1
|
Thurston M, Peltoniemi M, Giangrande A, Vujaklija I, Botter A, Kulmala JP, Piitulainen H. High-density EMG reveals atypical spatial activation of the gastrocnemius during walking in adolescents with Cerebral Palsy. J Electromyogr Kinesiol 2024; 79:102934. [PMID: 39378587 DOI: 10.1016/j.jelekin.2024.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Children with Cerebral Palsy (CP) exhibit less-selective, simplified muscle activation during gait due to injury of the developing brain. Abnormal motor unit recruitment, altered excitation-inhibition balance, and muscle morphological changes all affect the CP electromyogram. High-density surface electromyography (HDsEMG) has potential to reveal novel manifestations of CP neuromuscular pathology and functional deficits by assessing spatiotemporal details of myoelectric activity. We used HDsEMG to investigate spatial-EMG distribution and temporal-EMG complexity of gastrocnemius medialis (GM) muscle during treadmill walking in 11 adolescents with CP and 11 typically developed (TD) adolescents. Our results reveal more-uniform spatial-EMG amplitude distribution across the GM in adolescents with CP, compared to distal emphasis in TD adolescents. More-uniform spatial-EMG was associated with stronger ankle co-contraction and spasticity. CP adolescents exhibited a non-significant trend towards elevated EMG-temporal complexity. Homogenous spatial distribution and disordered temporal evolution of myoelectric activity in CP suggests less-structured and desynchronized recruitment of GM motor units, in combination with muscle morphological changes. Using HDsEMG, we uncovered novel evidence of atypical spatiotemporal activation during gait in CP, opening paths towards deeper understanding of motor control deficits and better characterization of changes in muscular activation from interventions.
Collapse
Affiliation(s)
- Maxwell Thurston
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; Motion Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Mika Peltoniemi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; Motion Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Alessandra Giangrande
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy; PoliToBIOMed Laboratory, Politecnico di Torino, Turin, Italy
| | - Ivan Vujaklija
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy; PoliToBIOMed Laboratory, Politecnico di Torino, Turin, Italy
| | - Juha-Pekka Kulmala
- Motion Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; School of Health and Social Studies, JAMK University of Applied Sciences, Jyväskylä, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; Motion Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Vieira TM, Cerone GL, Bruno M, Bachero-Mena B. Myoelectric manifestations of fatigue of the finger flexor muscles and endurance capacity in experienced versus intermediate climbers during suspension tasks. J Sports Sci 2024; 42:655-664. [PMID: 38794799 DOI: 10.1080/02640414.2024.2357470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Climbing is a physically demanding discipline, placing significant loads on the finger flexors. Notwithstanding the documented greater endurance capacity of experienced climbers, the mechanisms explaining these training-induced adaptations remain unknown. We therefore investigate whether two non-competing strategies - muscle adaptation and alternate muscle recruitment - may explain the disparity in endurance capacity in participants with different climbing experience. We analysed high-density surface electromyograms (EMGs) from 38 Advanced and Intermediate climbers, during suspension exercises over three different depths (15, 20, 30 mm) using a half-crimp grip position. From the spatial distribution of changes in MeDian Frequency and Root Mean Square values until failure, we assessed how much and how diffusely the myoelectric manifestations of fatigue took place. Advanced climbers exhibited greater endurance, as evidenced by significantly longer failure time (p < 0.009) and lower changes in MDF values (p < 0.013) for the three grip depths. These changes were confined to a small skin region (nearly 25% of the grid size), centred at variable locations across participants. Moreover, lower MDF changes were significantly associated with longer suspension times. Collectively, our results suggest that muscle adaptation rather than load sharing between and within muscles is more likely to explain the improved endurance in experienced climbers.
Collapse
Affiliation(s)
- Taian Martins Vieira
- Laboratory for Engineering of the Neuromuscular System, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Torino, Italy
| | - Giacinto Luigi Cerone
- Laboratory for Engineering of the Neuromuscular System, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Torino, Italy
| | - Martina Bruno
- Laboratory for Engineering of the Neuromuscular System, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Beatriz Bachero-Mena
- Department of Human Movement and Sport Performance, University of Seville, Seville, Spain
| |
Collapse
|
3
|
Avila ER, Williams SE, Disselhorst-Klug C. Advances in EMG measurement techniques, analysis procedures, and the impact of muscle mechanics on future requirements for the methodology. J Biomech 2023; 156:111687. [PMID: 37339541 DOI: 10.1016/j.jbiomech.2023.111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
Muscular coordination enables locomotion and interaction with the environment. For more than 50 years electromyography (EMG) has provided insights into the central nervous system control of individual muscles or muscle groups, enabling both fine and gross motor functions. This information is available either at individual motor units (Mus) level or on a more global level from the coordination of different muscles or muscle groups. In particular, non-invasive EMG methods such as surface EMG (sEMG) or, more recently, spatial mapping methods (High-Density EMG - HDsEMG) have found their place in research into biomechanics, sport and exercise, ergonomics, rehabilitation, diagnostics, and increasingly for the control of technical devices. With further technical advances and a growing understanding of the relationship between EMG and movement task execution, it is expected that with time, especially non-invasive EMG methods will become increasingly important in movement sciences. However, while the total number of publications per year on non-invasive EMG methods is growing exponentially, the number of publications on this topic in journals with a scope in movement sciences has stagnated in the last decade. This review paper contextualizes non-invasive EMG development over the last 50 years, highlighting methodological progress. Changes in research topics related to non-invasive EMG were identified. Today non-invasive EMG procedures are increasingly used to control technical devices, where muscle mechanics have a minor influence. In movement science, however, the effect of muscle mechanics on the EMG signal cannot be neglected. This explains why non-invasive EMG's relevance in movement sciences has not developed as expected.
Collapse
Affiliation(s)
- Elisa Romero Avila
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Germany
| | - Sybele E Williams
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Germany
| | - Catherine Disselhorst-Klug
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Germany.
| |
Collapse
|
4
|
Takahashi K, Shiotani H, Evangelidis PE, Sado N, Kawakami Y. Three-dimensional architecture of human medial gastrocnemius fascicles in vivo: Regional variation and its dependence on muscle size. J Anat 2022; 241:1324-1335. [PMID: 36004517 PMCID: PMC9644967 DOI: 10.1111/joa.13750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Fascicle architecture (length and pennation angle) can vary regionally within a muscle. The architectural variability in human muscles has been evaluated in vivo, but the interindividual variation and its determinants remain unclear. Considering that within‐muscle non‐uniform changes in pennation angle are associated with change in muscle size by chronic mechanical loading, we hypothesized that the regional variation in fascicle architecture is dependent on interindividual variation in muscle size. To test this hypothesis, we reconstructed fascicles three‐dimensionally along and across the whole medial gastrocnemius in the right lower leg of 15 healthy adults (10 males and 5 females, 23.7 ± 3.3 years, 165.8 ± 8.3 cm, 61.9 ± 11.4 kg, mean ± standard deviation) in neutral ankle joint position with the knee fully extended, using magnetic resonance diffusion tensor imaging and tractography. The 3D‐reconstructed fascicles arose from the deep aponeurosis with variable lengths and angles both in sagittal and coronal planes. The fascicle length was significantly longer in the middle (middle‐medial: 52.4 ± 6.1 mm, middle‐lateral: 52.0 ± 5.1 mm) compared to distal regions (distal‐medial: 41.0 ± 5.0 mm, distal‐lateral: 38.9 ± 3.6 mm, p < 0.001). The 2D pennation angle (angle relative to muscle surface) was significantly greater in distal than middle regions, and medial than lateral regions (middle‐medial: 26.6 ± 3.1°, middle‐lateral: 24.1 ± 2.3°, distal‐medial: 31.2 ± 3.6°, distal‐lateral: 29.2 ± 3.0°, p ≤ 0.017), while only a proximo‐distal difference was significant (p < 0.001) for 3D pennation angle (angle relative to line of action of muscle). These results clearly indicate fascicle's architectural variation in 3D. The magnitude of regional variation evaluated as standard deviation across regions differed considerably among individuals (4.0–10.7 mm for fascicle length, 0.9–5.0° for 2D pennation angle, and 3.0–8.8° for 3D pennation angle), which was positively correlated with the muscle volume normalized to body mass (r = 0.659–0.828, p ≤ 0.008). These findings indicate muscle‐size dependence of the variability of fascicle architecture.
Collapse
Affiliation(s)
- Katsuki Takahashi
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiroto Shiotani
- Faculty of Sport Sciences, Waseda University, Saitama, Japan.,Human Performance Laboratory, Comprehensive Research Organization of Waseda University, Tokyo, Japan
| | | | - Natsuki Sado
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yasuo Kawakami
- Faculty of Sport Sciences, Waseda University, Saitama, Japan.,Human Performance Laboratory, Comprehensive Research Organization of Waseda University, Tokyo, Japan
| |
Collapse
|
5
|
K DB, P A K, S R. Automated detection of muscle fatigue conditions from cyclostationary based geometric features of surface electromyography signals. Comput Methods Biomech Biomed Engin 2021; 25:320-332. [PMID: 34289775 DOI: 10.1080/10255842.2021.1955104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, an attempt has been made to develop an automated muscle fatigue detection system using cyclostationary based geometric features of surface electromyography (sEMG) signals. For this purpose, signals are acquired from fifty-eight healthy volunteers under dynamic muscle fatiguing contractions. The sEMG signals are preprocessed and the epochs of signals under nonfatigue and fatigue conditions are considered for the analysis. A computationally effective Fast Fourier transform based accumulation algorithm is adapted to compute the spectral correlation density coefficients. The boundary of spectral density coefficients in the complex plane is obtained using alpha shape method. The geometric features, namely, perimeter, area, circularity, bending energy, eccentricity and inertia are extracted from the shape and the machine learning models based on multilayer perceptron (MLP) and extreme learning machine (ELM) are developed using these biomarkers. The results show that the cyclostationarity increases in fatigue condition. All the extracted features are found to have significant difference in the two conditions. It is found that the ELM model based on prominent features classifies the sEMG signals with a maximum accuracy of 94.09% and F-score of 93.75%. Therefore, the proposed approach appears to be useful for analysing the fatiguing contractions in neuromuscular conditions.
Collapse
Affiliation(s)
- Divya Bharathi K
- Non-Invasive Imaging and Diagnostics Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Karthick P A
- Physiological Measurements and Instrumentation Laboratory, Department of Instrumentation and Control Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, India
| | - Ramakrishnan S
- Non-Invasive Imaging and Diagnostics Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
6
|
Ferrari E, Khan M, Mantel J, Wallbank R. The assessment of muscle fatigue in orthopedic surgeons, by comparing manual versus automated broaching in simulated total hip arthroplasty. Proc Inst Mech Eng H 2021; 235:1471-1478. [PMID: 34281446 DOI: 10.1177/09544119211034386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Total hip arthroplasty procedures are physically demanding for surgeons. Repetitive mallet swings to impact a surgical handle (impactions), can lead to muscle fatigue, discomfort, and injuries. The use of an automated surgical hammer may reduce fatigue and increase surgical efficiency. The aim of this study was to compare the effect of repeated manual and automated impactions on the user's muscle activation, by means of surface electromyography. Surface electromyography signals were recorded from eight muscles of seven (n = 7) orthopedic surgeons during repetitions of manual and automated impactions, to reach the same surgical outcome (broaching depth). Qualitative data was also captured to track the perceived fatigue and preferences of impaction modalities after completion of impaction tasks. Time to complete tasks, muscle activation, and muscle fatigue were quantified. Results showed a significant decrease in time required to reach the same broaching depth for the automated method compared to manual impactions (p = 0.001). A reduction in muscle fatigue and activation of right Brachioradialis muscle was observed during automated impactions (p = 0.018). A significant difference in fatigue was observed, with lower level of fatigue during automated impactions (p = 0.001). These results suggest that an automated surgical workflow might reduce the exposure to the impaction task and, therefore, muscle fatigue, with a reduced activation of the most engaged muscles. The study suggests that the burden on the user can be reduced by a change in the surgical methodology to perform broaching in total hip arthroplasty, which could potentially benefit surgical efficiency and reduce the risk of fatigue-based errors during a procedure.
Collapse
Affiliation(s)
| | - Mariam Khan
- DePuy International Limited, Beeston, Leeds, UK
| | - Jack Mantel
- DePuy International Limited, Beeston, Leeds, UK
| | | |
Collapse
|
7
|
Watanabe K, Vieira TM, Gallina A, Kouzaki M, Moritani T. Novel Insights Into Biarticular Muscle Actions Gained From High-Density Electromyogram. Exerc Sport Sci Rev 2021; 49:179-187. [PMID: 33927163 PMCID: PMC8191471 DOI: 10.1249/jes.0000000000000254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 11/21/2022]
Abstract
Biarticular muscles have traditionally been considered to exhibit homogeneous neuromuscular activation. The regional activation of biarticular muscles, as revealed from high-density surface electromyograms, seems however to discredit this notion. We thus hypothesize the regional activation of biarticular muscles may contribute to different actions about the joints they span. We then discuss the mechanistic basis and methodological implications underpinning our hypothesis.
Collapse
Affiliation(s)
- Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Nagoya, Japan
| | - Taian Martins Vieira
- Laboratory for Engineering of the Neuromuscular System, Electronics and Telecommunication Department, Politecnico di Torino
- PoliToBIOMed Lab, Politecnico di Torino, Torino, Italy
| | - Alessio Gallina
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Motoki Kouzaki
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University
| | | |
Collapse
|
8
|
Watanabe K, Yoshida T. Effect of arm position on spatial distribution of upper trapezius muscle activity during simulated car driving. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2021; 28:1766-1772. [PMID: 33982634 DOI: 10.1080/10803548.2021.1929700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present study aimed to investigate the upper trapezius muscle activity during simulated car driving while adopting three different arm positions. Ten participants were instructed to maintain the following positions: hands on the steering wheel (Hands-On), hands not on the steering wheel (Hands-Off) and hands not on the steering wheel but arms on armrests (Armrests). During the tasks, multi-channel surface electromyography (EMG) was recorded from the upper trapezius muscle with 64 two-dimensionally distributed electrodes. Amplitudes of surface EMG in Armrests were lower than in Hands-On (p = 0.004). The spatial distribution of surface EMG changed with time in Hands-Off and Armrests (p < 0.05), but not in Hands-On (p > 0.05). These findings suggest that being freed from steering leads to the recruitment of various muscle fibers/motor units within the upper trapezius muscle and the use of armrests may help reduce the physiological burden loaded on the muscle of drivers.
Collapse
Affiliation(s)
- Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences and School of International Liberal Studies, Chukyo University, Japan
| | - Takahiro Yoshida
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences and School of International Liberal Studies, Chukyo University, Japan
| |
Collapse
|
9
|
Schlink BR, Nordin AD, Brooks CN, Ferris DP. Fatigue induces altered spatial myoelectric activation patterns in the medial gastrocnemius during locomotion. J Neurophysiol 2021; 125:2013-2023. [PMID: 33909489 DOI: 10.1152/jn.00602.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This research investigates the effects of muscle fatigue on spatial myoelectric patterns in the lower limb during locomotion. Both spatial and frequency aspects of neuromuscular recruitment in the medial gastrocnemius change in response to fatigue, resulting in altered myoelectric patterns during walking and running. These data may help us better understand the adaptations that occur in lower limb muscles to avoid overuse injuries caused by fatigue.
Collapse
Affiliation(s)
- Bryan R Schlink
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Andrew D Nordin
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Christina N Brooks
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
10
|
Goubault E, Verdugo F, Pelletier J, Traube C, Begon M, Dal Maso F. Exhausting repetitive piano tasks lead to local forearm manifestation of muscle fatigue and negatively affect musical parameters. Sci Rep 2021; 11:8117. [PMID: 33854088 PMCID: PMC8047012 DOI: 10.1038/s41598-021-87403-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
Muscle fatigue is considered as a risk factor for developing playing-related muscular disorders among professional pianists and could affect musical performance. This study investigated in 50 pianists the effect of fatiguing repetitive piano sequences on the development of forearm muscle fatigue and on piano performance parameters. Results showed signs of myoelectric manifestation of fatigue in the 42-electromyographic bipolar electrodes positioned on the forearm to record finger and wrist flexor and extensor muscles, through a significant non-constant decrease of instantaneous median frequency during two repetitive Digital (right-hand 16-tones sequence) and Chord (right-hand chords sequence) excerpts, with extensor muscles showing greater signs of fatigue than flexor muscles. In addition, muscle fatigue negatively affected key velocity, a central feature of piano sound intensity, in both Digital and Chord excerpts, and note-events, a fundamental aspect of musicians' performance parameter, in the Chord excerpt only. This result highlights that muscle fatigue may alter differently pianists' musical performance according to the characteristics of the piece played.
Collapse
Affiliation(s)
- Etienne Goubault
- grid.14848.310000 0001 2292 3357Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l’activité Physique, Université de Montréal, 1700 Rue Jacques-Tétreault, Laval, QC Canada
| | - Felipe Verdugo
- grid.14709.3b0000 0004 1936 8649Input Devices and Music Interaction Laboratory, Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC Canada ,grid.267180.a0000 0001 2168 0285EXPRESSION Team, Université Bretagne-Sud, Vannes, France
| | - Justine Pelletier
- grid.38678.320000 0001 2181 0211Laboratoire Arts vivants et interdisciplinarité, Département de danse, Université du Québec à Montréal, Montreal, QC Canada
| | - Caroline Traube
- grid.14848.310000 0001 2292 3357Laboratoire de recherche sur le geste musicien, Faculté de musique, Université de Montréal, Montreal, QC Canada
| | - Mickaël Begon
- grid.14848.310000 0001 2292 3357Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l’activité Physique, Université de Montréal, 1700 Rue Jacques-Tétreault, Laval, QC Canada ,grid.411418.90000 0001 2173 6322Sainte-Justine Hospital Research Center, Montreal, QC Canada
| | - Fabien Dal Maso
- grid.14848.310000 0001 2292 3357Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l’activité Physique, Université de Montréal, 1700 Rue Jacques-Tétreault, Laval, QC Canada ,Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage, Montréal, QC Canada
| |
Collapse
|
11
|
Watanabe K, Narouei S. Association between Oxygen Consumption and Surface Electromyographic Amplitude and Its Variation within Individual Calf Muscles during Walking at Various Speeds. SENSORS 2021; 21:s21051748. [PMID: 33802492 PMCID: PMC7959460 DOI: 10.3390/s21051748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
Surface electromyography (EMG) has been used to estimate muscle work and physiological burden of the whole body during human movements. However, there are spatial variations in surface EMG responses within individual muscles. The aim of this study was to investigate the relation between oxygen consumption and surface EMG responses of lower leg muscles during walking at various speeds and to quantify its spatial variation within an individual muscle. Nine young males walked on a treadmill at four speeds: preferred minus 1 km/h, preferred, preferred plus 1 km/h, and preferred plus 2 km/h, and the metabolic response was measured based on the expired gas. High-density surface EMG of the tibialis anterior (TA), medial gastrocnemius (MG), lateral gastrocnemius, and soleus muscles was performed using 64 two-dimensional electrode grids. Correlation coefficients between oxygen consumption and the surface EMG amplitude were calculated across the gait speeds for each channel in the electrode grid and for individual muscles. Mean correlation coefficients across electrodes were 0.69–0.87 for the four individual muscles, and the spatial variation of correlation between the surface EMG amplitude and oxygen consumption within an electrode grid was significantly greater in MG muscle than in TA muscle (Quartile deviations: 0.24 for MG and 0.02 for TA, p < 0.05). These results suggest that the physiological burden of the whole body during gait at various speeds can be estimated from the surface EMG amplitude of calf muscles, but we need to note its spatial distribution within the MG muscle.
Collapse
|
12
|
Pincheira PA, Martinez-Valdes E, Guzman-Venegas R, Falla D, Garrido MI, Cresswell AG, Lichtwark GA. Regional changes in muscle activity do not underlie the repeated bout effect in the human gastrocnemius muscle. Scand J Med Sci Sports 2020; 31:799-812. [PMID: 33378553 DOI: 10.1111/sms.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
The repeated bout effect (RBE) confers protection following exercise-induced muscle damage. Typical signs of this protective effect are significantly less muscle soreness and faster recovery of strength after the second bout. The aim of this study was to compare regional changes in medial gastrocnemius (MG) muscle activity and mechanical hyperalgesia after repeated bouts of eccentric exercise. Twelve healthy male participants performed two bouts of eccentric heel drop exercise (separated by 7 days) while wearing a vest equivalent to 20% of their body weight. High-density MG electromyographic amplitude maps and topographical pressure pain sensitivity maps were created before, two hours (2H), and two days (2D) after both exercise bouts. Statistical parametric mapping was used to identify RBE effects on muscle activity and mechanical hyperalgesia, using pixel-level statistics when comparing maps. The results revealed a RBE, as a lower strength loss (17% less; P < .01) and less soreness (50% less; P < .01) were found after the second bout. However, different muscle regions were activated 2H and 2D after the initial bout but not following the repeated bout. Further, no overall changes in EMG distribution or mechanical hyperalgesia were found between bouts. These results indicate that muscle activation is unevenly distributed during the initial bout, possibly to maintain muscle function during localized mechanical fatigue. However, this does not reflect a strategy to confer protection during the repeated bout by activating undamaged/non-fatigued muscle areas.
Collapse
Affiliation(s)
- Patricio A Pincheira
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, QLD, Australia.,Escuela de Kinesiología, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Rodrigo Guzman-Venegas
- Escuela de Kinesiología, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Marta I Garrido
- Cognitive Neuroscience and Computational Psychiatry Laboratory, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Saint Lucia, QLD, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Canberra, ACT, Australia
| | - Andrew G Cresswell
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, QLD, Australia
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, QLD, Australia
| |
Collapse
|
13
|
Svensson RB, Slane LC, Magnusson SP, Bogaerts S. Ultrasound-based speckle-tracking in tendons: a critical analysis for the technician and the clinician. J Appl Physiol (1985) 2020; 130:445-456. [PMID: 33332991 DOI: 10.1152/japplphysiol.00654.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ultrasound has risen to the forefront as one of the primary tools in tendon research, with benefits including its relatively low cost, ease of use, and high safety. Moreover, it has been shown that cine ultrasound can be used to evaluate tendon deformation by tracking the motion of anatomical landmarks during physical movement. Estimates from landmark tracking, however, are typically limited to global tissue properties, such that clinically relevant regional nonuniformities may be missed. Fortunately, advancements in ultrasound scanning have led to the development of speckle-tracking algorithms, which enable the noninvasive measurement of in vivo local deformation patterns. Despite the successes in other fields, the adaptation of speckle-tracking to tendon research has presented some unique challenges as a result of tissue anisotropy and microstructural changes under load. With no generally accepted standards for its use, current methodological approaches vary substantially between studies and research groups. Therefore, the goal of this paper is to provide a summative review of the technical complexities and variations of speckle-tracking approaches being used and the impact these decisions may have on measured results and their interpretation. Variations in these approaches currently being used with relevant technical aspects are discussed first (for the technician), followed by a discussion of the more clinical considerations (for the clinician). Finally, a summary table of common challenges encountered when implementing speckle-tracking is provided, with suggested recommendations for minimizing the impact of such potential sources of error.
Collapse
Affiliation(s)
- Rene B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura C Slane
- Department of Mechanical Engineering, University of Rochester, Rochester, New York
| | - S Peter Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Physical and Occupational Therapy, Bispebjerg Hospital, Copenhagen, Denmark
| | - Stijn Bogaerts
- Research Unit on Locomotor and Neurological Disorders, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Physical and Rehabilitation Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Schlink BR, Nordin AD, Ferris DP. Human myoelectric spatial patterns differ among lower limb muscles and locomotion speeds. Physiol Rep 2020; 8:e14652. [PMID: 33278064 PMCID: PMC7718836 DOI: 10.14814/phy2.14652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
The spatial distribution of myoelectric activity within lower limb muscles is often nonuniform and can change during different stationary tasks. Recent studies using high-density electromyography (EMG) have suggested that spatial muscle activity may also differ among muscles during locomotion, but contrasting electrode array sizes and experimental designs have limited cross-study comparisons. Here, we sought to determine if spatial EMG patterns differ among lower limb muscles and locomotion speeds. We recorded high-density EMG from the vastus medialis, tibialis anterior, biceps femoris, medial gastrocnemius, and lateral gastrocnemius muscles of 11 healthy subjects while they walked (1.2 and 1.6 m/s) and ran (2.0, 3.0, 4.0, and 5.0 m/s) on a treadmill. To overcome the detrimental effects of cable, electrode, and soft tissue movements on high-density EMG signal quality during locomotion, we applied multivariate signal cleaning methods. From these data, we computed the spatial entropy and center of gravity from the total myoelectric activity within each recording array during the stance or swing phases of the gait cycle. We found heterogeneous spatial EMG patterns evidenced by contrasting spatial entropy among lower limb muscles. As locomotion speed increased, mean entropy values decreased in four of the five recorded muscles, indicating that EMG signal amplitudes were more spatially heterogeneous, or localized, at faster speeds. The EMG center of gravity location also shifted in multiple muscles as locomotion speed increased. Contrasting myoelectric spatial distributions among muscles likely reflect differences in muscle architecture, but increasingly localized activity and spatial shifts in the center of gravity location at faster locomotion speeds could be influenced by preferential recruitment of faster motor units under greater loads.
Collapse
Affiliation(s)
- Bryan R. Schlink
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFLUSA
| | - Andrew D. Nordin
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFLUSA
| | - Daniel P. Ferris
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
15
|
Basoudan N, Rodrigues A, Gallina A, Garland J, Guenette JA, Shadgan B, Road J, Reid WD. Scalene and sternocleidomastoid activation during normoxic and hypoxic incremental inspiratory loading. Physiol Rep 2020; 8:e14522. [PMID: 32726513 PMCID: PMC7389984 DOI: 10.14814/phy2.14522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to examine scalene (SA) and sternocleidomastoid (SM) activation during normoxic (norm-ITL; FIO2 = 21%) and hypoxic (hyp-ITL; FIO2 = 15%) incremental inspiratory threshold loading (ITL). Thirteen healthy participants (33 ± 4 years, 9 female) performed two ITL tests breathing randomly assigned gas mixtures through an inspiratory loading device where the load was increased every two minutes until task failure. SA and SM root mean square (RMS) electromyography (EMG) were calculated and expressed as a percentage of maximum (RMS%max ) to reflect muscle activation intensity. Myoelectric manifestations of fatigue were characterized as decreased SA or SM EMG median frequency during maximum inspiratory pressure maneuvers before and after ITL. Dyspnea was recorded at baseline and task failure. Ventilatory parameters and mouth pressure (Pm) were recorded throughout the ITL. SA,RMS%max and SM,RMS%max increased in association with ITL load (p ≤ .01 for both). SA,RMS%max was similar between norm-ITL and hyp-ITL (p = .17), whereas SM,RMS%max was greater during the latter (p = .001). Neither SA nor SM had a decrease in EMG median frequency after ITL (p = .75 and 0.69 respectively). Pm increased in association with ITL load (p < .001) and tended to be higher during hyp-ITL compared to norm-ITL (p = .05). Dyspnea was similar during both conditions (p > .05). There was a trend for higher tidal volumes during hyp-ITL compared to norm-ITL (p = .10). Minute ventilation was similar between both conditions (p = .23). RMS,%max of the SA and SM increased linearly with increasing ITL. The presence of hypoxia only increased SM activation. Neither SA nor SM presented myoelectric manifestations of fatigue during both conditions.
Collapse
Affiliation(s)
- Nada Basoudan
- Department of Physical TherapyUniversity of British Columbia (UBC)VancouverBCCanada
- College of Health and Rehabilitation SciencesPrincess Nourah bint Abdulrhaman UniversityRiyadhSaudi Arabia
| | | | - Alessio Gallina
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine)School of Sport, Exercise and Rehabilitation SciencesCollege of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Jayne Garland
- Faculty of Health SciencesWestern UniversityLondonONCanada
| | - Jordan A. Guenette
- Department of Physical TherapyUniversity of British Columbia (UBC)VancouverBCCanada
- Centre for Heart Lung InnovationUBC and St. Paul's HospitalVancouverBCCanada
| | - Babak Shadgan
- International Collaboration on Repair DiscoveriesVancouverBCCanada
| | - Jeremy Road
- Division of Respiratory MedicineDepartment of MedicineUniversity of British Columbia (UBC)VancouverBCCanada
| | - W. Darlene Reid
- Physical TherapyUniversity of TorontoTorontoONCanada
- KITEToronto RehabTorontoONCanada
- Interdepartmental Division of Critical Care MedicineUniversity of TorontoTorontoONCanada
| |
Collapse
|
16
|
Rampichini S, Vieira TM, Castiglioni P, Merati G. Complexity Analysis of Surface Electromyography for Assessing the Myoelectric Manifestation of Muscle Fatigue: A Review. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E529. [PMID: 33286301 PMCID: PMC7517022 DOI: 10.3390/e22050529] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 01/13/2023]
Abstract
The surface electromyography (sEMG) records the electrical activity of muscle fibers during contraction: one of its uses is to assess changes taking place within muscles in the course of a fatiguing contraction to provide insights into our understanding of muscle fatigue in training protocols and rehabilitation medicine. Until recently, these myoelectric manifestations of muscle fatigue (MMF) have been assessed essentially by linear sEMG analyses. However, sEMG shows a complex behavior, due to many concurrent factors. Therefore, in the last years, complexity-based methods have been tentatively applied to the sEMG signal to better individuate the MMF onset during sustained contractions. In this review, after describing concisely the traditional linear methods employed to assess MMF we present the complexity methods used for sEMG analysis based on an extensive literature search. We show that some of these indices, like those derived from recurrence plots, from entropy or fractal analysis, can detect MMF efficiently. However, we also show that more work remains to be done to compare the complexity indices in terms of reliability and sensibility; to optimize the choice of embedding dimension, time delay and threshold distance in reconstructing the phase space; and to elucidate the relationship between complexity estimators and the physiologic phenomena underlying the onset of MMF in exercising muscles.
Collapse
Affiliation(s)
- Susanna Rampichini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (S.R.); (G.M.)
| | - Taian Martins Vieira
- Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, 10129 Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | | | - Giampiero Merati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (S.R.); (G.M.)
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy;
| |
Collapse
|
17
|
Garcia MG, Tapia P, Läubli T, Martin BJ. Physiological and neuromotor changes induced by two different stand-walk-sit work rotations. ERGONOMICS 2020; 63:163-174. [PMID: 31594482 DOI: 10.1080/00140139.2019.1677949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/31/2019] [Indexed: 05/23/2023]
Abstract
The potential of rotating postures to alleviate the effects of prolonged standing and sitting postures has been advocated to attenuate the accumulation of muscle fatigue, considered a precursor to musculoskeletal disorders. We aimed to evaluate the effects of two posture rotations, both including standing, walking, sitting, on physiological and neuromotor measures. Twenty-two participants followed two posture rotations, with different rest-break distributions, for 5.25 h. Lower-leg muscle twitch force, volume, force control and discomfort perception were evaluated during and after work exposure on two non-consecutive days. Significant changes in all measures indicate a detrimental effect in lower-leg long-lasting muscle fatigue, oedema, performance and discomfort after 5 h for both exposures. However, for both exposures recovery was significant 1 h and 15 h post-workday. Differences between the two rotation schedules were not significant. Hence, stand-walk-sit posture rotation promotes recovery of the tested measures and is likely to better prevent muscle fatigue accumulation. Practitioner summary: Lower-leg muscle twitch force, volume, force control, and discomfort were quantified during and after 5 h of stand-walk-sit work rotations with two different rest-break distributions. Measures revealed similar significant effects of work exposures regardless of rotation; which did not persist post-work. This beneficial recovery contrasts with the standing only situations. Abbreviations: MSDs: musculoskeletal disorders; MTF: muscle twitch force; RMSE: root mean square error; MVC: maximum voluntary contraction; M: mean; SE: standard error.
Collapse
Affiliation(s)
- Maria-Gabriela Garcia
- Department of Industrial Engineering, Universidad San Francisco de Quito, Quito, Ecuador
| | - Paola Tapia
- Department of Industrial Engineering, Universidad San Francisco de Quito, Quito, Ecuador
| | - Thomas Läubli
- Institute of Occupational and Social Medicine and Health Services Research, University of Tübingen, Tubingen, Germany
| | - Bernard J Martin
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Sanderson A, Cescon C, Heneghan NR, Kuithan P, Martinez-Valdes E, Rushton A, Barbero M, Falla D. People With Low Back Pain Display a Different Distribution of Erector Spinae Activity During a Singular Mono-Planar Lifting Task. Front Sports Act Living 2019; 1:65. [PMID: 33344988 PMCID: PMC7739704 DOI: 10.3389/fspor.2019.00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the variation in muscle activity and movement in the lumbar and lumbothoracic region during a singular mono-planar lifting task, and how this is altered in individuals experiencing low back pain (LBP). Muscle activity from the lumbar and lumbothoracic erector spinae of 14 control and 11 LBP participants was recorded using four 13 × 5 high-density surface electromyography (HDEMG) grids. Root mean squared HDEMG signals were used to create spatial maps of the distribution of muscle activity. Three-dimensional kinematic data were recorded focusing on the relationship between lumbar and thoracic movements. In the task, participants lifted a 5 kg box from knee height to sternal height, and then returned the box to the starting position. The center of muscle activity for LBP participants was found to be systematically more cranial throughout the task compared to the control participants (P < 0.05). Participants with LBP also had lower signal entropy (P < 0.05) and lower absolute root mean squared values (P < 0.05). However, there were no differences between groups in kinematic variables, with no difference in contributions between lumbar and thoracic motion segments (P > 0.05). These results indicate that participants with LBP utilize an altered motor control strategy to complete a singular lifting task which is not reflected in their movement strategy. While no differences were identified between groups in the motion between lumbar and thoracic motion segments, participants with LBP utilized a less homogenous, less diffuse and more cranially focussed contraction of their erector spinae to complete the lifting movement. These results may have relevance for the persistence of LBP symptoms and the development of new treatments focussing on muscle retraining in LBP.
Collapse
Affiliation(s)
- Andy Sanderson
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Corrado Cescon
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Nicola R Heneghan
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Pauline Kuithan
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alison Rushton
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marco Barbero
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
19
|
Cè E, Longo S, Limonta E, Coratella G, Rampichini S, Esposito F. Peripheral fatigue: new mechanistic insights from recent technologies. Eur J Appl Physiol 2019; 120:17-39. [DOI: 10.1007/s00421-019-04264-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
|
20
|
Sanderson A, Martinez-Valdes E, Heneghan NR, Murillo C, Rushton A, Falla D. Variation in the spatial distribution of erector spinae activity during a lumbar endurance task in people with low back pain. J Anat 2019; 234:532-542. [PMID: 30663783 DOI: 10.1111/joa.12935] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2018] [Indexed: 01/16/2023] Open
Abstract
This study aimed to investigate the spatial distribution and redistribution of lumbar erector spinae (ES) activity during a lumbar extension endurance task in pain-free participants and how this is modified in people with low back pain (LBP). High density surface electromyography (HDEMG) was recorded using 13 × 5 electrode grids placed over the lumbar ES in 13 LBP and 13 control participants while completing an Ito test to task failure. The root mean square of the HDEMG signals was computed, a topographical map of the EMG amplitude generated and the centre of the activity (centroid) determined throughout the task. The centroid of the EMG amplitude map was systematically more cranial (F = 6.09, P = 0.022) for the LBP participants compared with the control subjects. Regression analysis showed that the extent of redistribution of ES activity was associated with longer endurance. These results show that LBP participants utilised a different motor strategy to perform the endurance task, characterised by greater activation of more cranial regions of the ES and less redistribution of ES activity throughout the task. This study provides new insight into the functional activation of the lumbar ES and how it is modified when people have pain.
Collapse
Affiliation(s)
- Andy Sanderson
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Nicola R Heneghan
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Carlos Murillo
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Alison Rushton
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Cabral EEA, Fregonezi GAF, Melo L, Basoudan N, Mathur S, Reid WD. Surface electromyography (sEMG) of extradiaphragm respiratory muscles in healthy subjects: A systematic review. J Electromyogr Kinesiol 2018; 42:123-135. [PMID: 30077087 DOI: 10.1016/j.jelekin.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 11/27/2022] Open
Abstract
The aim of this systematic review was to examine procedures used and outcome measures reported from surface EMG (sEMG) of extradiaphragm inspiratory muscles in healthy people. Relevant articles were searched using the concepts "electromyography (EMG)", "respiratory muscles (sternocleidomastoid [SM], scalene, intercostal [IC] and parasternal)" and "healthy" in the electronic databases: MEDLINE, PubMed, EMBASE, Cochrane CENTRAL and Database of Systematic Reviews, CINAHL, SPORTDiscus, LILACS, and PEDro. Twenty-five papers were included and quality assessment was performed using an adapted Downs and Black checklist. Twenty-eight percent of included papers were classified as moderate quality and the rest were low quality. The SM was the muscle most often investigated. Description of EMG techniques were often incomplete for features such as the procedure before electrode placement, description of the surface electrodes, the EMG detection mode and amplification. Of note, descriptions of the IC muscle electrode positioning varied widely. Comparison of outcomes among studies was challenging because of the very diverse EMG outcomes reported. There are many controversies regarding methods and technique used to assess sEMG of extradiaphragm inspiratory muscles. Therefore, studies with higher methodological quality utilizing standardized EMG procedures including electrode positioning will enable accurate and reliable comparison among studies of the extradiaphragm inspiratory muscles.
Collapse
Affiliation(s)
- Elis E A Cabral
- Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; PneumoCardioVascular Lab, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares (EBSERH), UFRN, Natal, RN, Brazil
| | - Guilherme A F Fregonezi
- Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; PneumoCardioVascular Lab, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares (EBSERH), UFRN, Natal, RN, Brazil
| | - Luana Melo
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Nada Basoudan
- Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sunita Mathur
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada; Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - W Darlene Reid
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada; Toronto Rehabilitation Institute, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Gallina A, Garland SJ, Wakeling JM. Identification of regional activation by factorization of high-density surface EMG signals: A comparison of Principal Component Analysis and Non-negative Matrix factorization. J Electromyogr Kinesiol 2018; 41:116-123. [PMID: 29879693 DOI: 10.1016/j.jelekin.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/13/2018] [Accepted: 05/18/2018] [Indexed: 11/18/2022] Open
Abstract
In this study, we investigated whether principal component analysis (PCA) and non-negative matrix factorization (NMF) perform similarly for the identification of regional activation within the human vastus medialis. EMG signals from 64 locations over the VM were collected from twelve participants while performing a low-force isometric knee extension. The envelope of the EMG signal of each channel was calculated by low-pass filtering (8 Hz) the monopolar EMG signal after rectification. The data matrix was factorized using PCA and NMF, and up to 5 factors were considered for each algorithm. Association between explained variance, spatial weights and temporal scores between the two algorithms were compared using Pearson correlation. For both PCA and NMF, a single factor explained approximately 70% of the variance of the signal, while two and three factors explained just over 85% or 90%. The variance explained by PCA and NMF was highly comparable (R > 0.99). Spatial weights and temporal scores extracted with non-negative reconstruction of PCA and NMF were highly associated (all p < 0.001, mean R > 0.97). Regional VM activation can be identified using high-density surface EMG and factorization algorithms. Regional activation explains up to 30% of the variance of the signal, as identified through both PCA and NMF.
Collapse
Affiliation(s)
- Alessio Gallina
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - S Jayne Garland
- Department of Physical Therapy, University of British Columbia, Vancouver V6T 1Z3, Canada; Faculty of Health Sciences, University of Western Ontario, London N6A 5B9, Canada.
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby V5A 1S6, Canada
| |
Collapse
|
23
|
Wang K, Zhang X, Ota J, Huang Y. Estimation of Handgrip Force from SEMG Based on Wavelet Scale Selection. SENSORS 2018; 18:s18020663. [PMID: 29495248 PMCID: PMC5855185 DOI: 10.3390/s18020663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 11/16/2022]
Abstract
This paper proposes a nonlinear correlation-based wavelet scale selection technology to select the effective wavelet scales for the estimation of handgrip force from surface electromyograms (SEMG). The SEMG signal corresponding to gripping force was collected from extensor and flexor forearm muscles during the force-varying analysis task. We performed a computational sensitivity analysis on the initial nonlinear SEMG-handgrip force model. To explore the nonlinear correlation between ten wavelet scales and handgrip force, a large-scale iteration based on the Monte Carlo simulation was conducted. To choose a suitable combination of scales, we proposed a rule to combine wavelet scales based on the sensitivity of each scale and selected the appropriate combination of wavelet scales based on sequence combination analysis (SCA). The results of SCA indicated that the scale combination VI is suitable for estimating force from the extensors and the combination V is suitable for the flexors. The proposed method was compared to two former methods through prolonged static and force-varying contraction tasks. The experiment results showed that the root mean square errors derived by the proposed method for both static and force-varying contraction tasks were less than 20%. The accuracy and robustness of the handgrip force derived by the proposed method is better than that obtained by the former methods.
Collapse
Affiliation(s)
- Kai Wang
- Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology, South China University of Technology, Guangzhou 510640, China.
| | - Xianmin Zhang
- Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology, South China University of Technology, Guangzhou 510640, China.
| | - Jun Ota
- Research into Artifacts, Center for Engineering, University of Tokyo, Chiba 113-8654, Japan.
| | - Yanjiang Huang
- Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology, South China University of Technology, Guangzhou 510640, China.
- Research into Artifacts, Center for Engineering, University of Tokyo, Chiba 113-8654, Japan.
| |
Collapse
|
24
|
Vinti M, Gracies JM, Gazzoni M, Vieira T. Localised sampling of myoelectric activity may provide biased estimates of cocontraction for gastrocnemius though not for soleus and tibialis anterior muscles. J Electromyogr Kinesiol 2018; 38:34-43. [DOI: 10.1016/j.jelekin.2017.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022] Open
|
25
|
Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue. ENTROPY 2017. [DOI: 10.3390/e19120697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Muscle Fatigue Analysis of the Deltoid during Three Head-Related Static Isometric Contraction Tasks. ENTROPY 2017. [DOI: 10.3390/e19050221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study aimed to investigate the fatiguing characteristics of muscle-tendon units (MTUs) within skeletal muscles during static isometric contraction tasks. The deltoid was selected as the target muscle and three head-related static isometric contraction tasks were designed to activate three heads of the deltoid in different modes. Nine male subjects participated in this study. Surface electromyography (SEMG) signals were collected synchronously from the three heads of the deltoid. The performances of five SEMG parameters, including root mean square (RMS), mean power frequency (MPF), the first coefficient of autoregressive model (ARC1), sample entropy (SE) and Higuchi’s fractal dimension (HFD), in quantification of fatigue, were evaluated in terms of sensitivity to variability ratio (SVR) and consistency firstly. Then, the HFD parameter was selected as the fatigue index for further muscle fatigue analysis. The experimental results demonstrated that the three deltoid heads presented different activation modes during three head-related fatiguing contractions. The fatiguing characteristics of the three heads were found to be task-dependent, and the heads kept in a relatively high activation level were more prone to fatigue. In addition, the differences in fatiguing rate between heads increased with the increase in load. The findings of this study can be helpful in better understanding the underlying neuromuscular control strategies of the central nervous system (CNS). Based on the results of this study, the CNS was thought to control the contraction of the deltoid by taking the three heads as functional units, but a certain synergy among heads might also exist to accomplish a contraction task.
Collapse
|
27
|
Karakuzu A, Pamuk U, Ozturk C, Acar B, Yucesoy CA. Magnetic resonance and diffusion tensor imaging analyses indicate heterogeneous strains along human medial gastrocnemius fascicles caused by submaximal plantar-flexion activity. J Biomech 2017; 57:69-78. [DOI: 10.1016/j.jbiomech.2017.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/27/2016] [Accepted: 03/31/2017] [Indexed: 11/29/2022]
|
28
|
Marco G, Alberto B, Taian V. Surface EMG and muscle fatigue: multi-channel approaches to the study of myoelectric manifestations of muscle fatigue. Physiol Meas 2017; 38:R27-R60. [DOI: 10.1088/1361-6579/aa60b9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
de Souza LML, da Fonseca DB, Cabral HDV, de Oliveira LF, Vieira TM. Is myoelectric activity distributed equally within the rectus femoris muscle during loaded, squat exercises? J Electromyogr Kinesiol 2017; 33:10-19. [PMID: 28110043 DOI: 10.1016/j.jelekin.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 11/28/2022] Open
Abstract
Recent evidence suggests different regions of the rectus femoris (RF) muscle respond differently to squat exercises. Such differential adaptation may result from neural inputs distributed locally within RF, as previously reported for isometric contractions, walking and in response to fatigue. Here we therefore investigate whether myoelectric activity distributes evenly within RF during squat. Surface electromyograms (EMGs) were sampled proximally and distally from RF with arrays of electrodes, while thirteen healthy volunteers performed 10 consecutive squats with 20% and 40% of their body weight. The root mean square (RMS) value, computed separately for thirds of the concentric and eccentric phases, was considered to assess the proximo-distal changes in EMG amplitude during squat. The channels with variations in EMG amplitude during squat associated with shifts in the muscle innervation zone were excluded from analysis. No significant differences were observed between RF regions when considering squat phases and knee joint angles individually (P>0.16) while a significant interaction between phase and knee joint angle with detection site was observed (P<0.005). For the two loads considered, proximal RMS values were greater during the eccentric phase and for the more flexed knee joint position (P<0.001). Our results suggest inferences on the degree of RF activation during squat must be made cautiously from surface EMGs. Of more practical relevance, there may be a potential for the differential adaption of RF proximal and distal regions to squat exercises.
Collapse
Affiliation(s)
| | - Desirée Barros da Fonseca
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hélio da Veiga Cabral
- Programa de Engenharia Biomédica (COPPE), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Liliam Fernandes de Oliveira
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Engenharia Biomédica (COPPE), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Taian Martins Vieira
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino, Italy
| |
Collapse
|
30
|
Vieira TM, Readi NG, Schwarcke L, Botter A. The effect of lymph drainage on the myoelectric manifestation of vastus lateralis fatigue: Preliminary results. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6671-4. [PMID: 26737823 DOI: 10.1109/embc.2015.7319923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Variations in surface electromyograms (EMGs) collected from the vastus lateralis muscle during isometric fatiguing contractions were investigated pre-post lymphatic drainage (intervention group, N=3) and pre-post rest (control group, N=3). The slope of conduction velocity and of EMG amplitude and spectral descriptors was computed from the start to the failure time; the instant after which subjects could not endure contractions. When compared to subjects in the control group, those in the intervention group endured longer. Similarly, muscle fatigue affected to a lesser extent EMGs following lymphatic drainage than following rest. These preliminary results suggest the lymphatic drainage may potentially delay muscle fatigue.
Collapse
|
31
|
Vieira TM, Botter A, Minetto MA, Hodson-Tole EF. Spatial variation of compound muscle action potentials across human gastrocnemius medialis. J Neurophysiol 2015; 114:1617-27. [PMID: 26156382 DOI: 10.1152/jn.00221.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/26/2015] [Indexed: 12/14/2022] Open
Abstract
The massed action potential (M wave) elicited through nerve stimulation underpins a wide range of physiological and mechanical understanding of skeletal muscle structure and function. Although systematic approaches have evaluated the effect of different factors on M waves, the effect of the location and distribution of activated fibers within the muscle remains unknown. By detecting M waves from the medial gastrocnemius (MG) of 12 participants with a grid of 128 electrodes, we investigated whether different populations of muscle units have different spatial organization within MG. If populations of muscle units occupy discrete MG regions, current pulses of progressively greater intensities applied to the MG nerve branch would be expected to lead to local changes in M-wave amplitudes. Electrical pulses were therefore delivered at 2 pps, with the current pulse amplitude increased every 10 stimuli to elicit different degrees of muscle activation. The localization of MG response to increases in current intensity was determined from the spatial distribution of M-wave amplitude. Key results revealed that increases in M-wave amplitude were detected somewhat locally, by 10-50% of the 128 electrodes. Most importantly, the electrodes detecting greatest increases in M-wave amplitude were localized at different regions in the grid, with a tendency for greater stimulation intensities to elicit M waves in the more distal MG region. The presented results indicate that M waves recorded locally may not provide a representative MG response, with major implications for the estimation of, e.g., the maximal stimulation levels, the number of motor units, and the onset and normalization in H-reflex studies.
Collapse
Affiliation(s)
- Taian M Vieira
- Laboratorio di Ingegneria del Sistema Neuromuscolare, Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Turin, Italy; Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Botter
- Laboratorio di Ingegneria del Sistema Neuromuscolare, Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Turin, Italy;
| | - Marco A Minetto
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy; Division of Physical Medicine and Rehabilitation, Department of Surgical Sciences, University of Turin, Turin, Italy; and
| | - Emma F Hodson-Tole
- School of Healthcare Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
32
|
Variations in the spatial distribution of the amplitude of surface electromyograms are unlikely explained by changes in the length of medial gastrocnemius fibres with knee joint angle. PLoS One 2015; 10:e0126888. [PMID: 26001107 PMCID: PMC4441502 DOI: 10.1371/journal.pone.0126888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
This study investigates whether knee position affects the amplitude distribution of surface electromyogram (EMG) in the medial gastrocnemius (MG) muscle. Of further concern is understanding whether knee-induced changes in EMG amplitude distribution are associated with regional changes in MG fibre length. Fifteen surface EMGs were acquired proximo-distally from the MG muscle while 22 (13 male) healthy participants (age range: 23–47 years) exerted isometric plantar flexion at 60% of their maximal effort, with knee fully extended and at 90 degrees flexion. The number of channels providing EMGs with greatest amplitude, their relative proximo-distal position and the EMG amplitude averaged over channels were considered to characterise changes in myoelectric activity with knee position. From ultrasound images, collected at rest, fibre length, pennation angle and fat thickness were computed for MG proximo-distal regions. Surface EMGs detected with knee flexed were on average five times smaller than those collected during knee extended. However, during knee flexed, relatively larger EMGs were detected by a dramatically greater number of channels, centred at the MG more proximal regions. Variation in knee position at rest did not affect the proximo-distal values obtained for MG fibre length, pennation angle and fat thickness. Our main findings revealed that, with knee flexion: i) there is a redistribution of activity within the whole MG muscle; ii) EMGs detected locally unlikely suffice to characterise the changes in the neural drive to MG during isometric contractions at knee fully extended and 90 degrees flexed positions; iii) sources other than fibre length may substantially contribute to determining the net, MG activation.
Collapse
|
33
|
Watanabe K, Kouzaki M, Moritani T. Heterogeneous neuromuscular activation within human rectus femoris muscle during pedaling. Muscle Nerve 2015; 52:404-11. [DOI: 10.1002/mus.24544] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics; School of International Liberal Studies, Chukyo University; Yagotohonmachi Showa-ku Nagoya 466-8666 Japan
| | - Motoki Kouzaki
- Laboratory of Neurophysiology; Graduate School of Human and Environmental Studies, Kyoto University; Kyoto Japan
| | - Toshio Moritani
- Laboratory of Applied Physiology; Graduate School of Human and Environmental Studies, Kyoto University; Kyoto Japan
| |
Collapse
|
34
|
Itiki C, Furuie SS, Merletti R. Compression of high-density EMG signals for trapezius and gastrocnemius muscles. Biomed Eng Online 2014; 13:25. [PMID: 24612604 PMCID: PMC3984708 DOI: 10.1186/1475-925x-13-25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/04/2014] [Indexed: 11/25/2022] Open
Abstract
Background New technologies for data transmission and multi-electrode arrays increased the demand for compressing high-density electromyography (HD EMG) signals. This article aims the compression of HD EMG signals recorded by two-dimensional electrode matrices at different muscle-contraction forces. It also shows methodological aspects of compressing HD EMG signals for non-pinnate (upper trapezius) and pinnate (medial gastrocnemius) muscles, using image compression techniques. Methods HD EMG signals were placed in image rows, according to two distinct electrode orders: parallel and perpendicular to the muscle longitudinal axis. For the lossless case, the images obtained from single-differential signals as well as their differences in time were compressed. For the lossy algorithm, the images associated to the recorded monopolar or single-differential signals were compressed for different compression levels. Results Lossless compression provided up to 59.3% file-size reduction (FSR), with lower contraction forces associated to higher FSR. For lossy compression, a 90.8% reduction on the file size was attained, while keeping the signal-to-noise ratio (SNR) at 21.19 dB. For a similar FSR, higher contraction forces corresponded to higher SNR Conclusions The computation of signal differences in time improves the performance of lossless compression while the selection of signals in the transversal order improves the lossy compression of HD EMG, for both pinnate and non-pinnate muscles.
Collapse
Affiliation(s)
- Cinthia Itiki
- Biomedical Engineering Laboratory, Department of Telecommunications and Control Engineering, Escola Politecnica, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | |
Collapse
|
35
|
Mista CA, Salomoni SE, Graven-Nielsen T. Spatial reorganisation of muscle activity correlates with change in tangential force variability during isometric contractions. J Electromyogr Kinesiol 2013; 24:37-45. [PMID: 24321699 DOI: 10.1016/j.jelekin.2013.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/12/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022] Open
Abstract
The aim of this study was to quantify the effects of spatial reorganisation of muscle activity on task-related and tangential components of force variability during sustained contractions. Three-dimensional forces were measured from isometric elbow flexion during submaximal contractions (50s, 5-50% of maximal voluntary contraction (MVC)) and total excursion of the centre of pressure was extracted. Spatial electromyographic (EMG) activity was recorded from the biceps brachii muscle. The centroids of the root mean square (RMS) EMG and normalised mutual information (NMI) maps were computed to assess spatial muscle activity and spatial relationship between EMG and task-related force variability, respectively. Result showed that difference between the position of the centroids at the beginning and at the end of the contraction of the RMS EMG and the NMI maps were different in the medial-lateral direction (P<0.05), reflecting that muscle regions modulate their activity without necessarily modulating the contribution to the task-related force variability over time. Moreover, this difference between shifts of the centroids was positively correlated with the total excursion of the centre of pressure at the higher levels of contractions (>30% MVC, R(2)>0.30, P<0.05), suggesting that changes in spatial muscle activity could impact on the modulation of tangential forces. Therefore, within-muscle adaptations do not necessarily increase force variability, and this interaction can be quantified by analysing the RMS EMG and the NMI map centroids.
Collapse
Affiliation(s)
- Christian A Mista
- Laboratory for Musculoskeletal Pain and Motor Control, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - Sauro E Salomoni
- Laboratory for Musculoskeletal Pain and Motor Control, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - Thomas Graven-Nielsen
- Laboratory for Musculoskeletal Pain and Motor Control, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark.
| |
Collapse
|
36
|
Vieira TMM, Minetto MA, Hodson-Tole EF, Botter A. How much does the human medial gastrocnemius muscle contribute to ankle torques outside the sagittal plane? Hum Mov Sci 2013; 32:753-67. [PMID: 23992638 PMCID: PMC3791398 DOI: 10.1016/j.humov.2013.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 02/14/2013] [Accepted: 03/27/2013] [Indexed: 12/26/2022]
Abstract
Ankle movements in the frontal plane are less prominent though not less relevant than movements in the plantar or dorsal flexion direction. Walking on uneven terrains and standing on narrow stances are examples of circumstances likely imposing marked demands on the ankle medio-lateral stabilization. Following our previous evidence associating lateral bodily sways in quiet standing to activation of the medial gastrocnemius (MG) muscle, in this study we ask: how large is the MG contribution to ankle torque in the frontal plane? By arranging stimulation electrodes in a selective configuration, current pulses were applied primarily to the MG nerve branch of ten subjects. The contribution of populations of MG motor units of progressively smaller recruitment threshold to ankle torque was evaluated by increasing the stimulation amplitude by fixed amounts. From smallest intensities (12–32 mA) leading to the firstly observable MG twitches in force-plate recordings, current pulses reached intensities (56–90 mA) below which twitches in other muscles could not be observed from the skin. Key results showed a substantial MG torque contribution tending to rotate upward the foot medial aspect (ankle inversion). Nerve stimulation further revealed a linear relationship between the peak torque of ankle plantar flexion and inversion, across participants (Pearson R > .81, p < .01). Specifically, regardless of the current intensity applied, the peak torque of ankle inversion amounted to about 13% of plantar flexion peak torque. Physiologically, these results provide experimental evidence that MG activation may contribute to stabilize the body in the frontal plane, especially under situations of challenged stability.
Collapse
Affiliation(s)
- Taian M M Vieira
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Brazil; Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Politecnico di Torino, Italy.
| | | | | | | |
Collapse
|
37
|
von Tscharner V, Maurer C, Ruf F, Nigg BM. Comparison of electromyographic signals from monopolar current and potential amplifiers derived from a penniform muscle, the gastrocnemius medialis. J Electromyogr Kinesiol 2013; 23:1044-51. [PMID: 23938250 DOI: 10.1016/j.jelekin.2013.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 06/25/2013] [Accepted: 07/09/2013] [Indexed: 11/26/2022] Open
Abstract
Electromyograms (EMGs) are measured by bipolar surface electrodes that quantify potential differences. Bipolar potentials over penniform muscles may be associated with errors. Our assumption was that muscle activity can be quantified more reliably and with a higher spatial resolution using current measurements. The purpose of this work is: (a) to introduce the concept of current measurements to detect muscle activity, (b) to show the coherences observed over a segment of a typical penniform muscle, the gastrocnemius medialis where one would expect a synchronicity of the activation, and (c) to show the amount of mixing that is caused by the finite inter electrode resistance. A current amplifier was developed. EMGs were recorded at 40% of maximum voluntary contraction during isometric contractions of the gastrocnemius medialis. EMGs of twelve persons were recorded with an array of four peripheral and one central electrode. Monopolar EMGs were recorded for "all-potential", "center at current" and "all-current" conditions. Coherence revealed the similarity of signals recorded from neighboring electrodes. Coherence was high for the "all-potential", significant for the "current at center" condition and disappeared in the "all-current" condition. It was concluded that EMG array recordings strongly depends on the measurement configuration. The proposed current amplifier significantly improves spatial resolution of EMG array recordings because the inter-electrode cross talk is reduced.
Collapse
Affiliation(s)
- Vinzenz von Tscharner
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | | | | | | |
Collapse
|
38
|
Botter A, Vieira TMM, Loram ID, Merletti R, Hodson-Tole EF. A novel system of electrodes transparent to ultrasound for simultaneous detection of myoelectric activity and B-mode ultrasound images of skeletal muscles. J Appl Physiol (1985) 2013; 115:1203-14. [PMID: 23908313 PMCID: PMC3798813 DOI: 10.1152/japplphysiol.00090.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Application of two-dimensional surface electrode arrays can provide a means of mapping motor unit action potentials on the skin surface above a muscle. The resulting muscle tissue displacement can be quantified, in a single plane, using ultrasound (US) imaging. Currently, however, it is not possible to simultaneously map spatio-temporal propagation of activation and resulting tissue strain. In this paper, we developed and tested a material that will enable concurrent measurement of two-dimensional surface electromyograms (EMGs) with US images. Specific protocols were designed to test the compatibility of this new electrode material, both with EMG recording and with US analysis. Key results indicate that, for this new electrode material, 1) the electrode-skin impedance is similar to that of arrays of electrodes reported in literature; 2) the reflection of US at the electrode-skin interface is negligible; 3) the likelihood of observing missing contacts, short-circuits, and artifacts in EMGs is not affected by the US probe; 4) movement of tissues sampled by US can be tracked accurately. We, therefore, conclude this approach will facilitate multimodal imaging of muscle to provide new spatio-temporal information regarding electromechanical function of muscle. This is relevant to basic physiology-biomechanics of active and passive force transmission through and between muscles, of motor unit spatio-temporal activity patterns, of their variation with architecture and task-related function, and of their adaptation with aging, training-exercise-disuse, neurological disease, and injury.
Collapse
Affiliation(s)
- A Botter
- Laboratorio di Ingegneria del Sistema Neuromuscolare, Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Italy
| | | | | | | | | |
Collapse
|
39
|
Watanabe K, Kouzaki M, Moritani T. Region-specific myoelectric manifestations of fatigue in human rectus femoris muscle. Muscle Nerve 2013; 48:226-34. [DOI: 10.1002/mus.23739] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Kohei Watanabe
- School of International Liberal Studies; Chukyo University; Yagotohonmachi, Showa-ku Nagoya Japan 466-8666
| | - Motoki Kouzaki
- Laboratory of Neurophysiology; Graduate School of Human and Environmental Studies, Kyoto University; Kyoto Japan
| | - Toshio Moritani
- Laboratory of Applied Physiology; Graduate School of Human and Environmental Studies, Kyoto University; Kyoto Japan
| |
Collapse
|
40
|
Gallina A, Ritzel CH, Merletti R, Vieira TMM. Do surface electromyograms provide physiological estimates of conduction velocity from the medial gastrocnemius muscle? J Electromyogr Kinesiol 2012; 23:319-25. [PMID: 23265664 DOI: 10.1016/j.jelekin.2012.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/09/2012] [Accepted: 11/11/2012] [Indexed: 11/18/2022] Open
Abstract
Muscle fiber conduction velocity (CV) is commonly estimated from surface electromyograms (EMGs) collected with electrodes parallel to muscle fibers. If electrodes and muscle fibers are not located in parallel planes, CV estimates are biased towards values far over the physiological range. In virtue of their pinnate architecture, the fibers of muscles such as the gastrocnemius are hardly aligned in planes parallel to surface electrodes. Therefore, in this study we investigate whether physiological CV estimates can be obtained from the gastrocnemius muscle. Specifically, with a large grid of 16×8 electrodes we map CV estimates over the whole gastrocnemius muscle while eleven subjects exerted isometric plantar flexions at three different force levels. CV was estimated for couples of single differential EMGs and estimate locations (i.e., channels) were classified as physiological and non-physiological, depending on whether CV estimates were within the physiological range (3-6ms(-1)) or not. Physiological CV values could be estimated from a markedly small muscle region for eight participants; channels providing physiological CV estimates corresponded to about 5% of the total number of channels. As expected, physiological and non-physiological channels were clustered in distinct regions. CV estimates within the physiological range were obtained for the most distal gastrocnemius portion (ANOVA, P<0.001), where occurrences of propagating potentials were often verified through visual analysis. For the first time, this study shows that CV might be reliably assessed from surface EMGs collected from the most distal gastrocnemius region.
Collapse
Affiliation(s)
- Alessio Gallina
- Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Politecnico di Torino, Italy
| | | | | | | |
Collapse
|