1
|
Slater AM, Barclay SJ, Granfar RMS, Pratt RL. Fascia as a regulatory system in health and disease. Front Neurol 2024; 15:1458385. [PMID: 39188704 PMCID: PMC11346343 DOI: 10.3389/fneur.2024.1458385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Neurology and connective tissue are intimately interdependent systems and are critical in regulating many of the body's systems. Unlocking their multifaceted relationship can transform clinical understanding of the mechanisms involved in multisystemic regulation and dysregulation. The fascial system is highly innervated and rich with blood vessels, lymphatics, and hormonal and neurotransmitter receptors. Given its ubiquity, fascia may serve as a "watchman," receiving and processing information on whole body health. This paper reviews what constitutes fascia, why it is clinically important, and its contiguous and interdependent relationship with the nervous system. Unquestionably, fascial integrity is paramount to human locomotion, interaction with our environment, bodily sense, and general physical and emotional wellbeing, so an understanding of the fascial dysregulation that defines a range of pathological states, including hypermobility syndromes, autonomic dysregulation, mast cell activation, and acquired connective tissue disorders is critical in ensuring recognition, research, and appropriate management of these conditions, to the satisfaction of the patient as well as the treating practitioner.
Collapse
Affiliation(s)
- Alison M. Slater
- School of Population Health, The University of New South Wales, Sydney, NSW, Australia
| | - S. Jade Barclay
- Neuromuscular Imaging Research Lab, The Kolling Institute, St Leonards, NSW, Australia
- Hypermobility and Performance Lab, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Rouha M. S. Granfar
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Rebecca L. Pratt
- Department of Foundational Medical Studies, William Beaumont School of Medicine, Rochester, MI, United States
| |
Collapse
|
2
|
Pirri C, Petrelli L, Guidolin D, Porzionato A, Fede C, Macchi V, De Caro R, Stecco C. Myofascial junction: Emerging insights into the connection between deep/muscular fascia and muscle. Clin Anat 2024; 37:534-545. [PMID: 38476005 DOI: 10.1002/ca.24148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Muscles and fasciae are mutually connected and are influenced by force transmission. However, the anatomical connectivity and histological features of these structures remain unclear. The aim of this study was to assess the evidence for connection between muscles and deep/muscular fasciae. We assessed this relationship in different topographical regions of human cadavers and in mice. The results showed that myofascial junctions (MFJ) were made up of collagen I immune-positive structures occupying an average area of 5.11 ± 0.81 μm2, distributed in discrete regions at the interface between muscle and fascia with an average density of 9.7 ± 2.51 MFJ/mm and an average inclination angle of 35.25 ± 1.52°. These specialized structures also showed collagen III and HA immunopositivity and the presence of elastic fibers. The human myofascial junction can be visualized, opening emerging insights into the connection between deep/muscular fascia and muscle.
Collapse
Affiliation(s)
- Carmelo Pirri
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Lucia Petrelli
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Diego Guidolin
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Caterina Fede
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Veronica Macchi
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Carla Stecco
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| |
Collapse
|
3
|
Wang H, Liu Y, Xu S, Wang T, Chen X, Jia H, Dong Q, Zhang H, Wang S, Ma H, Hou Z. Proteomics analysis of deep fascia in acute compartment syndrome. PLoS One 2024; 19:e0305275. [PMID: 38950026 PMCID: PMC11216580 DOI: 10.1371/journal.pone.0305275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Acute compartment syndrome (ACS) is a syndrome in which local circulation is affected due to increased pressure within the compartment. We previously found in patients with calf fractures, the pressure of fascial compartment could be sharply reduced upon the appearance of tension blisters. Deep fascia, as the important structure for compartment, might play key role in this process. Therefore, the aim of the present study was to examine the differences in gene profile in deep fascia tissue in fracture patients of the calf with or without tension blisters, and to explore the role of fascia in pressure improvement in ACS. Patients with lower leg fracture were enrolled and divided into control group (CON group, n = 10) without tension blister, and tension blister group (TB group, n = 10). Deep fascia tissues were collected and LC-MS/MS label-free quantitative proteomics were performed. Genes involved in fascia structure and fibroblast function were further validated by Western blot. The differentially expressed proteins were found to be mainly enriched in pathways related to protein synthesis and processing, stress fiber assembly, cell-substrate adhesion, leukocyte mediated cytotoxicity, and cellular response to stress. Compared with the CON group, the expression of Peroxidasin homolog (PXDN), which promotes the function of fibroblasts, and Leukocyte differentiation antigen 74 (CD74), which enhances the proliferation of fibroblasts, were significantly upregulated (p all <0.05), while the expression of Matrix metalloproteinase-9 (MMP9), which is involved in collagen hydrolysis, and Neutrophil elastase (ELANE), which is involved in elastin hydrolysis, were significantly reduced in the TB group (p all <0.05), indicating fascia tissue underwent microenvironment reconstruction during ACS. In summary, the ACS accompanied by blisters is associated with the enhanced function and proliferation of fibroblasts and reduced hydrolysis of collagen and elastin. The adaptive alterations in the stiffness and elasticity of the deep fascia might be crucial for pressure release of ACS.
Collapse
Affiliation(s)
- Haofei Wang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei Province, China
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Yan Liu
- Department of Endocrinology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Sujuan Xu
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei Province, China
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Tao Wang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei Province, China
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Xiaojun Chen
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei Province, China
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Huiyang Jia
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei Province, China
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Qi Dong
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei Province, China
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Heng Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei Province, China
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Shuai Wang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei Province, China
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei Province, China
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei Province, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
4
|
Kim JH, Murakami G, Rodríguez-Vázquez JF, Sekiya R, Yang T, Abe SI. Insertions of the striated muscles in the skin and mucosa: a histological study of fetuses and cadavers. Anat Cell Biol 2024; 57:278-287. [PMID: 38720632 PMCID: PMC11184418 DOI: 10.5115/acb.24.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 04/06/2024] [Indexed: 06/14/2024] Open
Abstract
Striated muscle insertions into the skin and mucosa are present in the head, neck, and pelvic floor. We reexamined the histology of these tissues to elucidate their role in transmission of the force. We examined histological sections of 25 human fetuses (gestational ages of ~11-19 weeks and ~26-40 weeks) and 6 cadavers of elderly individuals. Facial muscle insertion or terminal almost always formed as an interdigitation with another muscle or as a circular arrangement in which muscle fiber insertions were sandwiched and mechanically supported by other muscle fibers (like an in-series muscle). Our examination of the face revealed some limited exceptions in which muscle fibers that approached the dermis were always in the nasalis and mentalis muscles, and often in the levator labii superioris alaeque nasi muscle. The buccinator muscle was consistently inserted into the basement membrane of the oral mucosa. Parts of the uvulae muscle in the soft palate and of the intrinsic vertical muscle of the tongue were likely to direct toward the mucosa. In contrast, the pelvic floor did not contain striated muscle fibers that were directed toward the skin or mucosa. Although 'cutaneous muscle' is a common term, the actual insertion of a muscle into the skin or mucosa seemed to be very rare. Instead, superficial muscle insertion often consisted of interdigitated muscle bundles that had different functional vectors. In this case, the terminal of one muscle bundle was sandwiched and fixed mechanically by other bundles.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Korea
| | - Gen Murakami
- Division of Internal Medicine, Iwamizawa Aska Hospital, Iwamizawa, Japan
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | | | - Ryo Sekiya
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Tianyi Yang
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Sin-ichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
5
|
Kellis E, Kekelekis A, Drakonaki EE. Is thoracolumbar fascia shear-wave modulus affected by active and passive knee flexion? J Anat 2024; 244:438-447. [PMID: 37965913 PMCID: PMC10862179 DOI: 10.1111/joa.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
The purpose of this study was to examine the effect of passive and active knee flexion efforts on the stiffness of the thoracolumbar (TLF), semitendinosus (STF), and semimembranosus fascia (SMF). Fourteen young healthy males participated in this study. Using ultrasound shear-wave elastography, fascia elastic modulus was measured at rest (passive condition) and during submaximal isometric knee flexion efforts (active condition) with the hip at neutral position and the knee flexed at 0°, 45°, and 90°. Analysis of variance designs indicated that when the knee was passively extended from 90° to 0°, shear modulus of the TLF, SMF, and STF increased significantly (p < 0.05). Similarly, active knee flexion contractions caused a significant increase in TLF, SMF, and STF shear modulus (p < 0.001). Compared to hamstring fascia, the TLF showed greater thickness but a lower shear modulus (p < 0.05) while STF modulus was greater compared that to SMF during active contraction (p < 0.05). These results indicate that exercising the hamstring muscles can remotely influence the stiffness of the fascia which surrounds the lumbar area.
Collapse
Affiliation(s)
- Eleftherios Kellis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at SerresAristotle University of ThessalonikiSerresGreece
| | - Afxentios Kekelekis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at SerresAristotle University of ThessalonikiSerresGreece
| | - Eleni E. Drakonaki
- Department of Anatomy, Medical SchoolUniversity of CreteHeraklionCreteGreece
| |
Collapse
|
6
|
Horner AM, Azizi E, Roberts TJ. The interaction of in vivo muscle operating lengths and passive stiffness in rat hindlimbs. J Exp Biol 2024; 227:jeb246280. [PMID: 38353270 PMCID: PMC10984277 DOI: 10.1242/jeb.246280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
The operating length of a muscle is a key determinant of its ability to produce force in vivo. Muscles that operate near the peak of their force-length relationship will generate higher forces whereas muscle operating at relatively short length may be safe from sudden lengthening perturbations and subsequent damage. At longer lengths, passive mechanical properties have the potential to contribute to force or constrain operating length with stiffer muscle-tendon units theoretically being restricted to shorter lengths. Connective tissues typically increase in density during aging, thus increasing passive muscle stiffness and potentially limiting the operating lengths of muscle during locomotion. Here, we compare in vivo and in situ muscle strain from the medial gastrocnemius in young (7 months old) and aged (30-32 months old) rats presumed to have varying passive tissue stiffness to test the hypothesis that stiffer muscles operate at shorter lengths relative to their force-length relationship. We measured in vivo muscle operating length during voluntary locomotion on inclines and flat trackways and characterized the muscle force-length relationship of the medial gastrocnemius using fluoromicrometry. Although no age-related results were evident, rats of both age groups demonstrated a clear relationship between passive stiffness and in vivo operating length, such that shorter operating lengths were significantly correlated with greater passive stiffness. Our results suggest that increased passive stiffness may restrict muscles to operating lengths shorter than optimal lengths, potentially limiting force capacity during locomotion.
Collapse
Affiliation(s)
- Angela M. Horner
- Department of Biology, California State University, San Bernardino, CA 92407, USA
| | - Emanuel Azizi
- School of Biological Sciences, Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Thomas J. Roberts
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
7
|
Stecco A, Giordani F, Fede C, Pirri C, De Caro R, Stecco C. From Muscle to the Myofascial Unit: Current Evidence and Future Perspectives. Int J Mol Sci 2023; 24:ijms24054527. [PMID: 36901958 PMCID: PMC10002604 DOI: 10.3390/ijms24054527] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The "motor unit" or the "muscle" has long been considered the quantal element in the control of movement. However, in recent years new research has proved the strong interaction between muscle fibers and intramuscular connective tissue, and between muscles and fasciae, suggesting that the muscles can no longer be considered the only elements that organize movement. In addition, innervation and vascularization of muscle is strongly connected with intramuscular connective tissue. This awareness induced Luigi Stecco, in 2002, to create a new term, the "myofascial unit", to describe the bilateral dependent relationship, both anatomical and functional, that occurs between fascia, muscle and accessory elements. The aim of this narrative review is to understand the scientific support for this new term, and whether it is actually correct to consider the myofascial unit the physiological basic element for peripheral motor control.
Collapse
Affiliation(s)
- Antonio Stecco
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Federico Giordani
- Department of Rehabilitation Medicine, Padova University, 35141 Padova, Italy
| | - Caterina Fede
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35141 Padova, Italy
| | - Carmelo Pirri
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35141 Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35141 Padova, Italy
| | - Carla Stecco
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35141 Padova, Italy
- Correspondence: ; Tel.: +39-04-9827-2315
| |
Collapse
|
8
|
Effat KG. A clinical study on the incidence of internal derangement of the temporomandibular joint following harvesting of temporalis fascia. Cranio 2022:1-8. [PMID: 35514168 DOI: 10.1080/08869634.2022.2072452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The aim of the current clinical study was to reveal whether harvesting of a temporalis fascia graft would be associated with a higher incidence of temporomandibular joint (TMJ) internal derangement. METHODS The study group involved 104 patients who had middle-ear operations, 67 of which involved harvesting of temporalis fascia and 37 that did not. The TMJs were clinically examined in each group. RESULTS The total incidence of internal derangement of the TMJ was significantly higher in the group that had temporalis fascia harvesting (79.1%), compared to the group that did not have temporalis fascia harvesting (29.7%), (p= 0.001). CONCLUSION Harvesting of temporalis fascia probably alters mandibular kinematics and predisposes to internal derangement of the TMJs.
Collapse
Affiliation(s)
- Kamal G Effat
- Department of Otolaryngology, El- Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
9
|
Cabanas-Valdés R, Toro-Coll MD, Cruz-Sicilia S, García-Rueda L, Rodríguez-Rubio PR, Calvo-Sanz J. The Immediate Effect of Informational Manual Therapy for Improving Quiet Standing and Bodily Pain in University Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094940. [PMID: 34066393 PMCID: PMC8124965 DOI: 10.3390/ijerph18094940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/25/2022]
Abstract
Background: The Informational Manual Therapy (IMT) is a therapeutic touch. This study aims to assess the effect of IMT on quiet standing, pain and health status in university population. Methods: An experiment was conducted on subjects utilizing a comparative paired analysis both before and after the intervention. One IMT session was performed on 57 healthy individuals aged from 18 to 65 years. The primary outcome was quiet standing assessed by the Satel 40 Hz stabilometric force platform. Secondary outcomes were bodily pain assessed by the 36-Item Short Form Survey (SF-36) and health status by EQ-5D-3L. The primary outcome was evaluated before and immediately after treatment. Results: The individuals were divided into 3 age groups, 18–35 (52.6%), 35–50 (29.8%) and 51–65 (17.6%). Statistically significant differences were immediately observed after the session ended when comparing the pre-post quiet stance scores in a number of length parameters: L, Lx, Ly and stabilometry amplitude on Y-axis with eyes open and closed. Significant differences were also found when testing bodily pain (SF-36) and anxiety (5Q-5D-3L). Conclusion: One session of IMT produced positive effects when testing quiet standing with eyes open and eyes closed, as well as a significant reduction in pain and anxiety for those tested. Further research is suggested.
Collapse
Affiliation(s)
- Rosa Cabanas-Valdés
- Physiotherapy Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallés, Spain; (M.D.T.-C.); (L.G.-R.); (P.R.R.-R.)
- Correspondence:
| | - Mª Dolores Toro-Coll
- Physiotherapy Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallés, Spain; (M.D.T.-C.); (L.G.-R.); (P.R.R.-R.)
| | | | - Laura García-Rueda
- Physiotherapy Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallés, Spain; (M.D.T.-C.); (L.G.-R.); (P.R.R.-R.)
| | - Pere Ramón Rodríguez-Rubio
- Physiotherapy Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallés, Spain; (M.D.T.-C.); (L.G.-R.); (P.R.R.-R.)
| | - Jordi Calvo-Sanz
- Physiotherapy Department, School of Health Sciences, Tecno Campus, Mataró-Pompeu Fabra University (TCM-UPF), 08302 Barcelona, Spain;
- Hospital Asepeyo Sant Cugat del Vallès, 08174 Barcelona, Spain
| |
Collapse
|
10
|
Shan X, Otsuka S, Li L, Kawakami Y. Inhomogeneous and anisotropic mechanical properties of the triceps surae muscles and aponeuroses in vivo during submaximal muscle contraction. J Biomech 2021; 121:110396. [PMID: 33836425 DOI: 10.1016/j.jbiomech.2021.110396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to identify characteristics of the triceps surae muscles and aponeuroses stiffness in vivo, during graded isometric submaximal plantarflexion efforts. A total of twelve healthy male subjects (age: 27 ± 4 years) participated and were required to stay at rest (0% MVC) and perform isometric submaximal plantar flexion contractions (20%, 40%, 60% of MVC) on a dynamometer. Young's modulus of triceps surae muscles and the adjoining aponeuroses between gastrocnemii and soleus at the proximal and distal sites were obtained in the longitudinal direction (along muscle's line of action) during at rest and submaximal plantar flexions. Additionally, Young's modulus of adjoining aponeuroses in the transverse direction at the distal sites was also calculated. Young's modulus of LG (lateral gastrocnemius), SOL-lat (lateral part of soleus) and LPS (superficial aponeurosis of LG) at the proximal site showed significant (p < 0.001) graded increase response to the submaximal contraction levels. Besides, in the lateral side, significant differences in the Young's modulus of aponeuroses were observed between longitudinal and transverse directions at rest and during contractions (p < 0.002). Changes of aponeuroses length were significantly correlated with Young's modulus changes of the proximal gastrocnemii muscle bellies (r = 0.43-0.45, p = 0.006-0.008) and superficial aponeuroses (r = 0.49-0.60, p < 0.002). The results further indicate that the triceps surae muscles and aponeuroses showed inhomogeneous and anisotropic mechanical properties during submaximal muscle contractions, and the stiffening effect of muscle belly possibly make influence on the mechanical properties of aponeuroses during muscle contractions, especially for the lateral gastrocnemius.
Collapse
Affiliation(s)
- Xiyao Shan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Shun Otsuka
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan; Department of Anatomy, Aichi Medical University, Nagakute, Japan
| | - Le Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yasuo Kawakami
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.
| |
Collapse
|
11
|
Behm DG, Alizadeh S, Drury B, Granacher U, Moran J. Non-local acute stretching effects on strength performance in healthy young adults. Eur J Appl Physiol 2021; 121:1517-1529. [PMID: 33715049 DOI: 10.1007/s00421-021-04657-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Static stretching (SS) can impair performance and increase range of motion of a non-exercised or non-stretched muscle, respectively. An underdeveloped research area is the effect of unilateral stretching on non-local force output. OBJECTIVE The objective of this review was to describe the effects of unilateral SS on contralateral, non-stretched, muscle force and identify gaps in the literature. METHODS A systematic literature search following preferred reporting items for systematic review and meta-analyses Protocols guidelines was performed according to prescribed inclusion and exclusion criteria. Weighted means and ranges highlighted the non-local force output response to unilateral stretching. The physiotherapy evidence database scale was used to assess study risk of bias and methodological quality. RESULTS Unilateral stretching protocols from six studies involved 6.3 ± 2 repetitions of 36.3 ± 7.4 s with 19.3 ± 5.7 s recovery between stretches. The mean stretch-induced force deficits exhibited small magnitude effect sizes for both the stretched (-6.7 ± 7.1%, d = -0.35: 0.01 to -1.8) and contralateral, non-stretched, muscles (-4.0 ± 4.9%, d = , 0.22: 0.08 to 1.1). Control measures exhibited trivial deficits. CONCLUSION The limited literature examining non-local effects of prolonged SS revealed that both the stretched and contralateral, non-stretched, limbs of young adults demonstrate small magnitude force deficits. However, the frequency of studies with these effects were similar with three measures demonstrating deficits, and four measures showing trivial changes. These results highlight the possible global (non-local) effects of prolonged SS. Further research should investigate effects of lower intensity stretching, upper versus lower body stretching, different age groups, incorporate full warm-ups, and identify predominant mechanisms among others.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's,, Newfoundland and Labrador, Canada.
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's,, Newfoundland and Labrador, Canada
| | - Ben Drury
- Department of Applied Sport Sciences, Hartpury University, Gloucester, UK
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK
| |
Collapse
|
12
|
Behm DG, Alizadeh S, Anvar SH, Drury B, Granacher U, Moran J. Non-local Acute Passive Stretching Effects on Range of Motion in Healthy Adults: A Systematic Review with Meta-analysis. Sports Med 2021; 51:945-959. [PMID: 33459990 DOI: 10.1007/s40279-020-01422-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Stretching a muscle not only increases the extensibility or range of motion (ROM) of the stretched muscle or joint but there is growing evidence of increased ROM of contralateral and other non-local muscles and joints. OBJECTIVE The objective of this meta-analysis was to quantify crossover or non-local changes in passive ROM following an acute bout of unilateral stretching and to examine potential dose-response relations. METHODS Eleven studies involving 14 independent measures met the inclusion criteria. The meta-analysis included moderating variables such as sex, trained state, stretching intensity and duration. RESULTS The analysis revealed that unilateral passive static stretching induced moderate magnitude (standard mean difference within studies: SMD: 0.86) increases in passive ROM with non-local, non-stretched joints. Moderating variables such as sex, trained state, stretching intensity, and duration did not moderate the results. Although stretching duration did not present statistically significant differences, greater than 240-s of stretching (SMD: 1.24) exhibited large magnitude increases in non-local ROM compared to moderate magnitude improvements with shorter (< 120-s: SMD: 0.72) durations of stretching. CONCLUSION Passive static stretching of one muscle group can induce moderate magnitude, global increases in ROM. Stretching durations greater than 240 s may have larger effects compared with shorter stretching durations.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.,Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Ben Drury
- Department of Applied Sport Sciences, Hartpury University, Hartpury, UK
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK.
| |
Collapse
|
13
|
Mechanisms underlying performance impairments following prolonged static stretching without a comprehensive warm-up. Eur J Appl Physiol 2020; 121:67-94. [PMID: 33175242 DOI: 10.1007/s00421-020-04538-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/21/2020] [Indexed: 01/28/2023]
Abstract
Whereas a variety of pre-exercise activities have been incorporated as part of a "warm-up" prior to work, combat, and athletic activities for millennia, the inclusion of static stretching (SS) within a warm-up has lost favor in the last 25 years. Research emphasized the possibility of SS-induced impairments in subsequent performance following prolonged stretching without proper dynamic warm-up activities. Proposed mechanisms underlying stretch-induced deficits include both neural (i.e., decreased voluntary activation, persistent inward current effects on motoneuron excitability) and morphological (i.e., changes in the force-length relationship, decreased Ca2+ sensitivity, alterations in parallel elastic component) factors. Psychological influences such as a mental energy deficit and nocebo effects could also adversely affect performance. However, significant practical limitations exist within published studies, e.g., long-stretching durations, stretching exercises with little task specificity, lack of warm-up before/after stretching, testing performed immediately after stretch completion, and risk of investigator and participant bias. Recent research indicates that appropriate durations of static stretching performed within a full warm-up (i.e., aerobic activities before and task-specific dynamic stretching and intense physical activities after SS) have trivial effects on subsequent performance with some evidence of improved force output at longer muscle lengths. For conditions in which muscular force production is compromised by stretching, knowledge of the underlying mechanisms would aid development of mitigation strategies. However, these mechanisms are yet to be perfectly defined. More information is needed to better understand both the warm-up components and mechanisms that contribute to performance enhancements or impairments when SS is incorporated within a pre-activity warm-up.
Collapse
|
14
|
Abraham A, Franklin E, Stecco C, Schleip R. Integrating mental imagery and fascial tissue: A conceptualization for research into movement and cognition. Complement Ther Clin Pract 2020; 40:101193. [PMID: 32891273 DOI: 10.1016/j.ctcp.2020.101193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022]
Abstract
Mental imagery (MI) research has mainly focused to date on mechanisms of effect and performance gains associated with muscle and neural tissues. MI's potential to affect fascia has rarely been considered. This paper conceptualizes ways in which MI might mutually interact with fascial tissue to support performance and cognitive functions. Such ways acknowledge, among others, MI's positive effect on proprioception, body schema, and pain. Drawing on cellular, physiological, and functional similarities and associations between muscle and fascial tissues, we propose that MI has the potential to affect and be affected by fascial tissue. We suggest that fascia-targeted MI (fascial mental imagery; FMI) can therefore be a useful approach for scientific as well as clinical purposes. We use the example of fascial dynamic neuro-cognitive imagery (FDNI) as a codified FMI method available for scientific and therapeutic explorations into rehabilitation and prevention of fascia-related disabling conditions.
Collapse
Affiliation(s)
- Amit Abraham
- Department of Kinesiology, College of Education, The University of Georgia, Athens, GA, USA. 330 River Road, Athens, 30602, GA, USA; Department of Medicine, Division of General Medicine and Geriatrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric Franklin
- The International Institute for Franklin Method, Hitnauerstrasse 40 CH-8623 Wetzikon, Zurich, Switzerland.
| | - Carla Stecco
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Via Giustiniani, 5 - 35128, Padova, Italy.
| | - Robert Schleip
- Department of Sport and Health Sciences, Technical University of Munich, Germany. Georg-Brauchle-Ring 60/62, 80802, Muenchen, Germany; Department of Sports Medicine and Health Promotion, Friedrich Schiller University Jena, Jena, Germany; Fascia Research Group, Ulm University, Experimental Anesthesiology, Ulm, Germany.
| |
Collapse
|
15
|
Dependence of muscle and deep fascia stiffness on the contraction levels of the quadriceps: An in vivo supersonic shear-imaging study. J Electromyogr Kinesiol 2019; 45:33-40. [DOI: 10.1016/j.jelekin.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
|
16
|
Bordoni B, Marelli F, Morabito B, Castagna R. A New Concept of Biotensegrity Incorporating Liquid Tissues: Blood and Lymph. J Evid Based Integr Med 2018; 23:2515690X18792838. [PMID: 30124054 PMCID: PMC6102753 DOI: 10.1177/2515690x18792838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The definition of fascia includes tissues of mesodermal derivation, considered as
specialized connective tissue: blood and lymph. As water shapes rocks, bodily fluids
modify shapes and functions of bodily structures. Bodily fluids are silent witnesses of
the mechanotransductive information, allowing adaptation and life, transporting
biochemical and hormonal signals. While the solid fascial tissue divides, supports, and
connects the different parts of the body system, the liquid fascial tissue feeds and
transports messages for the solid fascia. The focus of this article is to reconsider the
model of biotensegrity because it does not take into account the liquid fascia, and to try
to integrate the fascial continuum with the lymph and the blood in a new model. The name
given to this new model is RAIN—Rapid Adaptability of Internal Network.
Collapse
Affiliation(s)
- Bruno Bordoni
- 1 Institute of Hospitalization and Care with Scientific Address, Foundation Don Carlo Gnocchi IRCCS, Milan, Italy.,2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy.,3 CRESO, School of Osteopathic Centre for Research and Studies, Via Fanella, Fano (Pesaro Urbino), Italy
| | - Fabiola Marelli
- 2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy.,3 CRESO, School of Osteopathic Centre for Research and Studies, Via Fanella, Fano (Pesaro Urbino), Italy
| | - Bruno Morabito
- 2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy.,3 CRESO, School of Osteopathic Centre for Research and Studies, Via Fanella, Fano (Pesaro Urbino), Italy
| | - Roberto Castagna
- 2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy
| |
Collapse
|
17
|
McLoon LK, Vicente A, Fitzpatrick KR, Lindström M, Pedrosa Domellöf F. Composition, Architecture, and Functional Implications of the Connective Tissue Network of the Extraocular Muscles. Invest Ophthalmol Vis Sci 2018; 59:322-329. [PMID: 29346490 PMCID: PMC5773232 DOI: 10.1167/iovs.17-23003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose We examined the pattern and extent of connective tissue distribution in the extraocular muscles (EOMs) and determined the ability of the interconnected connective tissues to disseminate force laterally. Methods Human EOMs were examined for collagens I, III, IV, and VI; fibronectin; laminin; and elastin using immunohistochemistry. Connective tissue distribution was examined with scanning electron microscopy. Rabbit EOMs were examined for levels of force transmission longitudinally and transversely using in vitro force assessment. Results Collagens I, III, and VI localized to the endomysium, perimysium, and epimysium. Collagen IV, fibronectin, and laminin localized to the basal lamina surrounding all myofibers. All collagens localized similarly in the orbital and global layers throughout the muscle length. Elastin had the most irregular pattern and ran longitudinally and circumferentially throughout the length of all EOMs. Scanning electron microscopy showed these elements to be extensively interconnected, from endomysium through the perimysium to the epimysium surrounding the whole muscle. In vitro physiology demonstrated force generation in the lateral dimension, presumably through myofascial transmission, which was always proportional to the force generated in the longitudinally oriented muscles. Conclusions A striking connective tissue matrix interconnects all the myofibers and extends, via perimysial connections, to the epimysium. These interconnections are significant and allow measurable force transmission laterally as well as longitudinally, suggesting that they may contribute to the nonlinear force summation seen in motor unit recording studies. This provides strong evidence that separate compartmental movements are unlikely as no region is independent of the rest of the muscle.
Collapse
Affiliation(s)
- Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - André Vicente
- Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
| | - Krysta R Fitzpatrick
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mona Lindström
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Fatima Pedrosa Domellöf
- Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Mechanical interaction between neighboring muscles in human upper limb: Evidence for epimuscular myofascial force transmission in humans. J Biomech 2018; 74:150-155. [DOI: 10.1016/j.jbiomech.2018.04.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 11/23/2022]
|
19
|
Effects of antagonistic and synergistic muscles’ co-activation on mechanics of activated spastic semitendinosus in children with cerebral palsy. Hum Mov Sci 2018; 57:103-110. [DOI: 10.1016/j.humov.2017.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 11/13/2017] [Accepted: 11/26/2017] [Indexed: 01/09/2023]
|
20
|
Passive stiffness of monoarticular lower leg muscles is influenced by knee joint angle. Eur J Appl Physiol 2018; 118:585-593. [DOI: 10.1007/s00421-018-3798-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
|
21
|
Wilke J, Schleip R, Yucesoy CA, Banzer W. Not merely a protective packing organ? A review of fascia and its force transmission capacity. J Appl Physiol (1985) 2018; 124:234-244. [DOI: 10.1152/japplphysiol.00565.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent research indicates that fascia is capable of changing its biomechanical properties. Moreover, as it links the skeletal muscles, forming a body-wide network of multidirectional myofascial continuity, the classical conception of muscles as independent actuators has been challenged. Hence, the present synthesis review aims to characterize the mechanical relevance of the connective tissue for the locomotor system. Results of cadaveric and animal studies suggest a clinically relevant myofascial force transmission to neighboring structures within one limb (e.g., between synergists) and in the course of muscle-fascia chains (e.g., between leg and trunk). Initial in vivo trials appear to underpin these findings, demonstrating the existence of nonlocal exercise effects. However, the factors influencing the amount of transmitted force (e.g., age and physical activity) remain controversial, as well as the role of the central nervous system within the context of the observed remote exercise effects.
Collapse
Affiliation(s)
- Jan Wilke
- Department of Sports Medicine, Goethe University, Frankfurt am Main, Germany
| | - Robert Schleip
- Fascia Research Group, Neurosurgical Clinic Guenzburg of Ulm University, Ulm, Germany
| | - Can A. Yucesoy
- Institute of Biomedical Engineering, Bogazici University, Instanbul, Turkey
| | - Winfried Banzer
- Department of Sports Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Karakuzu A, Pamuk U, Ozturk C, Acar B, Yucesoy CA. Magnetic resonance and diffusion tensor imaging analyses indicate heterogeneous strains along human medial gastrocnemius fascicles caused by submaximal plantar-flexion activity. J Biomech 2017; 57:69-78. [DOI: 10.1016/j.jbiomech.2017.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/27/2016] [Accepted: 03/31/2017] [Indexed: 11/29/2022]
|
23
|
Resistance to radial expansion limits muscle strain and work. Biomech Model Mechanobiol 2017; 16:1633-1643. [PMID: 28432448 DOI: 10.1007/s10237-017-0909-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
The collagenous extracellular matrix (ECM) of skeletal muscle functions to transmit force, protect sensitive structures, and generate passive tension to resist stretch. The mechanical properties of the ECM change with age, atrophy, and neuromuscular pathologies, resulting in an increase in the relative amount of collagen and an increase in stiffness. Although numerous studies have focused on the effect of muscle fibrosis on passive muscle stiffness, few have examined how these structural changes may compromise contractile performance. Here we combine a mathematical model and experimental manipulations to examine how changes in the mechanical properties of the ECM constrain the ability of muscle fibers and fascicles to radially expand and how such a constraint may limit active muscle shortening. We model the mechanical interaction between a contracting muscle and the ECM using a constant volume, pressurized, fiber-wound cylinder. Our model shows that as the proportion of a muscle cross section made up of ECM increases, the muscle's ability to expand radially is compromised, which in turn restricts muscle shortening. In our experiments, we use a physical constraint placed around the muscle to restrict radial expansion during a contraction. Our experimental results are consistent with model predictions and show that muscles restricted from radial expansion undergo less shortening and generate less mechanical work under identical loads and stimulation conditions. This work highlights the intimate mechanical interaction between contractile and connective tissue structures within skeletal muscle and shows how a deviation from a healthy, well-tuned relationship can compromise performance.
Collapse
|
24
|
Wilke J, Vogt L, Niederer D, Banzer W. Is remote stretching based on myofascial chains as effective as local exercise? A randomised-controlled trial. J Sports Sci 2016; 35:2021-2027. [PMID: 27819537 DOI: 10.1080/02640414.2016.1251606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lower limb stretching based on myofascial chains has been demonstrated to increase cervical range of motion (ROM) in the sagittal plane. It is, however, unknown whether such remote exercise is as effective as local stretching. To resolve this research deficit, 63 healthy participants (36 ± 13 years, ♂32) were randomly assigned to one of three groups: remote stretching of the lower limb (LLS), local stretching of the cervical spine (CSS) or inactive control (CON). Prior (M1), immediately post (M2) and 5 min following intervention (M3), maximal cervical ROM was assessed. Non-parametric data analysis (Kruskal-Wallis tests and adjusted post hoc Dunn tests) revealed significant differences between the disposed conditions. With one exception (cervical spine rotation after CSS at M2, P > .05), both LLS and CSS increased cervical ROM compared to the control group in all movement planes and at all measurements (P < .05). Between LLS and CSS, no statistical differences were found (P > .05). Lower limb stretching based on myofascial chains induces similar acute improvements in cervical ROM as local exercise. Therapists might consequently consider its use in programme design. However, as the attained effects do not seem to be direction-specific, further research is warranted in order to provide evidence-based recommendations.
Collapse
Affiliation(s)
- J Wilke
- a Department of Sports Medicine , Goethe University Frankfurt am Main , Frankfurt am Main , Germany
| | - L Vogt
- a Department of Sports Medicine , Goethe University Frankfurt am Main , Frankfurt am Main , Germany
| | - D Niederer
- a Department of Sports Medicine , Goethe University Frankfurt am Main , Frankfurt am Main , Germany
| | - W Banzer
- a Department of Sports Medicine , Goethe University Frankfurt am Main , Frankfurt am Main , Germany
| |
Collapse
|
25
|
Tijs C, van Dieën JH, Maas H. Limited mechanical effects of intermuscular myofascial connections within the intact rat anterior crural compartment. J Biomech 2016; 49:2953-2959. [PMID: 27452876 DOI: 10.1016/j.jbiomech.2016.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 01/28/2023]
Abstract
Skeletal muscles of the rat anterior crural compartment are mechanically connected by epimuscular myofascial connections, but the relevance for mechanical muscle function within physiological ranges of joint motion is unclear. We evaluated the net effect at the ankle joint of epimuscular myofascial connections between tibialis anterior (TA) and extensor digitorum longus (EDL) muscles in the rat (n=8) and determined which anatomical structures may mediate such epimuscular mechanical interactions. We assessed (1) effects of knee angle (i.e. changes in EDL length and position relative to TA) and interactions of knee angle with fasciotomy and proximal EDL tenotomy on TA ankle moment and (2) the effect of knee angle on TA and EDL ankle moment summation. Knee angle was varied between 60° and 130°. Ankle angle was kept constant (90°). TA and EDL were excited individually and simultaneously (TA&EDL). The mathematical sum of individual TA and EDL moments was compared with the moment exerted by TA&EDL to assess the extent of non-additive ankle moment summation. Magnitude of TA ankle moment was not affected by knee angle, but frontal plane moment direction was. However, dissections indicated that this was not caused by the compartmental fascia or EDL length changes. Moment summation was non-additive in magnitude (+1.1±1.1% mean±s.d.) and frontal plane direction. The latter was affected by knee angle and ranged from +0.2±0.3° at 60° to +1.1±0.6° at 130°. As the net effects found were very limited, we conclude that myofascial connections between muscles in the anterior crural compartment have limited mechanical relevance during normal movement.
Collapse
Affiliation(s)
- Chris Tijs
- Department of Human Movement Sciences, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Krause F, Wilke J, Vogt L, Banzer W. Intermuscular force transmission along myofascial chains: a systematic review. J Anat 2016; 228:910-8. [PMID: 27001027 DOI: 10.1111/joa.12464] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 01/08/2023] Open
Abstract
The present review aims to provide a systematic overview on tensile transmission along myofascial chains based on anatomical dissection studies and in vivo experiments. Evidence for the existence of myofascial chains is growing, and the capability of force transmission via myofascial chains has been hypothesized. However, there is still a lack of evidence concerning the functional significance and capability for force transfer. A systematic literature research was conducted using MEDLINE (Pubmed), ScienceDirect and Google Scholar. Studied myofascial chains encompassed the superficial backline (SBL), the back functional line (BFL) and the front functional line (FFL). Peer-reviewed human dissection studies as well as in vivo experiments reporting intermuscular tension transfer between the constituents of a myofascial chain were included. To assess methodic quality, two independent investigators rated studies by means of validated assessment tools (QUACS and PEDro Scale). The literature research identified 1022 articles. Nine studies (moderate to excellent methodological quality) were included. Concerning the SBL and the BFL, there is moderate evidence for force transfer at all three transitions (based on six studies), and one of two transitions (three studies). One study yields moderate evidence for a slight, but not significant force transfer at one transition in the FFL. The findings of the present study indicate that tension can be transferred between some of the examined adjacent structures. Force transfer might have an impact in overuse conditions as well as on sports performance. However, different methods of force application and measurement hinder the comparability of results. Considering anatomical variations in the degree of continuity and histological differences of the linking structures is crucial for interpretation. Future studies should focus on the in vivo function of myofascial continuity during isolated active or passive tissue tensioning.
Collapse
Affiliation(s)
- Frieder Krause
- Department of Sports Medicine, Goethe University Frankfurt/Main, Frankfurt am Main, Germany
| | - Jan Wilke
- Department of Sports Medicine, Goethe University Frankfurt/Main, Frankfurt am Main, Germany
| | - Lutz Vogt
- Department of Sports Medicine, Goethe University Frankfurt/Main, Frankfurt am Main, Germany
| | - Winfried Banzer
- Department of Sports Medicine, Goethe University Frankfurt/Main, Frankfurt am Main, Germany
| |
Collapse
|
27
|
A pilot study of balance performance benefit of myofascial release, with a tennis ball, in chronic stroke patients. J Bodyw Mov Ther 2015; 20:98-103. [PMID: 26891643 DOI: 10.1016/j.jbmt.2015.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/09/2015] [Accepted: 06/18/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND We hypothesised that the balance of spastic chronic stroke patients is related to myofascial problems. We performed myofascial release (MFR) with a tennis ball on the affected limb, as suggested by Myers. PURPOSE This study investigated the benefits of 8 weeks of MFR using a tennis ball on the balance of spastic patients. METHODS Eight stroke patients were enrolled voluntarily after providing informed consent. All subjects received 8-week interventions with MFR using a tennis ball three times per week. The patients were evaluated using the Berg Balance Scale (BBS) and Timed 'Up & Go' (TUG) test before and after 4 and 8 weeks of the intervention. RESULTS There were significant differences in the BBS scores (p = 0.001). The TUG time decreased significantly at 4 and 8 weeks (p = 0.034). CONCLUSION Myofascial release appears to improve the balance of spastic chronic stroke patients; however, further studies should evaluate the effective of MFR on walking in stroke patients and determine the mechanism of the effect of MFR.
Collapse
|
28
|
Snoeck O, Beyer B, Feipel V, Salvia P, Sterckx JL, Rooze M, Van Sint Jan S. Tendon and fascial structure contributions to knee muscle excursions and knee joint displacement. Clin Biomech (Bristol, Avon) 2014; 29:1070-6. [PMID: 25168083 DOI: 10.1016/j.clinbiomech.2014.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/07/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Semitendinosus and gracilis muscles whose tendons are used in surgical reconstruction of the anterior cruciate ligament maintain their contractile ability, and a limited decrease of hamstring muscles force is observed postoperatively despite important changes. The goal was to quantify the influence of the myofascial structures on excursions and moment arms of knee muscles to attempt explaining the above-mentioned post-surgical observations. METHODS Hamstring harvesting procedures were performed by a senior orthopaedic surgeon on seven lower limbs from fresh-frozen specimens. Femoro-tibial kinematics and tendons excursion were simultaneously recorded at each steps of the surgery. FINDINGS No significant difference was demonstrated for excursions and moment arms after tenotomies and gracilis tendon harvesting (P≥0.05). The first significant semitendinosus excursion (P<1.17×10(-4)) and moment arm (P<6.88×10(-5)) decrease was observed after semitendinosus tendon harvesting (46% of the initial excursion). INTERPRETATION Gracilis and semitendinosus myofascial pathway is crucial for force transmission towards the knee joint.
Collapse
Affiliation(s)
- O Snoeck
- Laboratory of Anatomy, Biomechanics and Organogenesis, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.
| | - B Beyer
- Laboratory of Anatomy, Biomechanics and Organogenesis, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - V Feipel
- Laboratory of Anatomy, Biomechanics and Organogenesis, Université Libre de Bruxelles (ULB), Bruxelles, Belgium; Laboratory of Functional Anatomy, Université Libre de Bruxelles, Bruxelles, Belgium
| | - P Salvia
- Laboratory of Anatomy, Biomechanics and Organogenesis, Université Libre de Bruxelles (ULB), Bruxelles, Belgium; Laboratory of Functional Anatomy, Université Libre de Bruxelles, Bruxelles, Belgium
| | - J-L Sterckx
- Laboratory of Functional Anatomy, Université Libre de Bruxelles, Bruxelles, Belgium
| | - M Rooze
- Laboratory of Anatomy, Biomechanics and Organogenesis, Université Libre de Bruxelles (ULB), Bruxelles, Belgium; Laboratory of Functional Anatomy, Université Libre de Bruxelles, Bruxelles, Belgium; Department of Orthopedic Surgery, Erasme Hospital, Université Libre de Bruxelles, Bruxelles, Belgium
| | - S Van Sint Jan
- Laboratory of Anatomy, Biomechanics and Organogenesis, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
29
|
Kumka's response to Stecco's fascial nomenclature editorial. J Bodyw Mov Ther 2014; 18:591-8. [DOI: 10.1016/j.jbmt.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 05/13/2014] [Accepted: 06/26/2014] [Indexed: 11/19/2022]
|
30
|
Olesen AT, Jensen BR, Uhlendorf TL, Cohen RW, Baan GC, Maas H. Muscle-specific changes in length-force characteristics of the calf muscles in the spastic Han-Wistar rat. J Appl Physiol (1985) 2014; 117:989-97. [PMID: 25190742 DOI: 10.1152/japplphysiol.00587.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was to investigate muscle mechanical properties and mechanical interaction between muscles in the lower hindlimb of the spastic mutant rat. Length-force characteristics of gastrocnemius (GA), soleus (SO), and plantaris (PL) were assessed in anesthetized spastic and normally developed Han-Wistar rats. In addition, the extent of epimuscular myofascial force transmission between synergistic GA, SO, and PL, as well as between the calf muscles and antagonistic tibialis anterior (TA), was investigated. Active length-force curves of spastic GA and PL were narrower with a reduced maximal active force. In contrast, active length-force characteristics of spastic SO were similar to those of controls. In reference position (90° ankle and knee angle), higher resistance to ankle dorsiflexion and increased passive stiffness was found for the spastic calf muscle group. At optimum length, passive stiffness and passive force of spastic GA were decreased, whereas those of spastic SO were increased. No mechanical interaction between the calf muscles and TA was found. As GA was lengthened, force from SO and PL declined despite a constant muscle-tendon unit length of SO and PL. However, the extent of this interaction was not different in spastic rats. In conclusion, the effects of spasticity on length-force characteristics were muscle specific. The changes observed for GA and PL muscles are consistent with the changes in limb mechanics reported for human patients. Our results indicate that altered mechanics in spastic rats cannot be attributed to differences in mechanical interaction, but originate from individual muscular structures.
Collapse
Affiliation(s)
- Annesofie T Olesen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University, Amsterdam, The Netherlands; Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark; and
| | - Bente R Jensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Toni L Uhlendorf
- Department of Biology, California State University, Northridge, California
| | - Randy W Cohen
- Department of Biology, California State University, Northridge, California
| | - Guus C Baan
- MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University, Amsterdam, The Netherlands
| | - Huub Maas
- MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University, Amsterdam, The Netherlands;
| |
Collapse
|
31
|
Blazevich AJ, Cannavan D, Waugh CM, Miller SC, Thorlund JB, Aagaard P, Kay AD. Range of motion, neuromechanical, and architectural adaptations to plantar flexor stretch training in humans. J Appl Physiol (1985) 2014; 117:452-62. [PMID: 24947023 DOI: 10.1152/japplphysiol.00204.2014] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuromuscular adaptations in response to muscle stretch training have not been clearly described. In the present study, changes in muscle (at fascicular and whole muscle levels) and tendon mechanics, muscle activity, and spinal motoneuron excitability were examined during standardized plantar flexor stretches after 3 wk of twice daily stretch training (4 × 30 s). No changes were observed in a nonexercising control group (n = 9), however stretch training elicited a 19.9% increase in dorsiflexion range of motion (ROM) and a 28% increase in passive joint moment at end ROM (n = 12). Only a trend toward a decrease in passive plantar flexor moment during stretch (-9.9%; P = 0.15) was observed, and no changes in electromyographic amplitudes during ROM or at end ROM were detected. Decreases in H(max):M(max) (tibial nerve stimulation) were observed at plantar flexed (gastrocnemius medialis and soleus) and neutral (soleus only) joint angles, but not with the ankle dorsiflexed. Muscle and fascicle strain increased (12 vs. 23%) along with a decrease in muscle stiffness (-18%) during stretch to a constant target joint angle. Muscle length at end ROM increased (13%) without a change in fascicle length, fascicle rotation, tendon elongation, or tendon stiffness following training. A lack of change in maximum voluntary contraction moment and rate of force development at any joint angle was taken to indicate a lack of change in series compliance of the muscle-tendon unit. Thus, increases in end ROM were underpinned by increases in maximum tolerable passive joint moment (stretch tolerance) and both muscle and fascicle elongation rather than changes in volitional muscle activation or motoneuron pool excitability.
Collapse
Affiliation(s)
- A J Blazevich
- Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Australia; Centre for Sports Medicine and Human Performance, Brunel University, Uxbridge, Middlesex, United Kingdom;
| | - D Cannavan
- Department of Health and Human Performance, Seattle Pacific University, Seattle, WA
| | - C M Waugh
- Centre for Sports Medicine and Human Performance, Brunel University, Uxbridge, Middlesex, United Kingdom
| | - S C Miller
- Centre for Sports Medicine and Human Performance, Brunel University, Uxbridge, Middlesex, United Kingdom; London Sport Institute, Middlesex University, London, United Kingdom
| | - J B Thorlund
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark; and
| | - P Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark; and
| | - A D Kay
- Sport, Exercise and Life Sciences, The University of Northampton, Northampton, United Kingdom
| |
Collapse
|
32
|
Yaman A, Ozturk C, Huijing PA, Yucesoy CA. Magnetic resonance imaging assessment of mechanical interactions between human lower leg muscles in vivo. J Biomech Eng 2014; 135:91003. [PMID: 23722229 DOI: 10.1115/1.4024573] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 05/16/2013] [Indexed: 11/08/2022]
Abstract
Evidence on epimuscular myofascial force transmission (EMFT) was shown for undissected muscle in situ. We hypothesize that global length changes of gastrocnemius muscle-tendon complex in vivo will cause sizable and heterogeneous local strains within all muscles of the human lower leg. Our goal is to test this hypothesis. A method was developed and validated using high-resolution 3D magnetic resonance image sets and Demons nonrigid registration algorithm for performing large deformation analyses. Calculation of strain tensors per voxel in human muscles in vivo allowed quantifying local heterogeneous tissue deformations and volume changes. After hip and knee movement (Δ knee angle ≈ 25 deg) but without any ankle movement, local lengthening within m. gastrocnemius was shown to occur simultaneously with local shortening (maximally by +34.2% and -32.6%, respectively) at different locations. Moreover, similar local strains occur also within other muscles, despite being kept at constant muscle-tendon complex length. This is shown for synergistic m. soleus and deep flexors, as well as for antagonistic anterior crural and peroneal muscle groups: minimum peak lengthening and shortening equaled 23.3% and 25.54%, respectively despite global isometric conditions. These findings confirm our hypothesis and show that in vivo, muscles are in principle not independent mechanically.
Collapse
Affiliation(s)
- Alper Yaman
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34342, Turkey
| | | | | | | |
Collapse
|
33
|
Ledro G, Turrina A, Picelli A, Stecco C, Principe F, Cacciatori C, Smania N. Brachial artery blood flow during submaximal isometric contraction of the biceps brachii and triceps brachii in humans: A preliminary observation. J Bodyw Mov Ther 2013; 17:165-8. [DOI: 10.1016/j.jbmt.2012.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
|
34
|
The muscular force transmission system: Role of the intramuscular connective tissue. J Bodyw Mov Ther 2013; 17:95-102. [DOI: 10.1016/j.jbmt.2012.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 01/14/2023]
|
35
|
Influence of calcaneus angle and muscle forces on strain distribution in the human Achilles tendon. Clin Biomech (Bristol, Avon) 2012; 27:955-61. [PMID: 22883073 DOI: 10.1016/j.clinbiomech.2012.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/19/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Heterogeneous distribution of tendon strain is considered to contribute to the development of the Achilles tendon overuse injuries. Force distribution between the three portions of the triceps surae muscle and position of the calcaneus might affect the extent of strain differences within the Achilles tendon. Purpose of this study was to determine the effect of changes in force distribution within the triceps muscle and changes in calcaneus position on intratendinous strain distribution of the Achilles tendon. METHODS Five cadaveric Achilles tendons including complete triceps surae and calcaneus were dissected. Specimens were mounted in a loading simulator allowing independent force application for the three parts of triceps muscle and changes calcaneus eversion and inversion position. Strain was determined in different aspects of the Achilles tendon. FINDINGS Changes of calcaneus position resulted in intratendinous strain differences up to 15%, changes in force distribution within the triceps muscle resulted in strain differences up to 2.5%. Calcaneal eversion was connected to a higher degree of strain in medial tendon portions, while inversion increased strain in lateral tendon portions. INTERPRETATION Medio-lateral, proximo-distal and dorsal-ventral distribution of tendon strain is rather influenced by kinematics of the subtalar joint than by muscular imbalances within the triceps muscle. Clinical movement analyses should focus on motion pattern combining rearfoot eversion with high Achilles tendon load. The results indicate that twist of the Achilles tendon fascicles seems of paramount importance in balancing tendon strain. To get more insight into the Achilles tendon injuries pathogenesis future research should focus on methods monitoring heterogeneous distribution of strain in vivo.
Collapse
|
36
|
Blazevich AJ, Cannavan D, Waugh CM, Fath F, Miller SC, Kay AD. Neuromuscular factors influencing the maximum stretch limit of the human plantar flexors. J Appl Physiol (1985) 2012; 113:1446-55. [PMID: 22923509 DOI: 10.1152/japplphysiol.00882.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Maximum joint range of motion is an important parameter influencing functional performance and musculoskeletal injury risk. Nonetheless, a complete description of the muscle architectural and tendon changes that occur during stretch and the factors influencing maximum range of motion is lacking. We measured muscle-tendon elongation and fascicle lengthening and rotation sonographically during maximal plantar flexor stretches in 21 healthy men. Electromyogram (EMG) recordings were obtained synchronously with ultrasound and joint moment data, and H-reflex measurements were made with the ankle at neutral (0°) and dorsiflexed (50% maximal passive joint moment) positions; the maximum H amplitude (normalized to maximum M-wave amplitude; M(max)) and H-amplitude elicited at a stimulation intensity that evoked 10% M(max) were obtained. Maximal stretch was accomplished through significant muscle (14.9%; 30 mm) and tendon lengthening (8.4%; 22 mm). There were similar relative changes in fascicle length and angle, but planimetric modeling indicated that the contribution of fascicle rotation to muscle lengthening was small (<4 mm). Subjects with a greater range of motion showed less resistance to stretch and a greater passive joint moment at stretch termination than less flexible subjects (i.e., greater stretch tolerance). Also, greater fascicle rotation accompanied muscle elongation (9.7 vs. 5.9%) and there was a greater tendon length at stretch termination in more flexible subjects. Finally, a moderate correlation between the angle of EMG onset and maximum range of motion was obtained (r = 0.60, P < 0.05), despite there being no difference in H-reflex magnitudes between the groups. Thus clear differences in the neuromuscular responses to stretch were observed between "flexible" and "inflexible" subjects.
Collapse
Affiliation(s)
- A J Blazevich
- Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Tian M, Herbert RD, Hoang P, Gandevia SC, Bilston LE. Myofascial force transmission between the human soleus and gastrocnemius muscles during passive knee motion. J Appl Physiol (1985) 2012; 113:517-23. [PMID: 22723629 DOI: 10.1152/japplphysiol.00111.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The plantarflexors of the lower limb are often assumed to act as independent actuators, but the validity of this assumption is the subject of considerable debate. This study aims to determine the degree to which passive changes in gastrocnemius muscle length, induced by knee motion, affect the tension in the adjacent soleus muscle. A second aim is to quantify the magnitude of myofascial passive force transmission between gastrocnemius and adjacent soleus. Fifteen healthy volunteers participated. Simultaneous ultrasound images of the gastrocnemius and soleus muscles were obtained during passive knee flexion (0-90°), while keeping the ankle angle fixed at either 70° or 115°. Image correlation analysis was used to quantify muscle fascicle lengths in both muscles. The data show that the soleus muscle fascicles elongate significantly during gastrocnemius shortening. The approximate change in passive soleus force as a result of the observed change in fascicle length was estimated and appears to be <5 N, but this estimate is sensitive to the assumed slack length of soleus.
Collapse
Affiliation(s)
- Maoyi Tian
- Neuroscience Research Australia, Randwick, New South Wales, Australia
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Roberts TJ, Azizi E. Flexible mechanisms: the diverse roles of biological springs in vertebrate movement. ACTA ACUST UNITED AC 2011; 214:353-61. [PMID: 21228194 DOI: 10.1242/jeb.038588] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The muscles that power vertebrate locomotion are associated with springy tissues, both within muscle and in connective tissue elements such as tendons. These springs share in common the same simple action: they stretch and store elastic strain energy when force is applied to them and recoil to release energy when force decays. Although this elastic action is simple, it serves a diverse set of functions, including metabolic energy conservation, amplification of muscle power output, attenuation of muscle power input, and rapid mechanical feedback that may aid in stability. In recent years, our understanding of the mechanisms and importance of biological springs in locomotion has advanced significantly, and it has been demonstrated that elastic mechanisms are essential for the effective function of the muscle motors that power movement. Here, we review some recent advances in our understanding of elastic mechanisms, with an emphasis on two proposed organizing principles. First, we review the evidence that the various functions of biological springs allow the locomotor system to operate beyond the bounds of intrinsic muscle properties, including metabolic and mechanical characteristics, as well as motor control processes. Second, we propose that an energy-based framework is useful for interpreting the diverse functions of series-elastic springs. In this framework, the direction and timing of the flow of energy between the body, the elastic element and the contracting muscle determine the function served by the elastic mechanism (e.g. energy conservation vs power amplification). We also review recent work demonstrating that structures such as tendons remodel more actively and behave more dynamically than previously assumed.
Collapse
Affiliation(s)
- Thomas J Roberts
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | | |
Collapse
|
40
|
Chaudhry H, Bukiet B, Ji Z, Findley T. Measurement of balance in computer posturography: Comparison of methods—A brief review. J Bodyw Mov Ther 2011; 15:82-91. [DOI: 10.1016/j.jbmt.2008.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/07/2008] [Accepted: 03/16/2008] [Indexed: 10/22/2022]
|
41
|
Kato E, Vieillevoye S, Balestra C, Guissard N, Duchateau J. Acute effect of muscle stretching on the steadiness of sustained submaximal contractions of the plantar flexor muscles. J Appl Physiol (1985) 2010; 110:407-15. [PMID: 21127213 DOI: 10.1152/japplphysiol.01087.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This paper examines the acute effect of a bout of static stretches on torque fluctuation during an isometric torque-matching task that required subjects to sustain isometric contractions as steady as possible with the plantar flexor muscles at four intensities (5, 10, 15, and 20% of maximum) for 20 s. The stretching bout comprised five 60-s passive stretches, separated by 10-s rest. During the torque-matching tasks and muscle stretching, the torque (active and passive) and surface electromyogram (EMG) of the medial gastrocnemius (MG), soleus (Sol), and tibialis anterior (TA) were continuously recorded. Concurrently, changes in muscle architecture (fascicle length and pennation angle) of the MG were monitored by ultrasonography. The results showed that during stretching, passive torque decreased and fascicle length increased gradually. Changes in these two parameters were significantly associated (r(2) = 0.46; P < 0.001). When data from the torque-matching tasks were collapsed across the four torque levels, stretches induced greater torque fluctuation (P < 0.001) and enhanced EMG activity (P < 0.05) in MG and TA muscles with no change in coactivation. Furthermore, stretching maneuvers produced a greater decrease (∼15%; P < 0.001) in fascicle length during the torque-matching tasks and change in torque fluctuation (CV) was positively associated with changes in fascicle length (r(2) = 0.56; P < 0.001), MG and TA EMG activities, and coactivation (r(2) = 0.35, 0.34, and 0.35, respectively; P < 0.001). In conclusion, these observations indicate that repeated stretches can decrease torque steadiness by increasing muscle compliance and EMG activity of muscles around the joint. The relative influence of such adaptations, however, may depend on the torque level during the torque-matching task.
Collapse
Affiliation(s)
- Emika Kato
- Laboratory of Applied Biology, Institute for Motor Sciences, Université Libre de Bruxelles, 808 route de Lennik, CP 640, 1070 Brussels, Belgium
| | | | | | | | | |
Collapse
|
42
|
Bojsen-Møller J, Schwartz S, Kalliokoski KK, Finni T, Magnusson SP. Intermuscular force transmission between human plantarflexor muscles in vivo. J Appl Physiol (1985) 2010; 109:1608-18. [PMID: 20884838 DOI: 10.1152/japplphysiol.01381.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The exact mechanical function of synergist muscles within a human limb in vivo is not well described. Recent studies indicate the existence of a mechanical interaction between muscle actuators that may have functional significance and further play a role for injury mechanisms. The purpose of the present study was to investigate if intermuscular force transmission occurs within and between human plantarflexor muscles in vivo. Seven subjects performed four types of either active contractile tasks or passive joint manipulations: passive knee extension, voluntary isometric plantarflexion, voluntary isometric hallux flexion, passive hallux extension, and selective percutaneous stimulation of the gastrocnemius medialis (MG). In each experiment plantar- and hallux flexion force and corresponding EMG activity were sampled. During all tasks ultrasonography was applied at proximal and distal sites to assess task-induced tissue displacement (which is assumed to represent loading) for the plantarflexor muscles [MG, soleus (SOL), and flexor hallucis longus (FHL)]. Selective MG stimulation and passive knee extension resulted in displacement of both the MG and SOL muscles. Minimal displacement of the triceps surae muscles was seen during passive hallux extension. Large interindividual differences with respect to deep plantarflexor activation during voluntary contractions were observed. The present results suggest that force may be transmitted between the triceps surae muscles in vivo, while only limited evidence was provided for the occurrence of force transfer between the triceps surae and the deeper-lying FHL.
Collapse
Affiliation(s)
- Jens Bojsen-Møller
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
43
|
Mitsukawa N, Sugisaki N, Miyamoto N, Yanai T, Kanehisa H, Fukunaga T, Kawakami Y. Fatigue-induced changes in synergistic muscle force do not match tendon elongation. J Biomech 2010; 43:1632-4. [DOI: 10.1016/j.jbiomech.2010.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 01/12/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|
44
|
Yucesoy CA, Baan G, Huijing PA. Epimuscular myofascial force transmission occurs in the rat between the deep flexor muscles and their antagonistic muscles. J Electromyogr Kinesiol 2010; 20:118-26. [DOI: 10.1016/j.jelekin.2008.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/02/2008] [Accepted: 09/24/2008] [Indexed: 11/26/2022] Open
|
45
|
Maas H, Huijing PA. Synergistic and antagonistic interactions in the rat forelimb: acute effects of coactivation. J Appl Physiol (1985) 2009; 107:1453-62. [PMID: 19745195 DOI: 10.1152/japplphysiol.00328.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The goals of the present study were 1) to assess effects of antagonist coactivation on mechanical interactions between synergistic muscles, and 2) to quantify the extent of epimuscular myofascial force transmission between synergistic and antagonistic muscles in the rat forelimb. Connective tissues enveloping the muscle bellies in the antebrachium were left intact. Forces exerted at the distal tendons of flexor carpi ulnaris (FCU), palmaris longus (PL), and extensor carpi ulnaris (ECU) muscles were measured at various FCU lengths for two different stimulation protocols: 1) simultaneous stimulation of ulnar/median nerve complex (exciting all wrist flexors, including synergistic FCU and PL) and radial nerve (exciting all wrist extensors, including antagonistic ECU); and 2) stimulation of the ulnar/median nerve exclusively. PL and ECU were kept at a constant length. In addition, muscle forces were measured during stimulation of one of the indicated nerves, with later addition of stimulation of the second nerve during the maintained tetanic contraction. Coactivation of antagonistic muscles increased FCU isometric forces (on average, by 10% of optimal force) and PL forces (on average, by 13% of maximal force), but mechanical interaction between FCU and PL was unchanged. Changing the length and relative position of FCU significantly affected PL (by 20%) as well as ECU forces (by 8%). In addition, distal tetanic force of FCU kept at a constant high length was determined by the order of nerve stimulation onset. These results indicate effects of myofascial pathways between synergistic and antagonistic muscles in the rat forelimb. Coactivation may enhance the stiffness of connective tissues between muscles, but the present data suggest that activation of all wrist flexors already preloaded the myofascial pathways to the greatest extent. The stimulation order effects were explained by dynamic features of muscle and connective tissues (i.e., length-history dependence and viscoelasticity).
Collapse
Affiliation(s)
- Huub Maas
- Research Institute MOVE, Faculty of Human Movement Sciences. VU University Amsterdam, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.
| | | |
Collapse
|
46
|
Yielder P, Gutnik B, Kobrin V, Hudson G. A possible anatomical and biomechanical explanation of the 10% rule used in the clinical assessment of prehensile hand movements and handed dominance. J Electromyogr Kinesiol 2009; 19:e472-80. [PMID: 19324572 DOI: 10.1016/j.jelekin.2009.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 01/31/2009] [Accepted: 02/02/2009] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED A current doctrine in the dynamometric approach to determine lateralization of hand function states that in 10% of cases, the non-dominant hand will be stronger than the dominant hand. In this study, a novel MRI based modelling approach was applied to the first dorsal introsseus muscle (FDI), to determine whether the 10% rule may be applied to the FDI and may be partially explained by the arrangement of the anatomical components of the FDI. METHODS Initially the force generated by the thumb segment during an isometric pushing task in the horizontal plane was measured from 25 strongly right-handed young males. Nine of these participants then had structural magnetic resonance imaging (sMRI) of the thumb and index osseous compartment. A modelling technique was developed to extract the muscle data and quantify the muscle line of action onto to the first metacarpal bone segment in order to quantify the muscle force at the point of momentary rotation--equilibrium. RESULTS Eight of 25 subjects exhibited stronger force from the left hand. Six out of nine subjects from the MRI possessed significantly greater angles of attachment of the index osseous compartment on the left (non-dominant) hand. These six subjects also generated greater maximal isometric forces from the FDI of the left side. There was a significantly greater muscle volume for the right FDI muscle as compared to the left as measured from the reconstructed MRI slice data. CONCLUSIONS The calculated force produced by the muscle is related to the angle of attachment of the muscle to bone in the index osseous compartment. The MRI findings indicate that the 10% rule may be anatomically and biomechanically explained.
Collapse
Affiliation(s)
- P Yielder
- Faculty of Health Sciences, University of Ontario Institute of Technology, 2000 Simcoe St North, Oshawa, Canada.
| | | | | | | |
Collapse
|
47
|
Huijing PA. Epimuscular myofascial force transmission: A historical review and implications for new research. International society of biomechanics Muybridge award lecture, Taipei, 2007. J Biomech 2009; 42:9-21. [DOI: 10.1016/j.jbiomech.2008.09.027] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/12/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
|
48
|
Abellaneda S, Guissard N, Duchateau J. The relative lengthening of the myotendinous structures in the medial gastrocnemius during passive stretching differs among individuals. J Appl Physiol (1985) 2009; 106:169-77. [PMID: 18988765 DOI: 10.1152/japplphysiol.90577.2008] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The increase in passive torque during muscle stretching may constrain the range of motion of a joint. As passive torque can vary substantially among individuals, the present study examined whether the relative lengthening of the myotendinous structures of the medial gastrocnemius (MG) during passive stretching differs among individuals. Sixteen subjects performed passive stretching of the plantar flexor muscles from ankle angles ranging from 10° plantar flexion (−10°) to 30° dorsiflexion (+30°). Changes in passive torque, muscle architecture (fascicle length and pennation angle) of the MG and electromyographic activity of MG and soleus were recorded. The results showed that passive torque produced by the plantar flexors increased exponentially ( r2 = 0.99; P < 0.001) with ankle dorsiflexion, whereas MG fascicle length increased linearly from 57.6 ± 9.1 to 80.5 ± 10.3 mm ( P < 0.001), and pennation angle decreased linearly from 21.2 ± 4.2 to 14.4 ± 3.1° ( P < 0.001) when the ankle joint angle was moved from −10° to +30°. The relative contribution of muscle (fascicles and aponeuroses) and tendon elongation to the change in length of the muscle-tendon unit (MTU) at 30° dorsiflexion was 71.8 and 28.2%, respectively. However, the adjustment differed across individuals during MTU lengthening; in subjects (62.5%) with small, passive stiffness, the elongation of the free tendon was less and that of the fascicles larger than for subjects (37.5%) with greater stiffness. In conclusion, the results indicate that the strain of muscle and tendon varies among individuals, and difference in the relative compliance of these structures influences MTU lengthening differently during passive stretching.
Collapse
|
49
|
|
50
|
Model-generated decomposition of unfused tetani of motor units evoked by random stimulation. J Biomech 2008; 41:3448-54. [PMID: 18990394 DOI: 10.1016/j.jbiomech.2008.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 09/05/2008] [Accepted: 09/08/2008] [Indexed: 11/20/2022]
|