels. We measured, for the first time, bilateral constraints in hip extension/abduction coupling in hemiparetic stroke, again in agreement with the expected increased reliance on bilateral brainstem motor pathways. Understanding of these neural constraints in the post-stroke lower extremities is key in the development of more effective rehabilitation interventions that target abnormal joint torque coupling patterns.
Collapse
Affiliation(s)
- Natalia Sánchez
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Ana M Acosta
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Roberto López-Rosado
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Peng YL, Tenan MS, Griffin L. Hip position and sex differences in motor unit firing patterns of the vastus medialis and vastus medialis oblique in healthy individuals. J Appl Physiol (1985) 2018; 124:1438-1446. [DOI: 10.1152/japplphysiol.00702.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Weakness of the vastus medialis oblique (VMO) has been proposed to explain the high prevalence of knee pain in female subjects. Clinicians commonly use exercises in an attempt to preferentially activate the VMO. Recently, our group found evidence to support clinical theory that the VMO is neurologically distinct from the vastus medialis (VM). However, the ability to voluntarily activate these muscle subsections is still disputed. The aim of this study was to determine if VM and VMO activation varies between sexes and if control of the two muscles is different between rehabilitation exercises. Thirteen men and 13 women performed isometric straight leg raises in two hip positions, neutral hip rotation and 30 degrees lateral hip rotation. Bipolar intramuscular fine-wire electrodes were inserted into the VM and VMO to obtain motor unit recruitment thresholds and initial firing rates at recruitment. Linear mixed models and Tukey post hoc tests were used to assess significant differences in 654 motor units. Women demonstrated faster motor unit firing rate at recruitment, 1.18 ± 0.56 Hz higher than men. Motor units fired 0.47 ± 0.19 Hz faster during neutral hip rotation compared with lateral hip rotation. The VMO motor units were recruited 2.92 ± 1.28% earlier than the VM. All motor units were recruited 3.74 ± 1.27% earlier during neutral hip rotation than lateral hip rotation. Thus the VM and the VMO can be activated differentially, and their motor unit recruitment properties are affected by sex and hip position. NEW & NOTEWORTHY This is the first study to reveal differential activation of the vastus medialis oblique from the vastus medialis in clinical exercise protocols. Our research group used fine-wire electrodes to examine EMG signals of the vastus medialis oblique and vastus medialis to avoid possible cross talk. We also consider the effect of sex on motor unit firing patterns because of higher prevalence of knee pain in women, and yet few studies evaluating the sex differences in neuromuscular control.
Collapse
Affiliation(s)
- Yi-Ling Peng
- Department of Kinesiology, University of Texas at Austin, Austin, Texas
| | - Matthew S. Tenan
- Human Research & Engineering Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland
| | - Lisa Griffin
- Department of Kinesiology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
11
|
Benedetti MG, Beghi E, De Tanti A, Cappozzo A, Basaglia N, Cutti AG, Cereatti A, Stagni R, Verdini F, Manca M, Fantozzi S, Mazzà C, Camomilla V, Campanini I, Castagna A, Cavazzuti L, Del Maestro M, Croce UD, Gasperi M, Leo T, Marchi P, Petrarca M, Piccinini L, Rabuffetti M, Ravaschio A, Sawacha Z, Spolaor F, Tesio L, Vannozzi G, Visintin I, Ferrarin M. SIAMOC position paper on gait analysis in clinical practice: General requirements, methods and appropriateness. Results of an Italian consensus conference. Gait Posture 2017; 58:252-260. [PMID: 28825997 DOI: 10.1016/j.gaitpost.2017.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023]
Abstract
Gait analysis is recognized as a useful assessment tool in the field of human movement research. However, doubts remain on its real effectiveness as a clinical tool, i.e. on its capability to change the diagnostic-therapeutic practice. In particular, the conditions in which evidence of a favorable cost-benefit ratio is found and the methodology for properly conducting and interpreting the exam are not identified clearly. To provide guidelines for the use of Gait Analysis in the context of rehabilitation medicine, SIAMOC (the Italian Society of Clinical Movement Analysis) promoted a National Consensus Conference which was held in Bologna on September 14th, 2013. The resulting recommendations were the result of a three-stage process entailing i) the preparation of working documents on specific open issues, ii) the holding of the consensus meeting, and iii) the drafting of consensus statements by an external Jury. The statements were formulated based on scientific evidence or experts' opinion, when the quality/quantity of the relevant literature was deemed insufficient. The aim of this work is to disseminate the consensus statements. These are divided into 13 questions grouped in three areas of interest: 1) General requirements and management, 2) Methodological and instrumental issues, and 3) Scientific evidence and clinical appropriateness. SIAMOC hopes that this document will contribute to improve clinical practice and help promoting further research in the field.
Collapse
Affiliation(s)
| | - Ettore Beghi
- IRCCS Istituto di Ricerche Farmacologiche, Milano, Italy
| | | | - Aurelio Cappozzo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | | | | | - Andrea Cereatti
- POLCOMING Department, Bioengineering unit, University of Sassari, Italy
| | - Rita Stagni
- Department of Electric, Electronic and Information Engineering "Guglielmo Marconi" - DEI Università di Bologna, Italy
| | - Federica Verdini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Mario Manca
- Azienda Ospedaliero-Universitaria di Ferrara, Italy
| | - Silvia Fantozzi
- Department of Electric, Electronic and Information Engineering "Guglielmo Marconi" - DEI Università di Bologna, Italy
| | - Claudia Mazzà
- Department of Mechanical Engineering and Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Valentina Camomilla
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | - Isabella Campanini
- Motion Analysis Laboratory - Rehab. Dept, AUSL Reggio Emilia and Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | | | | | | | - Ugo Della Croce
- POLCOMING Department, Bioengineering unit, University of Sassari, Italy
| | - Marco Gasperi
- Ospedale Riabilitativo Villa Rosa, Azienda Provinciale Servizi Sanitari di Trento, Italy
| | - Tommaso Leo
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Pia Marchi
- Azienda Ospedaliero-Universitaria di Ferrara, Italy
| | | | | | | | | | - Zimi Sawacha
- Department of Information Engineering, University of Padova, Italy
| | - Fabiola Spolaor
- Department of Information Engineering, University of Padova, Italy
| | - Luigi Tesio
- Università degli Studi and Istituto Auxologico Italiano-IRCCS, Milano, Italy
| | - Giuseppe Vannozzi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | | | | |
Collapse
|
12
|
von Laßberg C, Schneid JA, Graf D, Finger F, Rapp W, Stutzig N. Longitudinal sequencing in intramuscular coordination: A new hypothesis of dynamic functions in the human rectus femoris muscle. PLoS One 2017; 12:e0183204. [PMID: 28817715 PMCID: PMC5560678 DOI: 10.1371/journal.pone.0183204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/31/2017] [Indexed: 11/18/2022] Open
Abstract
The punctum fixum-punctum mobile model has been introduced in previous publications. It describes general principles of intersegmental neuromuscular succession patterns to most efficiently generate specific movement intentions. The general hypothesis of this study is that these principles—if they really do indicate a fundamental basis for efficient movement generation—should also be found in intramuscular coordination and should be indicated by “longitudinal sequencing” between fibers according to the principles of the punctum fixum-punctum mobile model. Based on this general hypothesis an operationalized model was developed for the rectus femoris muscle (RF), to exemplarily scrutinize this hypothesis for the RF. Electromyography was performed for 14 healthy male participants by using two intramuscular fine wire electrodes in the RF (placed proximal and distal), three surface electrodes over the RF (placed proximal, middle, and distal), and two surface electrodes over the antagonists (m. biceps femoris and m. semitendinosus). Three movement tasks were measured: kicking movements; deceleration after sprints; and passively induced backward accelerations of the leg. The results suggest that proximal fibers can be activated independently from distal fibers within the RF. Further, it was shown that the hypothesized function of “intramuscular longitudinal sequencing” does exist during dynamic movements. According to the punctum fixum-punctum mobile model, the activation succession between fibers changes direction (from proximal to distal or inversely) depending on the intentional context. Thus, the results seem to support the general hypothesis for the RF and could be principally in line with the operationalized “inter-fiber to tendon interaction model”.
Collapse
Affiliation(s)
- Christoph von Laßberg
- Department of Sports Medicine, Medical Clinic, University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Julia A. Schneid
- Institute of Sports Science, University of Tübingen, Tübingen, Germany
| | - Dominik Graf
- Institute of Sports Science, University of Tübingen, Tübingen, Germany
| | - Felix Finger
- Institute of Sports Science, University of Tübingen, Tübingen, Germany
| | - Walter Rapp
- Institute of Sports and Sport Science, University of Freiburg, Freiburg, Germany
| | - Norman Stutzig
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
13
|
Sánchez N, Acosta AM, Lopez-Rosado R, Stienen AHA, Dewald JPA. Lower Extremity Motor Impairments in Ambulatory Chronic Hemiparetic Stroke: Evidence for Lower Extremity Weakness and Abnormal Muscle and Joint Torque Coupling Patterns. Neurorehabil Neural Repair 2017; 31:814-826. [PMID: 28786303 DOI: 10.1177/1545968317721974] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although global movement abnormalities in the lower extremity poststroke have been studied, the expression of specific motor impairments such as weakness and abnormal muscle and joint torque coupling patterns have received less attention. We characterized changes in strength, muscle coactivation and associated joint torque couples in the paretic and nonparetic extremity of 15 participants with chronic poststroke hemiparesis (age 59.6 ± 15.2 years) compared with 8 age-matched controls. Participants performed isometric maximum torques in hip abduction, adduction, flexion and extension, knee flexion and extension, ankle dorsi- and plantarflexion and submaximal torques in hip extension and ankle plantarflexion. Surface electromyograms (EMGs) of 10 lower extremity muscles were measured. Relative weakness (paretic extremity compared with the nonparetic extremity) was measured in poststroke participants. Differences in EMGs and joint torques associated with maximum voluntary torques were tested using linear mixed effects models. Results indicate significant poststroke torque weakness in all degrees of freedom except hip extension and adduction, adductor coactivation during extensor tasks, in addition to synergistic muscle coactivation patterns. This was more pronounced in the paretic extremity compared with the nonparetic extremity and with controls. Results also indicated significant interjoint torque couples during maximum and submaximal hip extension in both extremities of poststroke participants and in controls only during maximal hip extension. Additionally, significant interjoint torque couples were identified only in the paretic extremity during ankle plantarflexion. A better understanding of these motor impairments is expected to lead to more effective interventions for poststroke gait and posture.
Collapse
|
14
|
Flury N, Koenig I, Radlinger L. Crosstalk considerations in studies evaluating pelvic floor muscles using surface electromyography in women: a scoping review. Arch Gynecol Obstet 2017; 295:799-809. [PMID: 28176015 DOI: 10.1007/s00404-017-4300-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/13/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE Surface electromyography (sEMG) using intravaginal probes is of widespread use for assessing pelvic floor muscles (PFM) activity in women. Although considered as a reliable method, its validity has been called into question due to the presence of a phenomenon called crosstalk. Crosstalk is described as the recording of sEMG activity originating from neighboring muscles rather than coming exclusively from the muscles being investigated. The purpose of this review was to provide an overview of existing literature about crosstalk during intravaginal surface electromyographic recordings. METHODS A scoping review was performed according to the Arksey and O'Malley framework. An electronic search was conducted on six relevant databases. Additionally, authors were directly contacted to identify grey literature. Data extraction consisted of descriptive numeric analysis as well as thematic analysis, which were conducted by two independent reviewers. RESULTS Forty-nine references written by 34 authors coming from 13 different countries constitute the body of evidence of the present review. Eight main themes have been identified through the thematic analysis. The included material varies greatly in terms of methodology, approach to the crosstalk problem and depth of analysis. CONCLUSIONS A gap in knowledge affecting the validity of the current sEMG investigation methods was identified. Literature addressing the crosstalk problem is scarce and often flawed. Definitive conclusions are regularly drawn from an insufficient basis of evidence. Further research is, therefore, deeply necessary, although it remains unclear whether this issue can be solved at all with current technology.
Collapse
Affiliation(s)
- Noémie Flury
- Bern University of Applied Sciences, Bern, Switzerland
| | - Irene Koenig
- Bern University of Applied Sciences, Bern, Switzerland.
| | | |
Collapse
|
15
|
Effect of aging on regional neuromuscular regulation within human rectus femoris muscle during stair ascent and descent. Gait Posture 2017; 52:26-32. [PMID: 27855311 DOI: 10.1016/j.gaitpost.2016.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 02/02/2023]
Abstract
Our recent studies showed the rectus femoris (RF) muscle is regionally regulated during the level walking and this unique neuromuscular activation pattern is influenced by aging (Watanabe et al., 2014, 2016 J Biomech). We aimed to investigate and compare regional neuromuscular activation patterns along the RF muscle between the young and elderly during the stair walking. Fourteen young men (age: 20.4±1.0years) and 14 elderly men (age: 73.8±5.9years) performed the stair ascent and descent. Fifteen trials of three steps were performed for both stair ascent and descent. The spatial distribution of surface electromyography (EMG) within the RF muscle was assessed by central locus activation (CLA), which is calculated from 18 surface electrodes along the longitudinal line of the muscle. CLA was significantly moved along the muscle during the stair ascent and descent in both young and elderly (p<0.05). Significant differences in CLA were showed at the stance phase of the ascent (12.5±0.7 and 11.4±1.7cm from most proximal electrodes for the young and elderly, p<0.05) and at the swing phase of the descent (11.4±1.5 and 10.3±1.5cm from most proximal electrodes for the young and elderly, p<0.05). These results suggest that the regional neuromuscular activation within the RF muscle is affected by aging during the stair walking.
Collapse
|
16
|
Luginbuehl H, Baeyens JP, Kuhn A, Christen R, Oberli B, Eichelberger P, Radlinger L. Pelvic floor muscle reflex activity during coughing - an exploratory and reliability study. Ann Phys Rehabil Med 2016; 59:302-307. [PMID: 27265846 DOI: 10.1016/j.rehab.2016.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/22/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Activities that provoke stress urinary incontinence (SUI) rapidly increase the intra-abdominal pressure and the impact loading on the pelvic floor muscles (PFMs). Coughing can cause urinary leakage and is often used to test SUI. However, PFM characteristics during coughing, including their reliability, have not been investigated. Here, we used electromyography (EMG) to describe PFM pre-activity and reflexivity during coughing and examined the reliability of the measurements. METHODS This was an exploratory and reliability study including 11 young healthy women to characterize EMG reflex activity in PFMs during coughing. We describe 6 variables, averaged over 3 coughs per subject, and tested their reliability (intraclass correlation coefficient 3,1 [ICC(3,1)] and ICC(3,k), related standard error of measurement (SEM) and minimal difference [MD]). The variables represented the mean EMG activity for PFMs during 30-ms time intervals of pre-activity (initial time point of coughing [T0] and minus 30ms) and reflex activity (T0-30, 30-60, 60-90, 90-120 and 120-150ms after T0) of stretch-reflex latency responses. RESULTS The mean %EMG (normalized to maximal voluntary PFM contraction) for EMG variables was 35.1 to 52.2 and was significantly higher during coughing than for PFM activity at rest (mean 24.9±3.7%EMG; P<0.05). ICC(3,k) ranged from 0.67 to 0.91 (SEM 6.1-13.3%EMG and MD 16.7-36.8%EMG) and was higher than ICC(3,1) (range 0.40-0.77; SEM 9.0-18.0%EMG, MD 24.9-50.0%EMG). CONCLUSIONS PFM activity during reflex latency response time intervals during coughing was significantly higher than at rest, which suggests PFM pre-activity and reflex activity during coughing. Although we standardized coughing, EMG variables for PFM activity showed poor reliability [good to excellent ICC(3,k) and fair to excellent ICC(3,1) but high SEM and MD]. Therefore, coughing is expected to be heterogeneous, with low reliability, in clinical test situations. Potential crosstalk from other muscles involved in coughing could limit the interpretation of our results.
Collapse
Affiliation(s)
- Helena Luginbuehl
- Bern University of Applied Sciences, Health, Discipline of Physiotherapy, Murtenstrasse 10, 3008 Bern, Switzerland; Vrije Universiteit Brussel, Faculty of Physical Education and Physiotherapy, Pleinlaan 2, 1050 Elsene, Belgium.
| | - Jean-Pierre Baeyens
- Vrije Universiteit Brussel, Faculty of Physical Education and Physiotherapy, Pleinlaan 2, 1050 Elsene, Belgium
| | - Annette Kuhn
- Department of Gynecology, Division of Urogynecology, Inselspital and University of Bern, Effingerstrasse 102, Switzerland
| | - Regula Christen
- Bern University of Applied Sciences, Health, Discipline of Physiotherapy, Murtenstrasse 10, 3008 Bern, Switzerland
| | - Bettina Oberli
- Bern University of Applied Sciences, Health, Discipline of Physiotherapy, Murtenstrasse 10, 3008 Bern, Switzerland
| | - Patric Eichelberger
- Bern University of Applied Sciences, Health, Discipline of Physiotherapy, Murtenstrasse 10, 3008 Bern, Switzerland
| | - Lorenz Radlinger
- Bern University of Applied Sciences, Health, Discipline of Physiotherapy, Murtenstrasse 10, 3008 Bern, Switzerland
| |
Collapse
|
17
|
Ema R, Sakaguchi M, Akagi R, Kawakami Y. Unique activation of the quadriceps femoris during single- and multi-joint exercises. Eur J Appl Physiol 2016; 116:1031-41. [PMID: 27032805 DOI: 10.1007/s00421-016-3363-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE This study aimed to examine whether muscle activation of the quadriceps femoris differs between single- and multi-joint exercises, and to explore the factors resulting in muscle and exercise specificity in activation. METHODS Eleven adults developed isometric hip extension torque gradually while maintaining submaximal isometric knee extension torque (Experiment 1). In Experiment 2, 15 men performed knee extension and leg press separately at intensities of 20, 40, 60 and 80 % of their one repetition maximum (1RM) load, and 14 men conducted leg press at intensities of 40 and 80 % of 1RM until exhaustion (Experiment 3). Muscle activation during exercises was measured using surface electromyography from the rectus femoris, vastus lateralis and medialis. RESULTS The addition of isometric hip extension torque significantly decreased rectus femoris activation (Experiment 1). In Experiment 2, the rectus femoris activation was significantly higher during knee extension than during leg press, whereas no differences were observed in the vasti. The rectus femoris activation was not significantly different between leg press at 80 % and knee extension at 20 % of 1RM. The results of Experiment 3 showed significant increases in vasti activation at both intensities, whereas rectus femoris activation did not change at 80 % of 1RM. CONCLUSION The results revealed that even at high intensity, the rectus femoris activation during multi-joint exercise is low and does not increase with fatigue, unlike the vasti, and that the inter-muscle and inter-exercise differences in activation depend on whether hip extension torque is exerted in the exercise.
Collapse
Affiliation(s)
- Ryoichi Ema
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, 337-8570, Saitama, Japan. .,Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan.
| | - Masanori Sakaguchi
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama-shi, Saitama, Japan
| | - Yasuo Kawakami
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| |
Collapse
|
18
|
Regional neuromuscular regulation within human rectus femoris muscle during gait in young and elderly men. J Biomech 2016; 49:19-25. [DOI: 10.1016/j.jbiomech.2015.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022]
|
19
|
Di Giminiani R, Masedu F, Padulo J, Tihanyi J, Valenti M. The EMG activity-acceleration relationship to quantify the optimal vibration load when applying synchronous whole-body vibration. J Electromyogr Kinesiol 2015; 25:853-9. [PMID: 26443890 DOI: 10.1016/j.jelekin.2015.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To date are lacking methodological approaches to individualizing whole-body vibration (WBV) intensity. The aim of this study was: (1) to determine the surface-electromyography-root-mean-square (sEMG(RMS))-acceleration load relationship in the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), lateral gastrocnemius (LG) muscles during synchronous WBV, and (2) to assess the reliability of the acceleration corresponding to the maximal sEMG(RMS). METHODS Twenty-five sportsman voluntarily took part in this study with a single-group, repeated-measures design. All subjects postured themselves in an isometric half-squat during nine trials in the following conditions: no vibrations and random vibrations of different acceleration loads (from 0.12 to 5.72 g). RESULTS The sEMG(RMS) were dependent on the acceleration loads in the VL (p = 0.0001), LG (p = 0.0001) and VM (p = 0.011) muscles; while RF was not affected by the acceleration loads (p = 0.508). The comparisons among the sEMG(RMS)-accelerations relationships revealed a significant difference between the LG and the others muscles (p = 0.001). No significant difference was found between the different thigh muscles (p > 0.05). The intra-class correlation coefficient ranged from 0.87 to 0.99 for the measurements performed on the LG, VL and VM. CONCLUSIONS The sEMG(RMS)-acceleration relationship in the VL, VM and LG is a reliable test to individualize the WBV intervention.
Collapse
Affiliation(s)
- Riccardo Di Giminiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy.
| | - Francesco Masedu
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Johnny Padulo
- University eCampus, Novedrate, COMO, Italy; Tunisian Research Laboratory "Sport Performance Optimization" National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Jozsef Tihanyi
- Department of Biomechanics, Faculty of Physical Education and Sport Sciences, Semmelweis University, Budapest, Hungary
| | - Marco Valenti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| |
Collapse
|
20
|
Halski T, Dymarek R, Ptaszkowski K, Słupska L, Rajfur K, Rajfur J, Pasternok M, Smykla A, Taradaj J. Kinesiology Taping does not Modify Electromyographic Activity or Muscle Flexibility of Quadriceps Femoris Muscle: A Randomized, Placebo-Controlled Pilot Study in Healthy Volleyball Players. Med Sci Monit 2015; 21:2232-9. [PMID: 26232122 PMCID: PMC4527115 DOI: 10.12659/msm.894150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Kinesiology taping (KT) is a popular method of supporting professional athletes during sports activities, traumatic injury prevention, and physiotherapeutic procedures after a wide range of musculoskeletal injuries. The effectiveness of KT in muscle strength and motor units recruitment is still uncertain. The objective of this study was to assess the effect of KT on surface electromyographic (sEMG) activity and muscle flexibility of the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles in healthy volleyball players. Material/Methods Twenty-two healthy volleyball players (8 men and 14 women) were included in the study and randomly assigned to 2 comparative groups: “kinesiology taping” (KT; n=12; age: 22.30±1.88 years; BMI: 22.19±4.00 kg/m2) in which KT application over the RF muscle was used, and “placebo taping” (PT; n=10; age: 21.50±2.07 years; BMI: 22.74±2.67 kg/m2) in which adhesive nonelastic tape over the same muscle was used. All subjects were analyzed for resting sEMG activity of the VL and VM muscles, resting and functional sEMG activity of RF muscle, and muscle flexibility of RF muscle. Results No significant differences in muscle flexibility of the RF muscle and sEMG activity of the RF, VL, and VM muscles were registered before and after interventions in both groups, and between the KT and PT groups (p>0.05). Conclusions The results show that application of the KT to the RF muscle is not useful to improve sEMG activity.
Collapse
Affiliation(s)
- Tomasz Halski
- Institute of Physiotherapy, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Robert Dymarek
- Department of Nervous System Diseases, University of Medicine in Wrocław, Wrocław, Poland
| | - Kuba Ptaszkowski
- Department of Gynecology and Obstetrics, University of Medicine in Wrocław, Wrocław, Poland
| | - Lucyna Słupska
- Department of Physiotherapy, University of Medicine in Wrocław, Wrocław, Poland
| | - Katarzyna Rajfur
- Department of Physiotherapy, University of Medicine in Wrocław, Wrocław, Poland
| | - Joanna Rajfur
- Institute of Physiotherapy, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Małgorzata Pasternok
- Institute of Physiotherapy, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Agnieszka Smykla
- Department of Physiotherapy Basics, Academy School of Physical Education in Katowice, Katowice, Poland
| | - Jakub Taradaj
- Department of Physiotherapy Basics, Academy School of Physical Education in Katowice, Katowice, Poland
| |
Collapse
|
21
|
Luginbuehl H, Naeff R, Zahnd A, Baeyens JP, Kuhn A, Radlinger L. Pelvic floor muscle electromyography during different running speeds: an exploratory and reliability study. Arch Gynecol Obstet 2015; 293:117-124. [PMID: 26193953 DOI: 10.1007/s00404-015-3816-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/03/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE Stress urinary incontinence (SUI) affects women of all ages including young athletes, especially those involved in high-impact sports. To date, hardly any studies are available testing pelvic floor muscles (PFM) during sports activities. The aim of this study was the description and reliability test of six PFM electromyography (EMG) variables during three different running speeds. The secondary objective was to evaluate whether there was a speed-dependent difference between the PFM activity variables. METHODS This trial was designed as an exploratory and reliability study including ten young healthy female subjects to characterize PFM pre-activity and reflex activity during running at 7, 9 and 11 km/h. Six variables for each running speed, averaged over ten steps per subject, were presented descriptively, tested regarding their reliability (Friedman, ICC, SEM, MD) and speed difference (Friedman). RESULTS PFM EMG variables varied between 67.6 and 106.1 %EMG, showed no systematic error and were low for SEM and MD using the single value model. Applying the average model over ten steps, ICC (3,k) were >0.75 and SEM and MD about 50 % lower than for the single value model. Activity was found to be highest in 11 km/h. CONCLUSION EMG variables showed excellent ICC and very low SEM and MD. Further studies should investigate inter-session reliability and PFM reactivity patterns of SUI patients using the average over ten steps for each variable as it showed very high ICC and very low SEM and MD. Subsequently, longer running distances and other high-impact sports disciplines could be studied.
Collapse
Affiliation(s)
- Helena Luginbuehl
- Bern University of Applied Sciences, Health, Murtenstrasse 10, 3008, Bern, Switzerland. .,Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050, Ixelles, Belgium.
| | - Rebecca Naeff
- Bern University of Applied Sciences, Health, Murtenstrasse 10, 3008, Bern, Switzerland
| | - Anna Zahnd
- Bern University of Applied Sciences, Health, Murtenstrasse 10, 3008, Bern, Switzerland
| | - Jean-Pierre Baeyens
- Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050, Ixelles, Belgium
| | - Annette Kuhn
- Women's Hospital, Urogynaecology, Bern University Hospital and University of Bern, Effingerstrasse 102, 3010, Bern, Switzerland
| | - Lorenz Radlinger
- Bern University of Applied Sciences, Health, Murtenstrasse 10, 3008, Bern, Switzerland
| |
Collapse
|
22
|
Regional neuromuscular regulation within human rectus femoris muscle during gait. J Biomech 2014; 47:3502-8. [DOI: 10.1016/j.jbiomech.2014.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 11/20/2022]
|
23
|
Breen PP, Nene AV, Grace PA, ÓLaighin G. Fine-wire electromyography response to neuromuscular electrical stimulation in the triceps surae. IEEE Trans Neural Syst Rehabil Eng 2014; 23:244-9. [PMID: 25248190 DOI: 10.1109/tnsre.2014.2357180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuromuscular electrical stimulation (NMES) has previously been used to enhance venous return from the lower leg. By artificially activating lower leg muscles, venous blood may be effectively ejected from the muscle and adjacent veins. It could easily be assumed that combined NMES of the gastrocnemius and soleus would be the most effective single-channel application in this regard, as these muscles represent the largest muscular bulk in the lower leg. However, we have previously reported that soleus stimulation in isolation is substantially more effective. To understand why this is the case, we recorded fine-wire electromyography during NMES of the gastrocnemius and soleus muscles. We found that gastrocnemius and soleus stimulation are effective in eliciting selective stimulation of these muscles. However, combined stimulation of these muscles using a single set of electrodes was only capable in generating ∼ 50% of the response in each muscle, insufficient to generate their theoretical maximum venous return.
Collapse
|
24
|
Watanabe K, Kouzaki M, Moritani T. Non-uniform surface electromyographic responses to change in joint angle within rectus femoris muscle. Muscle Nerve 2014; 50:794-802. [DOI: 10.1002/mus.24232] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Kohei Watanabe
- School of International Liberal Studies, Chukyo University, Nagoya; Yagotohonmachi, Showa-ku Nagoya 466-8666 Japan
| | - Motoki Kouzaki
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University; Kyoto Japan
| | - Toshio Moritani
- Laboratory of Applied Physiology, Graduate School of Human and Environmental Studies, Kyoto University; Kyoto Japan
| |
Collapse
|
25
|
Boudarham J, Roche N, Pradon D, Delouf E, Bensmail D, Zory R. Effects of quadriceps muscle fatigue on stiff-knee gait in patients with hemiparesis. PLoS One 2014; 9:e94138. [PMID: 24718087 PMCID: PMC3981762 DOI: 10.1371/journal.pone.0094138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
The relationship between neuromuscular fatigue and locomotion has never been investigated in hemiparetic patients despite the fact that, in the clinical context, patients report to be more spastic or stiffer after walking a long distance or after a rehabilitation session. The aim of this study was to evaluate the effects of quadriceps muscle fatigue on the biomechanical gait parameters of patients with a stiff-knee gait (SKG). Thirteen patients and eleven healthy controls performed one gait analysis before a protocol of isokinetic quadriceps fatigue and two after (immediately after and after 10 minutes of rest). Spatiotemporal parameters, sagittal knee and hip kinematics, rectus femoris (RF) and vastus lateralis (VL) kinematics and electromyographic (EMG) activity were analyzed. The results showed that quadriceps muscle weakness, produced by repetitive concentric contractions of the knee extensors, induced an improvement of spatiotemporal parameters for patients and healthy subjects. For the patient group, the increase in gait velocity and step length was associated with i) an increase of sagittal hip and knee flexion during the swing phase, ii) an increase of the maximal normalized length of the RF and VL and of the maximal VL lengthening velocity during the pre-swing and swing phases, and iii) a decrease in EMG activity of the RF muscle during the initial pre-swing phase and during the latter 2/3 of the initial swing phase. These results suggest that quadriceps fatigue did not alter the gait of patients with hemiparesis walking with a SKG and that neuromuscular fatigue may play the same functional role as an anti-spastic treatment such as botulinum toxin-A injection. Strength training of knee extensors, although commonly performed in rehabilitation, does not seem to be a priority to improve gait of these patients.
Collapse
Affiliation(s)
- Julien Boudarham
- GRCTH, EA4497, CIC-IT 805, CHU Raymond Poincaré, Garches, France
- * E-mail:
| | - Nicolas Roche
- GRCTH, EA4497, CIC-IT 805, CHU Raymond Poincaré, Garches, France
| | - Didier Pradon
- GRCTH, EA4497, CIC-IT 805, CHU Raymond Poincaré, Garches, France
| | - Eric Delouf
- GRCTH, EA4497, CIC-IT 805, CHU Raymond Poincaré, Garches, France
| | - Djamel Bensmail
- GRCTH, EA4497, CIC-IT 805, CHU Raymond Poincaré, Garches, France
| | - Raphael Zory
- GRCTH, EA4497, CIC-IT 805, CHU Raymond Poincaré, Garches, France
- LAMHESS, EA 6309, University of Nice Sophia Antipolis, Nice, France
| |
Collapse
|
26
|
Comparing surface and indwelling electromyographic signals of the supraspinatus and infraspinatus muscles during submaximal axial humeral rotation. J Electromyogr Kinesiol 2013; 23:1343-9. [DOI: 10.1016/j.jelekin.2013.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/23/2022] Open
|
27
|
Neuromuscular strategies for lumbopelvic control during frontal and sagittal plane movement challenges differ between people with and without low back pain. J Electromyogr Kinesiol 2013; 23:1317-24. [PMID: 24080287 DOI: 10.1016/j.jelekin.2013.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/12/2013] [Accepted: 08/28/2013] [Indexed: 11/22/2022] Open
Abstract
Observation-based assessments of movement are a standard component in clinical assessment of patients with non-specific low back pain. While aberrant motion patterns can be detected visually, clinicians are unable to assess underlying neuromuscular strategies during these tests. The purpose of this study was to compare coordination of the trunk and hip muscles during 2 commonly used assessments for lumbopelvic control in people with low back pain (LBP) and matched control subjects. Electromyography was recorded from hip and trunk muscles of 34 participants (17 with LBP) during performance of the Active Hip Abduction (AHAbd) and Active Straight Leg Raise (ASLR) tests. Relative muscle timing was calculated using cross-correlation. Participants with LBP demonstrated a variable strategy, while control subjects used a consistent proximal to distal activation strategy during both frontal and sagittal plane movements. Findings from this study provide insight into underlying neuromuscular control during commonly used assessment tests for patients with LBP that may help to guide targeted intervention approaches.
Collapse
|
28
|
Wentink EC, Prinsen EC, Rietman JS, Veltink PH. Comparison of muscle activity patterns of transfemoral amputees and control subjects during walking. J Neuroeng Rehabil 2013; 10:87. [PMID: 23914785 PMCID: PMC3750514 DOI: 10.1186/1743-0003-10-87] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 06/14/2013] [Indexed: 11/10/2022] Open
Abstract
Background Only few studies have looked at electromyography (EMG) during prosthetic gait. Differences in EMG between normal and prosthetic gait for stance and swing phase were never separately analyzed. These differences can give valuable information if and how muscle activity changes in prosthetic gait. Methods In this study EMG activity during gait of the upper leg muscles of six transfemoral amputees, measured inside their own socket, was compared to that of five controls. On and off timings for stance and swing phase were determined together with the level of co-activity and inter-subject variability. Results and conclusions Gait phase changes in amputees mainly consisted of an increased double support phase preceding the prosthetic stance phase. For the subsequent (pre) swing phase the main differences were found in muscle activity patterns of the prosthetic limb, more muscles were active during this phase and/or with prolonged duration. The overall inter-subject variability was larger in amputees compared to controls.
Collapse
Affiliation(s)
- Eva C Wentink
- Faculty of Electrical Engineering, Mathematics and Computer Science, Biomedical Signals and Systems group, University of Twente, Drienerlolaan 5, Enschede 7500 AE, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Watanabe K, Kouzaki M, Moritani T. Region-specific myoelectric manifestations of fatigue in human rectus femoris muscle. Muscle Nerve 2013; 48:226-34. [DOI: 10.1002/mus.23739] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Kohei Watanabe
- School of International Liberal Studies; Chukyo University; Yagotohonmachi, Showa-ku Nagoya Japan 466-8666
| | - Motoki Kouzaki
- Laboratory of Neurophysiology; Graduate School of Human and Environmental Studies, Kyoto University; Kyoto Japan
| | - Toshio Moritani
- Laboratory of Applied Physiology; Graduate School of Human and Environmental Studies, Kyoto University; Kyoto Japan
| |
Collapse
|
30
|
Onushko T, Hyngstrom A, Schmit BD. Hip proprioceptors preferentially modulate reflexes of the leg in human spinal cord injury. J Neurophysiol 2013; 110:297-306. [PMID: 23615544 DOI: 10.1152/jn.00261.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stretch-sensitive afferent feedback from hip muscles has been shown to trigger long-lasting, multijoint reflex responses in people with chronic spinal cord injury (SCI). These reflexes could have important implications for control of leg movements during functional activities, such as walking. Because the control of leg movement relies on reflex regulation at all joints of the limb, we sought to determine whether stretch of hip muscles modulates reflex activity at the knee and ankle and, conversely, whether knee and ankle stretch afferents affect hip-triggered reflexes. A custom-built servomotor apparatus was used to stretch the hip muscles in nine chronic SCI subjects by oscillating the legs about the hip joint bilaterally from 10° of extension to 40° flexion. To test whether stretch-related feedback from the knee or ankle would be affected by hip movement, patellar tendon percussions and Achilles tendon vibration were delivered when the hip was either extending or flexing. Surface electromyograms (EMGs) and joint torques were recorded from both legs. Patellar tendon percussions and Achilles tendon vibration both elicited reflex responses local to the knee or ankle, respectively, and did not influence reflex responses observed at the hip. Rather, the movement direction of the hip modulated the reflex responses local to the joint. The patellar tendon reflex amplitude was larger when the perturbation was delivered during hip extension compared with hip flexion. The response to Achilles vibration was modulated by hip movement, with an increased tonic component during hip flexion compared with extension. These results demonstrate that hip-mediated sensory signals modulate activity in distal muscles of the leg and appear to play a unique role in modulation of spastic muscle activity throughout the leg in SCI.
Collapse
Affiliation(s)
- Tanya Onushko
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53201-1881, USA
| | | | | |
Collapse
|
31
|
Watanabe K, Kouzaki M, Moritani T. Task-dependent spatial distribution of neural activation pattern in human rectus femoris muscle. J Electromyogr Kinesiol 2012; 22:251-8. [DOI: 10.1016/j.jelekin.2011.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/06/2011] [Accepted: 11/03/2011] [Indexed: 10/14/2022] Open
|
32
|
Miyamoto N, Wakahara T, Kawakami Y. Task-dependent inhomogeneous muscle activities within the bi-articular human rectus femoris muscle. PLoS One 2012; 7:e34269. [PMID: 22479583 PMCID: PMC3313973 DOI: 10.1371/journal.pone.0034269] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/28/2012] [Indexed: 11/28/2022] Open
Abstract
The motor nerve of the bi-articular rectus femoris muscle is generally split from the femoral nerve trunk into two sub-branches just before it reaches the distal and proximal regions of the muscle. In this study, we examined whether the regional difference in muscle activities exists within the human rectus femoris muscle during maximal voluntary isometric contractions of knee extension and hip flexion. Surface electromyographic signals were recorded from the distal, middle, and proximal regions. In addition, twitch responses were evoked by stimulating the femoral nerve with supramaximal intensity. The root mean square value of electromyographic amplitude during each voluntary task was normalized to the maximal compound muscle action potential amplitude (M-wave) for each region. The electromyographic amplitudes were significantly smaller during hip flexion than during knee extension task for all regions. There was no significant difference in the normalized electromyographic amplitude during knee extension among regions within the rectus femoris muscle, whereas those were significantly smaller in the distal than in the middle and proximal regions during hip flexion task. These results indicate that the bi-articular rectus femoris muscle is differentially controlled along the longitudinal direction and that in particular the distal region of the muscle cannot be fully activated during hip flexion.
Collapse
Affiliation(s)
- Naokazu Miyamoto
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan.
| | | | | |
Collapse
|
33
|
Selvanayagam VS, Riek S, Carroll TJ. A systematic method to quantify the presence of cross-talk in stimulus-evoked EMG responses: Implications for TMS studies. J Appl Physiol (1985) 2012; 112:259-65. [DOI: 10.1152/japplphysiol.00558.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surface electromyography (EMG) responses to noninvasive nerve and brain stimulation are routinely used to provide insight into neural function in humans. However, this could lead to erroneous conclusions if evoked EMG responses contain significant contributions from neighboring muscles (i.e., due to “cross-talk”). We addressed this issue with a simple nerve stimulation method to provide quantitative information regarding the size of EMG cross-talk between muscles of the forearm and hand. Peak to peak amplitude of EMG responses to electrical stimulation of the radial, median, and ulnar nerves (i.e., M-waves) were plotted against stimulation intensity for four wrist muscles and two hand muscles ( n = 12). Since electrical stimulation can selectively activate specific groups of muscles, the method can differentiate between evoked EMG arising from target muscles and EMG cross-talk arising from nontarget muscles. Intramuscular EMG responses to nerve stimulation and root mean square EMG produced during maximal voluntary contractions (MVC) of the wrist were recorded for comparison. Cross-talk was present in evoked surface EMG responses recorded from all nontarget wrist (5.05–39.38% Mmax) and hand muscles (1.50–24.25% Mmax) and to a lesser degree in intramuscular EMG signals (∼3.7% Mmax). The degree of cross-talk was comparable for stimulus-evoked responses and voluntary activity recorded during MVC. Since cross-talk can make a considerable contribution to EMG responses in forearm and hand muscles, care is required to avoid misinterpretation of EMG data. The multiple nerve stimulation method described here can be used to quantify the potential contribution of EMG cross-talk in transcranial magnetic stimulation and reflex studies.
Collapse
Affiliation(s)
- Victor S. Selvanayagam
- School of Human Movement Studies, The University of Queensland, Brisbane, Queensland, Australia; and
- Sports Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Stephan Riek
- School of Human Movement Studies, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Timothy J. Carroll
- School of Human Movement Studies, The University of Queensland, Brisbane, Queensland, Australia; and
| |
Collapse
|
34
|
Waite DL, Brookham RL, Dickerson CR. On the suitability of using surface electrode placements to estimate muscle activity of the rotator cuff as recorded by intramuscular electrodes. J Electromyogr Kinesiol 2010; 20:903-11. [DOI: 10.1016/j.jelekin.2009.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 12/18/2022] Open
|
35
|
Surface electromyography does not accurately reflect rectus femoris activity during gait: impact of speed and crouch on vasti-to-rectus crosstalk. Gait Posture 2010; 32:363-8. [PMID: 20691597 DOI: 10.1016/j.gaitpost.2010.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 06/11/2010] [Accepted: 06/16/2010] [Indexed: 02/02/2023]
Abstract
Surface EMG (sEMG) is routinely used in gait analysis laboratories to record rectus femoris (RF) activity during gait. This is despite the fact that the literature has suggested sEMG may be inaccurate for RF monitoring secondary to its susceptibility to crosstalk from the neighboring vasti. If true, one might expect this error to be exacerbated by crouch gait when vasti demand is elevated. The purpose of this study was to investigate the impact of vasti crosstalk on RF sEMG across a variety of speed (four) and crouch (four) combinations. A group of 20 able-bodied adults were studied walking in 16 different combinations of speed and crouch while computerized gait analysis and EMG data were collected. RF EMG activity was monitored using both surface and fine wire electrodes simultaneously. Results showed that sEMG is affected by vasti crosstalk during substantial portions of both stance and swing. At the two slowest speeds tested, RF was not active at any point during the gait cycle, though sEMG suggested RF activity during some to all of stance phase. Despite sEMG indicating otherwise, true RF did not occur during loading response in any of the 16 conditions tested. During crouch at the two fastest speeds, a burst of true RF activity occurred during a short period of single limb stance, though sEMG incorrectly reflected RF activity throughout stance. Vasti-to-rectus crosstalk also occurred regularly during terminal swing. Surface EMG incorrectly suggests RF activity during portions of both stance and swing secondary to vasti crosstalk. This may lead to interpretation errors which could affect clinical recommendations.
Collapse
|
36
|
Watanabe K, Akima H. Cross-talk from adjacent muscle has a negligible effect on surface electromyographic activity of vastus intermedius muscle during isometric contraction. J Electromyogr Kinesiol 2009; 19:e280-9. [DOI: 10.1016/j.jelekin.2008.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/23/2008] [Accepted: 06/06/2008] [Indexed: 11/26/2022] Open
|
37
|
Relative efficacy of transcranial motor evoked potentials, mechanically-elicited electromyography, and evoked EMG to assess nerve root function during sustained retraction in a porcine model. Spine (Phila Pa 1976) 2009; 34:E558-64. [PMID: 19770598 DOI: 10.1097/brs.0b013e3181aa25a8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This is an animal experiment using transcranial motor evoked potentials (TcMEP), mechanically elicited electromyography (EMG), and evoked EMG during spinal nerve root retraction in a pig model. OBJECTIVE To compare the sensitivity of these 3 electrophysiological measures for a constant retraction force applied to an isolated lumbar nerve root for a specific duration of time. SUMMARY OF BACKGROUND DATA The incidence of nerve root injury during lumbar spine surgery ranges from 0.2% to 31%. Direct retraction of spinal nerve roots may cause these injuries, but the amount and duration of force that may safely be applied is not clear. Using an established porcine model, we examined the changes occurring to multimyotomal TcMEPs, mechanically elicited EMGs, and evoked EMGs during continuous retraction of a nerve root at a constant force applied over 10 minutes. METHODS TcMEP, mechanically elicited EMG, and evoked EMG responses were recorded from the tibialis anterior (TA) muscle in 10 experiments. The dominant root innervating the TA was determined with evoked EMG; preretraction TcMEP and nerve root stimulation threshold (NRT) was obtained. The dominant root was retracted at 2 Newton (N) for 10 minutes. TcMEP trials were elicited every minute during retraction. NRT was measured immediately after retraction. TcMEP and NRT were measured after 10 minutes of recovery. RESULTS.: During the 10 minutes of retraction at 2 N, the amplitude of the TA muscle progressively decreased in all trials in a highly significant curvilinear fashion. The mean TcMEP amplitude decreased 59% +/- 14% from baseline values. The mean NRT after 10 minutes of retraction at 2 N rose to 1.8 +/- 0.7 mA (P < 0.01 vs. baseline). The NRT increase after retraction strongly correlated with the decrease in motor evoked potentials amplitude in the TA (R = 0.90, P < 0.001). EMG activity was variable; tonic EMG was observed in only 2 nerve roots (20%). CONCLUSION Three electrophysiologic methods were used intraoperatively to assess neural function during retraction of a single nerve root. Retraction produced consistent changes in TcMEPs and evoked EMG. These 2 methods show promise for assessing the limits on the force and duration of nerve root retraction during spine surgery. Mechanically elicited EMG was not sensitive to the amount and duration of nerve root retraction.
Collapse
|
38
|
Smith TO, Bowyer D, Dixon J, Stephenson R, Chester R, Donell ST. Can vastus medialis oblique be preferentially activated? A systematic review of electromyographic studies. Physiother Theory Pract 2009; 25:69-98. [DOI: 10.1080/09593980802686953] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
The efficacy of motor evoked potentials in fixed sagittal imbalance deformity correction surgery. Spine (Phila Pa 1976) 2008; 33:E414-24. [PMID: 18520928 DOI: 10.1097/brs.0b013e318175c292] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective analysis of transcranial motor evoked potential (TcMEP) responses and clinical outcome. OBJECTIVE To determine the sensitivity and specificity of TcMEPs to detect and predict isolated nerve root injury in selected patients having complex lumbar spine surgery. SUMMARY OF BACKGROUND DATA The surgical correction of fixed sagittal plane deformity involves posterior-based osteotomies and significant changes in the length of and space for the neural elements. The role of transcranial motor-evoked potential (TcMEP) monitoring in osteotomies below the conus has not been established. The purpose of this paper is to describe the relationship between neural complications from surgery and intraoperative TcMEP changes. METHODS We retrospectively studied 35 consecutive patients in a single center treated with posterior-based osteotomies for the correction of fixed sagittal plane deformity. Transcranial motor-evoked potentials, free-running and evoked electromyography data were assessed for each case. Analysis includes description of the intraoperative changes observed, and a correlation of changes with postoperative clinical findings. RESULTS Thirty-five consecutive patients underwent surgery for fixed sagittal plane deformity with complete neuromonitoring data. Twenty-five patients (71%) had an episode of greater than 80% reduction in MEP amplitude to at least 1 muscle. Fifteen of 25 had improvement of TcMEPs after repositioning of the legs (1), additional surgical decompression (4), or volume and pharmacologic resuscitation (10). All 15 of these awoke with no detectable neurologic injury. Ten patients (29%) had reduced TcMEP signals that did not improve despite further decompression and manipulation of the osteotomy site. All 10 had a greater than 67% drop in TcMEPs for at least 1 muscle persisting at the end of the case, and all had a postoperative neurologic deficit. The TcMEP changes in patients who demonstrated nerve injury postoperatively were observed most often during osteotomy closure or sustained dural retraction. 9 patients had weakness involving the iliopsoas or quadriceps; 1 patient had isolated unilateral dorsiflexion weakness. Monitoring TcMEPs in multiple muscle groups was both highly sensitive and specific for predicting injury. Nine patients had recovered motor function completely by discharge, and all but 1 patient (grade 4/5) had a normal motor examination at 6-week follow-up. CONCLUSION The use of TcMEPs is sensitive and specific to change in neural function. No patients had a false negative test. The rate of neural deficits is consistent with previous literature, suggesting that TcMEP monitoring may not prevent neural injury. However, there were several cases in which intraoperative intervention resulted in recovery of TcMEPs, and none of these patients sustained any postoperative neural deficit. The severity of neural deficits in this series was minor and the duration was limited. TcMEPs may contribute to calling attention to the need for intraoperative corrections including widening decompressions, improving perfusion, and limiting deformity correction so that more severe neural compromise may be prevented.
Collapse
|
40
|
Pulkovski N, Schenk P, Maffiuletti NA, Mannion AF. Tissue Doppler imaging for detecting onset of muscle activity. Muscle Nerve 2008; 37:638-49. [DOI: 10.1002/mus.20996] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Place N, Matkowski B, Martin A, Lepers R. Synergists activation pattern of the quadriceps muscle differs when performing sustained isometric contractions with different EMG biofeedback. Exp Brain Res 2006; 174:595-603. [PMID: 16708243 DOI: 10.1007/s00221-006-0504-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 04/08/2006] [Indexed: 10/24/2022]
Abstract
The aims of the present study were to examine (1) endurance time and (2) activation pattern of vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) muscles during fatiguing isometric knee extensions performed with different EMG biofeedbacks. Thirteen men (27 +/- 5 year) volunteered to participate in three experimental sessions. Each session involved a submaximal isometric contraction held until failure at an EMG level corresponding to 40% maximal voluntary contraction torque (MVC), with visual EMG biofeedback provided for either (1) RF muscle (RF task), (2) VL and VM muscles (Vasti task) or (3) the sum of the VL, VM and RF muscles (Quadriceps task). EMG activity of VL, VM and RF muscles was recorded during each of the three tasks and further analyzed. Time to task failures and MVC loss (P < 0.001) after exercises were similar (P > 0.05) between the three sessions (182 s and approximately 28%, respectively) (P > 0.05). Moreover, the magnitude of central and peripheral fatigue was not different at failure of the three tasks. Activation pattern was similar for knee extensors at the beginning of each task (P > 0.05). However, RF EMG activity decreased (P < 0.05) during the Vasti and the Quadriceps tasks (from approximately 33 to approximately 25% maximal EMG), whereas vasti EMG activity remained constant during the RF task ( approximately 41% maximal EMG). These findings suggest that (1) task failure occurs when sustaining a submaximal level of EMG activity for as long as possible and (2) CNS is not able to differentiate descending drive to the different heads of the quadriceps at the beginning of a sustained contraction, despite a different activation pattern for the bi-articular RF muscle compared to the mono-articular vasti muscles during fatigue.
Collapse
Affiliation(s)
- Nicolas Place
- INSERM ERM 207 Motricité Plasticité, Faculté des Sciences du Sport, Université de Bourgogne, Dijon Cedex, France.
| | | | | | | |
Collapse
|