1
|
Singh S, Singh AK, Pradhan B, Tripathi S, Kumar KS, Chand S, Rout PR, Shahid MK. Harnessing Trichoderma Mycoparasitism as a Tool in the Management of Soil Dwelling Plant Pathogens. MICROBIAL ECOLOGY 2024; 87:158. [PMID: 39708106 DOI: 10.1007/s00248-024-02472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024]
Abstract
Maintaining and enhancing agricultural productivity for food security while preserving the ecology and environment from the harmful effects of toxicants is the main challenge in modern monoculture farming systems. Microbial biological agents can be a promising substitute for traditional synthetic pesticides to manage plant diseases. Trichoderma spp. are soil-dwelling ascomycete fungi and are common biocontrol agents against diverse phytopathogens. Trichoderma-based biocontrol techniques can regulate and control soil-borne plant diseases through mechanisms such as mycoparasitism, the production of antibiotics and hydrolytic enzymes, rhizo-sphere competence, the effective competition for available resources, induction of plant resistance and facilitation of plant growth. Numerous secondary metabolites produced by Trichoderma spp. are reported to prevent the development of soil-borne plant disease. Thus, Trichoderma spp. may have direct and indirect biological impacts on the targeted plant pathogens. Furthermore, this review discusses the convenient implications and challenges of applying Trichoderma-based strategies in agricultural settings. Overall, the assessment underscores the potential of Trichoderma as a sustainable and effective tool for mitigating soil-borne pathogens, highlighting avenues for future research and applications.
Collapse
Affiliation(s)
- Srishti Singh
- Department of Botany, CMP Degree College, University of Allahabad, Uttar Pradesh, Prayagraj, 211002, India
| | - Alok Kumar Singh
- Department of Botany, CMP Degree College, University of Allahabad, Uttar Pradesh, Prayagraj, 211002, India
| | - Bhubaneswar Pradhan
- Division of Agricultural Biotechnology, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, 700103, West Bengal, India
| | - Sudipta Tripathi
- School of Environment and Disaster Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus Kolkata, Kolkata, 700103, West Bengal, India
| | - Kewat Sanjay Kumar
- Department of Botany, University of Allahabad, Uttar Pradesh, Prayagraj, 211002, India
| | - Sasmita Chand
- Manipal School of Architecture and Planning, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Prangya Ranjan Rout
- Department of Biotechnology, Dr B Ambedkar National Institute of Technology Jalandhar, Punjab, 144011, India
| | - Muhammad Kashif Shahid
- Faculty of Civil and Architecture, National Polytechnic Institute of Cambodia (NPIC), Phnom Penh, 12409, Cambodia
| |
Collapse
|
2
|
Rios Valle DI, Medina EYG, Advíncula Zeballos O. Airborne fungal concentrations around the Modelo Callao Landfill. Heliyon 2024; 10:e38186. [PMID: 39640674 PMCID: PMC11619965 DOI: 10.1016/j.heliyon.2024.e38186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024] Open
Abstract
Non-hazardous waste generated in Metropolitan Lima and Callao is transported to the Modelo Callao landfill for safe disposal. The accumulation of waste constitutes a significant source of fungal particles released into the atmosphere, posing a potential health risk to nearby populations. The aim of this research was to evaluate the concentration of outdoor fungal particles, considering environmental conditions (temperature, relative humidity, wind speed, and direction) during summer and winter seasons in the 18 de octubre settlement and Chillón Avenue, areas located in the vicinity of the Modelo Callao Landfill in Ventanilla during 2022. The gravitational method was used for sampling. The highest concentrations were detected at 150 and 200 m from the landfill, where a kindergarten and a local park are located. Fifteen fungal genera were identified in both seasons. The predominant fungi were Aspergillus spp. (46.09 %), Penicillium spp. (23.29 %) and Alternaria spp. (11.33 %). The average concentrations during summer and winter were 297.21 CFU/m3 and 471.69 CFU/m3, respectively. Based on these findings, we recommend that residential areas be located beyond 200 m from the landfill to minimize exposure to fungal aerosols. Additionally, we propose the implementation of an action plan to improve air quality in the areas surrounding the final disposal infrastructure.
Collapse
Affiliation(s)
- Diana Isabel Rios Valle
- Department of Engineering, Faculty of Environmental Engineering, San Ignacio Loyola University, Fontana Avenue 750, La Molina (SL02), Lima, Peru
| | - Erika Yovana Gonzales Medina
- Department of Medicine, Faculty of Health Sciences, San Ignacio Loyola University, Fontana Avenue 750, La Molina (SL02), Lima, Peru
| | - Orlando Advíncula Zeballos
- Department of Engineering, Faculty of Environmental Engineering, San Ignacio Loyola University, Fontana Avenue 750, La Molina (SL02), Lima, Peru
| |
Collapse
|
3
|
López-García CL, Guerra-Sánchez G, Santoyo-Tepole F, Olicón-Hernández DR. Chitinase induction in Trichoderma harzianum: a solid-state fermentation approach using shrimp waste and wheat bran/commercial chitin for chitooligosaccharides synthesis. Prep Biochem Biotechnol 2024; 54:1040-1050. [PMID: 38344843 DOI: 10.1080/10826068.2024.2313631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study innovatively employed solid-state fermentation (SSF) to evaluate chitinase induction in Trichoderma harzianum. Solid-state fermentation minimizes water usage, a crucial global resource, and was applied using shrimp waste chitin and a mixture of commercial chitin with wheat bran as substrates. Shrimp waste and wheat bran were pretreated and characterized for SSF, and the fungus's utilization of the substrates was assessed using spectrophotometric and microscopic methods. The resulting enzymes' ability to produce chitooligosaccharides (COS) mixtures was studied. Wheat bran/commercial chitin demonstrated superior performance, with a 1.8-fold increase in chitinase activity (76.3 U/mg protein) compared to shrimp waste chitin (41.8 U/mg protein). Additionally, the COS mixture obtained from wheat bran/commercial chitin showed a higher concentration of reducing sugars, reaching 87.85 mM, compared to shrimp waste chitin (14.87 mM). The COS profile from wheat bran/commercial chitin included monomers to heptamers, while the profile from shrimp waste chitin was predominantly composed of monomers. These results highlight the advantages of SSF for chitinase induction and COS production in T. harzianum, offering potential applications as dietary fiber, antioxidants, and antimicrobial agents. The findings contribute to by-product valorization, waste reduction, and the sustainable generation of valuable products through SSF-based enzyme production.
Collapse
Affiliation(s)
- Cynthia Lizbeth López-García
- Departamento de Microbiología, Laboratorio de Bioquímica y Biotecnología de Hongos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Laboratorio de Bioquímica y Biotecnología de Hongos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Fortunata Santoyo-Tepole
- Departamento de Investigación, Laboratorio Central de Instrumentación de Espectroscopía, Carpio y plan de Ayala s/n. Santo Tomás, Ciudad de México, México
| | - Dario Rafael Olicón-Hernández
- Departamento de Microbiología, Laboratorio de Bioquímica y Biotecnología de Hongos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| |
Collapse
|
4
|
Mendarte-Alquisira C, Ferrera-Cerrato R, Mendoza-López MR, Alarcón A. Biochemical responses of Echinochloa polystachya inoculated with a Trichoderma consortium during the removal of a pyrethroid-based pesticide. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1839-1846. [PMID: 38825879 DOI: 10.1080/15226514.2024.2357641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The biochemical response of plants exposed to pesticides and inoculated with microorganisms is of great importance to explore cleaning up strategies for contaminated sites with pyrethroid-based pesticides. We evaluated the effects of a Trichoderma consortium on the biochemical responses of Echinochloa polystachya plants during the removal of a pyrethroid-based pesticide. Plants were inoculated or not with the Trichoderma consortium and exposed to commercial pesticide H24®, based on pyrethroids. Pesticide application resulted in significant reduction in root protein content (58%), but enhanced content of malondialdehyde (MDA) in shoots, superoxide dismutase (SOD) activity in shoots and roots, and catalase (CAT) activity in roots. Inoculation of Trichoderma consortium in E. polystachya exposed to the pesticide resulted in increased protein content in roots and MDA content in shoots (2-fold). Trichoderma consortium improved protein content and SOD activity (140-fold) in plants. Fungal inoculation increased the removal (97.9%) of the pesticide in comparison to the sole effect of plants (33.9%). Results allow further understanding about the responses of the interaction between plants and root-associated fungi to improving the assisted-phytoremediation of solid matrices contaminated with organic pesticides.
Collapse
Affiliation(s)
| | - Ronald Ferrera-Cerrato
- Microbiología de Suelos, Postgrado de Edafología, Colegio de Postgraduados, Montecillo, México
| | | | - Alejandro Alarcón
- Microbiología de Suelos, Postgrado de Edafología, Colegio de Postgraduados, Montecillo, México
| |
Collapse
|
5
|
Mendarte-Alquisira C, Alarcón A, Ferrera-Cerrato R. Growth, tolerance, and enzyme activities of Trichoderma strains in culture media added with a pyrethroids-based insecticide. Rev Argent Microbiol 2024; 56:79-89. [PMID: 37640657 DOI: 10.1016/j.ram.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 08/31/2023] Open
Abstract
The application of pyrethroids and carbamates represents an environmental risk and may exert adverse effects on beneficial microorganisms such as Trichoderma, which contribute to the biocontrol of several fungal phytopathogens. This research evaluated the tolerance of several strains of Trichoderma to a selected culture medium contaminated with a commercial insecticide (H24®) composed of pyrethroids, permethrin and prallethrin, and carbamate propoxur, and determined the influence of this insecticide on the release of enzymes such as chitinases, peroxidases, and endoglucanases by a consortium of selected Trichoderma strains grown in liquid culture medium. Four out of 10 Trichoderma strains showed tolerance to 200ppm (∼48.3% of growth) of the commercial insecticide after 96h of exposure to a contaminated solid medium. After eight days of growth in liquid culture, the insecticide enhanced extracellular protein content and peroxidase activities in the Trichoderma consortium but decreased both chitinase and glucanase activities. These fungal responses should be considered when implementing strategies that combine alternative pesticides and fungal biocontrollers for managing fungal phytopathogens.
Collapse
Affiliation(s)
- Caliope Mendarte-Alquisira
- Área de Microbiología, Posgrado de Edafología, Colegio de Postgraduados, Carretera Federal México-Texcoco km 36.5, Montecillo 56264, Estado de México, Mexico
| | - Alejandro Alarcón
- Área de Microbiología, Posgrado de Edafología, Colegio de Postgraduados, Carretera Federal México-Texcoco km 36.5, Montecillo 56264, Estado de México, Mexico
| | - Ronald Ferrera-Cerrato
- Área de Microbiología, Posgrado de Edafología, Colegio de Postgraduados, Carretera Federal México-Texcoco km 36.5, Montecillo 56264, Estado de México, Mexico.
| |
Collapse
|
6
|
Góralczyk-Bińkowska A, Długoński A, Bernat P, Długoński J, Jasińska A. Accelerated PAH Transformation in the Presence of Dye Industry Landfill Leachate Combined with Fungal Membrane Lipid Changes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13997. [PMID: 36360875 PMCID: PMC9654376 DOI: 10.3390/ijerph192113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The ascomycete fungus Nectriella pironii, previously isolated from soil continuously contaminated by dye industry waste, was used for the biodegradation of phenanthrene (PHE), benz[a]anthracene (B[a]A), and benz[a]pyrene (B[a]P). The degradation of polycyclic aromatic hydrocarbons (PAHs) by N. pironii was accelerated in the presence of landfill leachate (LL) collected from the area of fungus isolation. The rate of cometabolic elimination of PHE and B[a]P in the presence of LL was, respectively, 75% and 94% higher than in its absence. LC-MS/MS analysis revealed that PAHs were converted to less-toxic derivatives. The parallel lipidomic study showed changes in membrane lipids, including a significant increase in the content of phosphatidylcholine (PC) (almost double) and saturated phospholipid fatty acids (PLFAs) and a simultaneous reduction (twofold) in the content of phosphatidylethanolamine (PE) and unsaturated PLFAs, which may have promoted the fungus to PHE + LL adaptation. In the presence of PHE, an intense lipid peroxidation (fivefold) was observed, confirming the stabilization of the cell membrane and its extended integrity. Determining the course of elimination and adaptation to harmful pollutants is essential for the design of efficient bioremediation systems in the future.
Collapse
Affiliation(s)
- Aleksandra Góralczyk-Bińkowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 Street, 90-237 Lodz, Poland
| | - Andrzej Długoński
- Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University in Warsaw, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland
- Institute of Ecology and Environmental Protection, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 Street, 90-237 Lodz, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 Street, 90-237 Lodz, Poland
| | - Jerzy Długoński
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 Street, 90-237 Lodz, Poland
| | - Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 Street, 90-237 Lodz, Poland
| |
Collapse
|
7
|
Wang J, Xiong J, Feng Q, Wan Z, Zhou Z, Xiao B, Zhang J, Singdala O. Intimately coupled photocatalysis and functional bacterial system enhance degradation of 1,2,3- and 1,3,5-trichlorobenzene. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115595. [PMID: 35772268 DOI: 10.1016/j.jenvman.2022.115595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Intimate coupling of photocatalysis and biodegradation (ICPB) is considered a promising approach for the degradation of recalcitrant organic compounds. In this work, using Trichoderma with benzene degradation ability coupled with activated sludge as a biological source and sugarcane bagasse cellulose composite as a carrier, the ICPB system showed excellent degradation and mineralization of trichlorobenzene under visible light induction. The biofilm inside the ICPB carrier can degrade and mineralize the photocatalytic products. ICPB increased the degradation efficiency of 1,2,3-TCB and 1,3,5-TCB by 12.43% and 4.67%, respectively, compared to photocatalysis alone. The biofilms inside the ICPB carriers can mineralize photocatalytic products, which increases the mineralization efficiency by 18.74%. According to the analysis of intermediates, the degradation of 1,2,3-TCB in this coupled system involved stepwise dechlorination and ring opening. The biofilm in ICPB carrier evolved to be enriched in Cutaneotrichosporon, Trichoderma, Apiotrichum, Zoogloea, Dechloromonas, Flavihumibacter and Cupriavidus, which are known for biodegradable aromatic hydrocarbon and halogenate. Novel microbial seeds supplemented with Trichoderma-based ICPB seem to provide a new potential strategy for effective degradation and mineralization of TCB.
Collapse
Affiliation(s)
- Jue Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China.
| | - Qilin Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Zhou Wan
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Zhenqi Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Bing Xiao
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Jiaming Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Outhay Singdala
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, 530007, China.
| |
Collapse
|
8
|
Piyaviriyakul P, Boontanon N, Boontanon SK. Bioremoval and tolerance study of sulfamethoxazole using whole cell Trichoderma harzianum isolated from rotten tree bark. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:920-927. [PMID: 34270386 DOI: 10.1080/10934529.2021.1941558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic contamination raises concerns over antibiotic resistance genes (ARGs), which can severely impact the human health and environment. Sulfamethoxazole (SMX) is a widely used antibiotic that is incompletely metabolized in the body. In this study, the research objectives were (1) to isolate the native strain of Trichoderma sp. from the environment and analyze the tolerance toward SMX concentration by evaluating fungal growth, and (2) to investigate the potential of SMX removal by fungi. The potential fungi isolated from rotten tree bark showed 97% similarity to Trichoderma harzianum (Accession no. MH707098.1). The whole cell of fungi was examined in vitro; the strain Trichoderma harzianum BGP115 eliminated 71% of SMX after 7 days, while the white rot fungi Trametes versicolor, demonstrated 90% removal after 10 days. Furthermore, the tolerance of fungal growth toward SMX concentration at 10 mg L-1 was analyzed, which indicated that Trichoderma harzianum BGP115 (the screened strain) exhibited more tolerance toward SMX than Trametes versicolor (the reference strain). The screened fungi isolated from rotted tree bark demonstrated the ability of SMX bioremoval and the potential to be tolerant to high concentrations of SMX.
Collapse
Affiliation(s)
- Pitchaya Piyaviriyakul
- Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Narin Boontanon
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Suwanna Kitpati Boontanon
- Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Mahajan M, Manek D, Vora N, Kothari RK, Mootapally C, Nathani NM. Fungi with high ability to crunch multiple Polycyclic Aromatic Hydrocarbons (PAHs) from the pelagic sediments of Gulfs of Gujarat. MARINE POLLUTION BULLETIN 2021; 167:112293. [PMID: 33799152 DOI: 10.1016/j.marpolbul.2021.112293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Marine ecosystem harbors diverse microbial diversity adapted to varied environmental conditions and stress. Gujarat possesses a wide coastline with unique and diverse niche in its two Gulfs. PAHs enter marine environments through various anthropogenic discharges and act as a threat to environment due to their xenobiotic nature. In the present study, sediment cores were collected across 4 coordinates, each from Gulf of Kutch and Khambhat; while one from Arabian sea. These samples were enriched for fungal growth in basal medium supplemented with naphthalene, pyrene, phenanthrene, anthracene and fluoranthene. Eight isolates were obtained from 3 samples and checked for tolerance against 5 PAHs followed by assessment of their biodegradation ability. Penicillium ilerdanum NPDF1239-K3-F21 and Aspergillus versicolor NPDF190-C1-26 showed >75% ability to degrade multiple PAHs. The results reveal the potential of fungal isolates from pelagic sediment for further in situ optimization and application in PAH removal from contaminated soil and sediment.
Collapse
Affiliation(s)
- Mayur Mahajan
- AIC - GISC Foundation, Gujarat Technological University, Ahmedabad 382424, Gujarat, India
| | - Devika Manek
- Institute of Biotechnology, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Nishant Vora
- Institute of Biotechnology, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Ramesh K Kothari
- Institute of Biotechnology, Saurashtra University, Rajkot 360005, Gujarat, India
| | | | - Neelam M Nathani
- Institute of Biotechnology, Saurashtra University, Rajkot 360005, Gujarat, India.
| |
Collapse
|
10
|
Haider FU, Ejaz M, Cheema SA, Khan MI, Zhao B, Liqun C, Salim MA, Naveed M, Khan N, Núñez-Delgado A, Mustafa A. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2021; 197:111031. [PMID: 33744268 DOI: 10.1016/j.envres.2021.111031] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Extraction and exploration of petroleum hydrocarbons (PHs) to satisfy the rising world population's fossil fuel demand is playing havoc with human beings and other life forms by contaminating the ecosystem, particularly the soil. In the current review, we highlighted the sources of PHs contamination, factors affecting the PHs accumulation in soil, mechanisms of uptake, translocation and potential toxic effects of PHs on plants. In plants, PHs reduce the seed germination andnutrients translocation, and induce oxidative stress, disturb the plant metabolic activity and inhibit the plant physiology and morphology that ultimately reduce plant yield. Moreover, the defense strategy in plants to mitigate the PHs toxicity and other potential remediation techniques, including the use of organic manure, compost, plant hormones, and biochar, and application of microbe-assisted remediation, and phytoremediation are also discussed in the current review. These remediation strategies not only help to remediate PHs pollutionin the soil rhizosphere but also enhance the morphological and physiological attributes of plant and results to improve crop yield under PHs contaminated soils. This review aims to provide significant information on ecological importance of PHs stress in various interdisciplinary investigations and critical remediation techniques to mitigate the contamination of PHs in agricultural soils.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Imran Khan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | | | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 12 FL 32611, USA
| | - Avelino Núñez-Delgado
- Depart. Soil Sci. and Agric. Chem., Engineering Polytech. School, Lugo, Univ. Santiago de Compostela, Spain
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
11
|
Al-Zaban MI, AlHarbi MA, Mahmoud MA. Hydrocarbon biodegradation and transcriptome responses of cellulase, peroxidase, and laccase encoding genes inhabiting rhizospheric fungal isolates. Saudi J Biol Sci 2021; 28:2083-2090. [PMID: 33935563 PMCID: PMC8071968 DOI: 10.1016/j.sjbs.2021.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 01/27/2023] Open
Abstract
By using the indigenous micro-organisms of the polluted environment to be treated, bioremediation can be a successful strategy. PCR and RT-PCR molecular techniques were applied to examine the evolution of fungal isolates through putative genes f ligninolytic enzymes like lignin peroxidase (LiP), laccase (LaC), manganese peroxidase (MnP), and cellulase (Cx) as a response to polluting of the environment by hydrocarbons. In this study, isolation of rhizospheric fungal isolates, molecular identification, crude oil tolerance, and enzyme excretions were demonstrated. From the date palm rhizosphere, 3 fungal isolates were isolated and characterized morphologically and molecularly by ITS ribosomal RNA (rRNA) sequencing. The isolates were identified as Aspergillus flavus AF15, Trichoderma harzianum TH07, and Fusarium solani FS12 through using the BLAST tool in NCBI. All fungal isolates showed high tolerance to crude oil and survived with various responses at the highest concentration (20%). Aspergillus flavus AF15 and Trichoderma harzianum TH07 demonstrated promising oil-degrading tolerance ability based on the dose inhibition response percentage (DIRP) of the fungal isolates. A. flavus had a powerful capacity to production Cx, LaC, LiP and MnP with a range from 83.7 to 96.3 mL. Molecularly, nine genes of the ligninolytic enzymes, cbh (cbhI.1, cbhI.1, cbhII) lcc, lig (1, 2, 4 and 6) and mnp were tested for presence and expression (by PCR and RT-PCR, respectively). PCR showed that all isolates contained all the nine genes examined, regardless of capacity to enzymes production profiles, so the presence responses of nine genes did not correlate with enzymes-production ability. Gene expression analysis shows a more diverse pattern for tested isolates for example, Aspergillus flavus AF15 had over-expression of lig and mnp genes, Fusarium solani FS12 have a weak signal with lcc gene while, Trichoderma harzianum TH07 showed moderate expression of mnp and lcc genes. The power of the transcription of the gene leads to increased enzyme secretion by fungal isolates. Fungi are important microorganisms in the clean-up of petroleum pollution. They have bioremediation highly potency that is related to their diverse production of these catalytic enzymes.
Collapse
Affiliation(s)
- Mayasar I. Al-Zaban
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Maha A. AlHarbi
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed A. Mahmoud
- Molecular Markers Laboratory, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
12
|
Li Q, Li J, Jiang L, Sun Y, Luo C, Zhang G. Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123895. [PMID: 33264959 DOI: 10.1016/j.jhazmat.2020.123895] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/14/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Fungal bioremediation is a promising technique for the cleanup of sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, due to limited understanding of the composition and dynamics of the native PAH-degrading microorganisms in contaminated sites, its application has been difficult. In the present study, DNA stable-isotope probing was performed to identify indigenous phenanthrene (PHE)-degrading bacteria and determine their diversity during the fungal bioremediation process. The results showed a total of 14 operational taxonomic units (OTUs) enriched in the heavy DNA fractions, which were related to seven genera (Sphingomonas, Sphingobacterium, Acidovorax, Massilia, Flavobacterium, Cupriavidus, Aeromicrobium, and unclassified Chitinophagaceae). Along with enhanced efficiency of PHE removal, the number and diversity of indigenous PHE-degrading bacteria in soil bioaugmented with fungi were significantly increased. Furthermore, based on the results of linear model analysis, we found that PHE degraders affiliated with the genus Sphingomonas were significantly enriched during fungal bioremediation. Moreover, fungal bioaugmentation promoted indigenous functional Proteobacteria involved in PAH degradation through co-metabolism, suggesting that PAH biodegradation was attributable to cooperative metabolism by fungi and indigenous bacteria. Our findings provide new insights into the diversity of PHE-degrading communities and support a more comprehensive view of the fungal bioremediation process.
Collapse
Affiliation(s)
- Qiqian Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Chemical and Biological Engineering, Hechi University, Yizhou, 546300, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yingtao Sun
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
13
|
de la Cruz-Izquierdo RI, Paz-González AD, Reyes-Espinosa F, Vazquez-Jimenez LK, Salinas-Sandoval M, González-Domínguez MI, Rivera G. Analysis of phenanthrene degradation by Ascomycota fungi isolated from contaminated soil from Reynosa, Mexico. Lett Appl Microbiol 2021; 72:542-555. [PMID: 33423286 DOI: 10.1111/lam.13451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds generated mainly by anthropogenic sources. They are considered toxic to mammals, since they have carcinogenic, mutagenic and genotoxic properties, among others. Although mycoremediation is an efficient, economical and eco-friendly technique for degrading PAHs, the fungal degradation potential of the phylum Ascomycota has not been widely studied. In this work, we evaluated different fungal strains from the polluted soil of 'La Escondida' lagoon in Reynosa, Mexico to know their potential to degrade phenanthrene (PHE). Forty-three soil isolates with the capacity to grow in the presence of PHE (0·1% w/v) were obtained. The fungi Aspergillus oryzae MF13 and Aspergillus flavipes QCS12 had the best potential to degrade PHE. Both fungi germinated and grew at PHE concentrations of up to 5000 mg l-1 and degraded 235 mg l-1 of PHE in 28 days, with and without an additional carbon source. These characteristics indicate that A. oryzae MF13 and A. flavipes QCS12 could be promising organisms for the remediation of sites contaminated with PAHs and detoxification of recalcitrant xenobiotics.
Collapse
Affiliation(s)
- R I de la Cruz-Izquierdo
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| | - A D Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| | - F Reyes-Espinosa
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico.,Tecnológico Nacional de México, ITS de Comalcalco, División de Ingeniería Ambiental, Tabasco, Mexico
| | - L K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| | - M Salinas-Sandoval
- Laboratorios de Ingeniería en Nanotecnología, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - M I González-Domínguez
- Laboratorios de Ingeniería en Nanotecnología, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - G Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| |
Collapse
|
14
|
Trichoderma Biomass as an Alternative for Removal of Congo Red and Malachite Green Industrial Dyes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11010448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study evaluated the removal efficiency of two dyes, Congo red (CR) and malachite green (MG), using either fresh or dry fungal biomass of two species of Trichoderma (T. virens and T. viride) and activated carbon. After 24 h, the CR removal efficiency obtained with fresh biomass was higher than that obtained with activated carbon. For the MG dye, the average removal with activated carbon (99%) was higher than those obtained with dry and fresh biomass of T. viride and T. virens. Experimental results for fresh and dry fungal biomass showed a good correlation with Langmuir isotherms. The adsorption rates of CR and MG by of T. virens and T. viride can be more appropriately described using the pseudo-second-order rate. We found an adsorption capacity of 81.82 mg g−1 for T. virens with MG dye. Results show that fresh or dry biomass of T. virens can represent a simple and cost-effective alternative for removing industrial dyes such as CR and MG.
Collapse
|
15
|
Dario Rafael OH, Luis Fernándo ZG, Abraham PT, Pedro Alberto VL, Guadalupe GS, Pablo PJ. Production of chitosan-oligosaccharides by the chitin-hydrolytic system of Trichoderma harzianum and their antimicrobial and anticancer effects. Carbohydr Res 2019; 486:107836. [PMID: 31669568 DOI: 10.1016/j.carres.2019.107836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/23/2019] [Accepted: 10/15/2019] [Indexed: 01/31/2023]
Abstract
Chitosan-oligosaccharides (COS) are low-molecular weight chitosan derivatives with interesting clinical applications. The optimization of both COS production and purification is an important step in the design of an efficient production system and for the exploration of new COS applications. Trichoderma harzianum is an innocuous biocontrol agent that represents a novel biotechnological tool due to the production of extracellular enzymes, including those that produce a COS mixture. In this work, we propose different systems for the production of COS using the T. harzianum chitinolitic system. A complete qualitative and quantitative analysis of a partially purified COS mixture were performed. Also, an evaluation of the anticancer and antimicrobial effects of the COS mixture was carried out. Three chitosan variants (colloidal, solid and solution) and two fungus stages (spores and mycelia) were tested for COS production. The best system consisted of the interaction of the solid chitosan and the fungal spores, producing a COS mixture containing species from the monomer to the hexamer, in a concentration range of 7-238 mg/mL, according to chromatographic analysis. The proposed purification method isolated the monomer and the dimer from the COS mixture. Moreover, the COS mixture has an inhibitory effect on the growth of bacteria and changes the morphology of yeasts. As anticancer compounds, COS inhibited the growth of cervical cancer cells at concentration of 4 mg/mL and significantly reduced the survival rate of the cells. In conclusion, T. harzianum proved to be an efficient system for COS mixture production.
Collapse
Affiliation(s)
- Olicón-Hernández Dario Rafael
- Universidad Nacional Autónoma de México, Facultad de Medicina. Departamento de Bioquímica. Laboratorio 7. Circuito Interior s/n, Ciudad Universitaria CP, 04510, Ciudad de México, Mexico
| | - Zepeda-Giraud Luis Fernándo
- Instituto Politécnico Nacional. Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología. Laboratorio de bioquímica y biotecnología de hongos. Carpio y Plan de Ayala s/n. Santo Tomas, Miguel Hidalgo. CP, 11350, Ciudad de México, Mexico
| | - Pedroza-Torres Abraham
- Cátedra CONACYT-Instituto Nacional de Cancerología. Clínica de Cáncer Hereditario. Avenida San Fernando 22, Belisario Domínguez Secc XVI, CP, 14080, Ciudad de México, Mexico
| | - Vázquez-Landaverde Pedro Alberto
- Instituto Politécnico Nacional. Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Querétaro, Cerro Blanco 141. Colinas del Cimatario, CP 76090, Querétaro, Mexico
| | - Guerra-Sánchez Guadalupe
- Instituto Politécnico Nacional. Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología. Laboratorio de bioquímica y biotecnología de hongos. Carpio y Plan de Ayala s/n. Santo Tomas, Miguel Hidalgo. CP, 11350, Ciudad de México, Mexico
| | - Pardo Juan Pablo
- Universidad Nacional Autónoma de México, Facultad de Medicina. Departamento de Bioquímica. Laboratorio 7. Circuito Interior s/n, Ciudad Universitaria CP, 04510, Ciudad de México, Mexico.
| |
Collapse
|
16
|
Russo F, Ceci A, Maggi O, Siciliano A, Guida M, Petrangeli Papini M, Černík M, Persiani AM. Understanding fungal potential in the mitigation of contaminated areas in the Czech Republic: tolerance, biotransformation of hexachlorocyclohexane (HCH) and oxidative stress analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24445-24461. [PMID: 31228071 DOI: 10.1007/s11356-019-05679-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The study of the soil microbial community represents an important step in better understanding the environmental context. Therefore, biological characterisation and physicochemical integration are keys when defining contaminated sites. Fungi play a fundamental role in the soil, by providing and supporting ecological services for ecosystems and human wellbeing. In this research, 52 soil fungal taxa were isolated from in situ pilot reactors installed to a contaminated site in Czech Republic with a high concentration of hexachlorocyclohexane (HCH). Among the identified isolates, 12 strains were selected to evaluate their tolerance to different isomers of HCH by using specific indices (Rt:Rc; T.I.) and to test their potential in xenobiotic biotransformation. Most of the selected taxa was not significantly affected by exposure to HCH, underlining the elevated tolerance of all the tested fungal taxa, and different metabolic intermediates of HCH dechlorination were observed. The oxidative stress responses to HCH for two selected species, Penicillium simplicissimum and Trichoderma harzianum, were investigated in order to explore their toxic responses and to evaluate their potential functioning in bioremediation of contaminated environments. This research suggests that the isolated fungal species may provide opportunities for new eco-friendly, integrated and cost-effective solutions for environmental management and remediation, considering their efficient adaptation to stressful conditions.
Collapse
Affiliation(s)
- Fabiana Russo
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Oriana Maggi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
17
|
González-Abradelo D, Pérez-Llano Y, Peidro-Guzmán H, Sánchez-Carbente MDR, Folch-Mallol JL, Aranda E, Vaidyanathan VK, Cabana H, Gunde-Cimerman N, Batista-García RA. First demonstration that ascomycetous halophilic fungi (Aspergillus sydowii and Aspergillus destruens) are useful in xenobiotic mycoremediation under high salinity conditions. BIORESOURCE TECHNOLOGY 2019; 279:287-296. [PMID: 30738355 DOI: 10.1016/j.biortech.2019.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH) and pharmaceutical compounds (PhC) are xenobiotics present in many saline wastewaters. Although fungi are known for their ability to remove xenobiotics, the potential of halophilic fungi to degrade highly persistent pollutants was not yet investigated. The use of two halophilic fungi, Aspergillus sydowii and Aspergillus destruens, for the elimination of PAH and PhC at saline conditions was studied. In saline synthetic medium both fungi used benzo-α-pyrene and phenanthrene as sole carbon source and removed over 90% of both PAH, A. sydowii due to biodegradation and A. destruens to bioadsorption. They removed 100% of a mixture of fifteen PAH in saline biorefinery wastewater. Test using Cucumis sativus demonstrated that wastewater treated with the two fungi lowered considerably the phytotoxicity. This study is the first demonstration that ascomycetous halophilic fungi, in contrast to other fungi (and in particular basidiomycetes) can be used for mycotreatments under salinity conditions.
Collapse
Affiliation(s)
- Deborah González-Abradelo
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - Heidy Peidro-Guzmán
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - María Del Rayo Sánchez-Carbente
- Centro de Investigaciones en Biotecnología, UAEM, Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - Jorge Luis Folch-Mallol
- Centro de Investigaciones en Biotecnología, UAEM, Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - Elisabet Aranda
- Instituto Universitario de Investigación del Agua, Universidad de Granada, Calle Núñez Blanca 1, CP. 18003 Granada, Spain
| | - Vinoth Kumar Vaidyanathan
- Department of Biotechnology, SRM Institute of Science and Technology, Mahatma Gandhi Rd, Potheri, SRM Nagar, Kattankulathur 603203, Tamil Nadu, India
| | - Hubert Cabana
- Faculté de Genié, Université de Sherbrooke, Sherbrooke, 2500 Boulevard de l Université, J1K 2R1 Sherbrooke, Quebec, Canada
| | - Nina Gunde-Cimerman
- Faculty of Biology, University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico; Faculty of Biology, University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia.
| |
Collapse
|
18
|
Vasconcelos MRS, Vieira GAL, Otero IVR, Bonugli-Santos RC, Rodrigues MVN, Rehder VLG, Ferro M, Boaventura S, Bacci M, Sette LD. Pyrene degradation by marine-derived ascomycete: process optimization, toxicity, and metabolic analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12412-12424. [PMID: 30847811 DOI: 10.1007/s11356-019-04518-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Marine-derived fungi are relevant genetic resources for bioremediation of saline environments/processes. Among the five fungi recovered from marine sponges able to degrade pyrene (Py) and benzo[a]pyrene (BaP), Tolypocladium sp. strain CBMAI 1346 and Xylaria sp. CBMAI 1464 presented the best removal rates of Py and BaP, respectively. Since the decrease in BaP was related to mycelial adsorption, a combined strategy was applied for the investigation of Py degradation by the fungus Tolypocladium sp. CBMAI 1346. The selected fungus was able to degrade about 95% of Py after 7 days of incubation (optimized conditions), generating metabolites different from the ones found before optimization. Metabolites and transcriptomic data revealed that the degradation occurred mainly by the cytochrome P450 pathway. Putative monooxygenases and dioxygenases found in the transcriptome may play an important role. After 21 days of degradation, no toxicity was found in the optimized culture conditions. The findings from the present study highlight the potential of marine-derived fungi to degrade environmental pollutants and convey innovative information related to the metabolism of pyrene.
Collapse
Affiliation(s)
- Maria R S Vasconcelos
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Gabriela A L Vieira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 24A, 1515 - Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Igor V R Otero
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 24A, 1515 - Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Rafaella C Bonugli-Santos
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil
- Latin American Institute of Life and Nature Sciences, Federal University of Latin American Integration (UNILA), Paraná, PR, Brazil
| | - Marili V N Rodrigues
- Divisão de Química Orgânica e Farmacêutica, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Vera L G Rehder
- Divisão de Química Orgânica e Farmacêutica, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Milene Ferro
- Centro de Estudos de Insetos Sociais, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Sinésio Boaventura
- Divisão de Química Orgânica e Farmacêutica, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Maurício Bacci
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 24A, 1515 - Bela Vista, Rio Claro, SP, 13506-900, Brazil
- Centro de Estudos de Insetos Sociais, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara D Sette
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil.
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 24A, 1515 - Bela Vista, Rio Claro, SP, 13506-900, Brazil.
| |
Collapse
|
19
|
Huang S, Shan M, Chen J, Penttinen P, Qin H. Contrasting dynamics of polychlorinated biphenyl dissipation and fungal community composition in low and high organic carbon soils with biochar amendment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33432-33442. [PMID: 30264347 DOI: 10.1007/s11356-018-3271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Biochar amendment has been advocated as an effective method to remediate organic pollutant-contaminated soils through adsorption and stimulating microbial degradation. However, such effects can vary depending on soil properties and biochar physiochemical characteristics. The objective of this study was to compare the dynamic variations of polychlorinated biphenyls (PCBs) in low and high soil organic carbon (SOC) soils both amended with biochar and to investigate its linkage with fungal community composition. Two soils having the same texture and soil type but varying in SOC contents were contaminated with PCBs to a final concentration of 60 mg kg-1 and amended with 2% bamboo biochar. Temporal changes of PCB remaining in soils and adsorbed on biochar particles were determined during a 2-month incubation. Diversity and composition of fungal communities in both low and high SOC soils were investigated with Illumina MiSeq sequencing. The results showed that the PCB concentrations in low SOC soil were significantly lower than those in high SOC soil during the incubation. In the low SOC soil, the biochar particle adsorbed higher amounts of PCB, tetra-, and penta-chlorobiphenyls (CBs) than those in high SOC soil, and stimulated the dissipation of di- and tri-CBs. The nonmetric multidimensional scaling profile showed significant (p < 0.05) differences in the fungal community composition between the low and high SOC soils. The relative abundances of Eurotiomycetes were gradually increased, whereas those of Sordariomycetes and Dothideomycetes were decreased with increasing incubation time in the low SOC soils. In contrast, the fungal communities in high SOC soils were relatively stable. The relative abundances of Eurotiomycetes and Sordariomycetes were positively correlated with PCB dissipation in low and high SOC content soils, respectively. Our results suggest that SOC content affects PCB dissipation and fungal community composition in biochar-amended soils, and biochars have a high remediation potential of PCB in soils with low SOC contents.
Collapse
Affiliation(s)
- Shengyan Huang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Hangzhou, 311300, China
- College of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Mingjuan Shan
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Hangzhou, 311300, China
- College of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Junhui Chen
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Hangzhou, 311300, China.
- College of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Petri Penttinen
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China
- College of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Hua Qin
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Hangzhou, 311300, China.
- College of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
20
|
Repas TS, Gillis DM, Boubakir Z, Bao X, Samuels GJ, Kaminskyj SGW. Growing plants on oily, nutrient-poor soil using a native symbiotic fungus. PLoS One 2017; 12:e0186704. [PMID: 29049338 PMCID: PMC5648232 DOI: 10.1371/journal.pone.0186704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/05/2017] [Indexed: 12/24/2022] Open
Abstract
The roots of land plants associate with microbes, including fungal symbionts that can confer abiotic stress tolerance. Bitumen extraction following oil-sand surface mining in the Athabasca region of Alberta, Canada removes plant nutrients but leaves a petrochemical residue, making the coarse tailings (CT) hostile to both plants and microbes. We isolated an endophyte strain of the Ascomycete Trichoderma harzianum we call TSTh20-1 (hereafter, TSTh) from a dandelion that was naturally growing on CT. TSTh colonization allowed tomato, wheat, and remediation seed mixtures to germinate and their seedlings to flourish on CT without the use of fertilizer. Compared to control plants, TSTh increased germination speed, percent germination, and biomass accumulation. TSTh also improved plant water use efficiency and drought recovery. TSTh-colonized plants secreted twice the level of peroxidase into CT as did plants alone. Over two months, plants colonized with TSTh doubled the petrochemical mobilization from CT over plants alone, suggesting a peroxide-mediated mechanism for petrochemical degradation. TSTh grew on autoclaved CT, bitumen, and other petrochemicals as sole carbon sources. Further, TSTh is a micro-aerobe that could metabolize 13C-phenanthrene to 13CO2 in 0.5% oxygen. TSTh has excellent potential for contributing to revegetating and remediating petrochemical contamination.
Collapse
Affiliation(s)
- Timothy S. Repas
- Biology Dept, University of Saskatchewan, Science Place, Saskatoon, SK, Canada
- Roy Northern Environmental, Fort St John, BC, Canada
| | - D. Michael Gillis
- Biology Dept, University of Saskatchewan, Science Place, Saskatoon, SK, Canada
| | - Zakia Boubakir
- Biology Dept, University of Saskatchewan, Science Place, Saskatoon, SK, Canada
| | - Xiaohui Bao
- Biology Dept, University of Saskatchewan, Science Place, Saskatoon, SK, Canada
| | - Gary J. Samuels
- USDA-ARS, Systematic Mycology and Microbiology Lab, Beltsville, MD, United States of America
| | | |
Collapse
|
21
|
Bovio E, Gnavi G, Prigione V, Spina F, Denaro R, Yakimov M, Calogero R, Crisafi F, Varese GC. The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:310-318. [PMID: 27788446 DOI: 10.1016/j.scitotenv.2016.10.064] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
Bioremediation of marine environment could be the response to oil spills threats. In the present study the fungal community from a Mediterranean marine site chronically interested by oil spills was investigated. Sixty-seven taxa were isolated from water sample and 17 from sediments; for many of the identified species is the first report in seawater and sediments, respectively. The growth of 25% of the fungal isolates was stimulated by crude oil as sole carbon source. Four strains were selected to screen hydrocarbons degradation using the 2,6-dichlorophenol indophenol (DCPIP) colorimetric assay. A. terreus MUT 271, T. harzianum MUT 290 and P. citreonigrum MUT 267 displayed a high decolorization percentage (DP≥68%). A. terreus displayed also the highest decreases of hydrocarbons compounds (up to 40%) quantified by gas-chromatography analysis. These results suggest that the selected fungi could represent potential bioremediation agents with strong crude oil degradative capabilities.
Collapse
Affiliation(s)
- Elena Bovio
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - Giorgio Gnavi
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - Valeria Prigione
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - Federica Spina
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy
| | - Renata Denaro
- Institute for Coastal Marine Environment (IAMC), CNR Sp.ta S. Raineri 86, 98122 Messina, Italy
| | - Michail Yakimov
- Institute for Coastal Marine Environment (IAMC), CNR Sp.ta S. Raineri 86, 98122 Messina, Italy
| | - Rosario Calogero
- Institute for Coastal Marine Environment (IAMC), CNR Sp.ta S. Raineri 86, 98122 Messina, Italy
| | - Francesca Crisafi
- Institute for Coastal Marine Environment (IAMC), CNR Sp.ta S. Raineri 86, 98122 Messina, Italy
| | - Giovanna Cristina Varese
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, 10125 Turin, Italy.
| |
Collapse
|
22
|
Perissini-Lopes B, Egea TC, Monteiro DA, Vici AC, Da Silva DGH, Lisboa DCDO, de Almeida EA, Parsons JR, Da Silva R, Gomes E. Evaluation of Diuron Tolerance and Biotransformation by Fungi from a Sugar Cane Plantation Sandy-Loam Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9268-9275. [PMID: 27960295 DOI: 10.1021/acs.jafc.6b03247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microorganisms capable of degrading herbicides are essential to minimize the amount of chemical compounds that may leach into other environments. This work aimed to study the potential of sandy-loam soil fungi to tolerate the herbicide Herburon (50% diuron) and to degrade the active ingredient diuron. Verticillium sp. F04, Trichoderma virens F28, and Cunninghamella elegans B06 showed the highest growth in the presence of the herbicide. The evaluation of biotransformation showed that Aspergillus brasiliensis G08, Aspergillus sp. G25, and Cunninghamella elegans B06 had the greatest potential to degrade diuron. Statistical analysis demonstrated that glucose positively influences the potential of the microorganism to degrade diuron, indicating a cometabolic process. Due to metabolites founded by diuron biotransformation, it is indicated that the fungi are relevant in reducing the herbicide concentration in runoff, minimizing the environmental impact on surrounding ecosystems.
Collapse
Affiliation(s)
- Bruna Perissini-Lopes
- Universidade Estadual Paulista Julio de Mesquita Filho-Campus de São José do Rio Preto , Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo, Brazil 15054-000
| | - Tássia Chiachio Egea
- Universidade Estadual Paulista Julio de Mesquita Filho-Campus de São José do Rio Preto , Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo, Brazil 15054-000
| | - Diego Alves Monteiro
- Universidade Estadual Paulista Julio de Mesquita Filho-Campus de São José do Rio Preto , Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo, Brazil 15054-000
| | - Ana Cláudia Vici
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto , Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, Brazil 14040-900
| | - Danilo Grünig Humberto Da Silva
- Universidade Estadual Paulista Julio de Mesquita Filho-Campus de São José do Rio Preto , Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo, Brazil 15054-000
| | - Daniela Correa de Oliveira Lisboa
- Universidade Estadual Paulista Julio de Mesquita Filho-Campus de São José do Rio Preto , Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo, Brazil 15054-000
| | - Eduardo Alves de Almeida
- Universidade Estadual Paulista Julio de Mesquita Filho-Campus de São José do Rio Preto , Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo, Brazil 15054-000
| | - John Robert Parsons
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam , Nieuwe Achtergracht 199, 1018 WV Amsterdam, Netherlands
| | - Roberto Da Silva
- Universidade Estadual Paulista Julio de Mesquita Filho-Campus de São José do Rio Preto , Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo, Brazil 15054-000
| | - Eleni Gomes
- Universidade Estadual Paulista Julio de Mesquita Filho-Campus de São José do Rio Preto , Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo, Brazil 15054-000
| |
Collapse
|
23
|
Godoy P, Reina R, Calderón A, Wittich RM, García-Romera I, Aranda E. Exploring the potential of fungi isolated from PAH-polluted soil as a source of xenobiotics-degrading fungi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20985-20996. [PMID: 27488713 DOI: 10.1007/s11356-016-7257-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to find polycyclic aromatic hydrocarbon (PAH)-degrading fungi adapted to polluted environments for further application in bioremediation processes. In this study, a total of 23 fungal species were isolated from a historically pyrogenic PAH-polluted soil in Spain and taxonomically identified. The dominant groups in these samples were the ones associated with fungi belonging to the Ascomycota phylum and two isolates belonging to the Mucoromycotina subphylum and Basiodiomycota phylum. We tested their ability to convert the three-ring PAH anthracene in a 42-day time course and analysed their ability to secrete extracellular oxidoreductase enzymes. Among the 23 fungal species screened, 12 were able to oxidize anthracene, leading to the formation of 9,10-anthraquinone as the main metabolite, a less toxic one than the parent compound. The complete removal of anthracene was achieved by three fungal species. In the case of Scopulariopsis brevicaulis, extracellular enzyme independent degradation of the initial 100 μM anthracene occurred, whilst in the case of the ligninolytic fungus Fomes (Basidiomycota), the same result was obtained with extracellular enzyme-dependent transformation. The yield of accumulated 9,10-anthraquinone was 80 and 91 %, respectively, and Fomes sp. could slowly deplete it from the growth medium when offered alone. These results are indicative for the effectiveness of these fungi for pollutant removal. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Patricia Godoy
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Rocío Reina
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Andrea Calderón
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Regina-Michaela Wittich
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Inmaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Elisabet Aranda
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain.
- Department of Microbiology, Institute of Water Research, University of Granada, Calle Ramón y Cajal 4, E-18071, Granada, Spain.
| |
Collapse
|
24
|
Andreolli M, Lampis S, Brignoli P, Vallini G. Trichoderma longibrachiatum Evx1 is a fungal biocatalyst suitable for the remediation of soils contaminated with diesel fuel and polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9134-9143. [PMID: 26832871 DOI: 10.1007/s11356-016-6167-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
Trichoderma sp. strain Evx1 was isolated from a semi-deciduous forest soil in Southern Italy. It decolorizes polynuclear organic dyes and tolerates high concentrations of phenanthrene, anthracene, fluoranthene, and pyrene. The ability of this ascomycete fungus to degrade polycyclic aromatic hydrocarbons was verified in vitro and confirmed by its strong phenoloxidase activity in the presence of gallic acid. Phylogenetic characterization of Trichoderma sp. Evx1 positioned this strain within the species Trichoderma longibrachiatum. The potential use of this species for the bioremediation of contaminated environmental matrices was tested by inoculating diesel-spiked soil with a dense mycelial suspension. The biodegradation percentage of the C12-40 hydrocarbon fraction in the inoculated soil rose to 54.2 ± 1.6 %, much higher than that in non-inoculated soil or soil managed solely by a combination of watering and aeration. The survival and persistence of T. longibrachiatum Evx1 throughout the bioremediation trial was monitored by PCR-DGGE analysis. The fungal strain was still present in the soil 30 days after bioaugmentation. These findings indicate that T. longibrachiatum Evx1 may be a suitable inoculum in bioremediation protocols for the reclamation of soils contaminated by complex mixtures of hydrocarbons.
Collapse
Affiliation(s)
- Marco Andreolli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | | | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
25
|
Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. N Biotechnol 2015; 32:620-8. [DOI: 10.1016/j.nbt.2015.01.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/07/2015] [Accepted: 01/19/2015] [Indexed: 11/23/2022]
|
26
|
Zafra G, Cortés-Espinosa DV. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19426-19433. [PMID: 26498812 DOI: 10.1007/s11356-015-5602-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
Fungi belonging to Trichoderma genus are ascomycetes found in soils worldwide. Trichoderma has been studied in relation to diverse biotechnological applications and are known as successful colonizers of their common habitats. Members of this genus have been well described as effective biocontrol organisms through the production of secondary metabolites with potential applications as new antibiotics. Even though members of Trichoderma are commonly used for the commercial production of lytic enzymes, as a biological control agent, and also in the food industry, their use in xenobiotic biodegradation is limited. Trichoderma stands out as a genus with a great range of substrate utilization, a high production of antimicrobial compounds, and its ability for environmental opportunism. In this review, we focused on the recent advances in the research of Trichoderma species as potent and efficient aromatic hydrocarbon-degrading organisms, as well as aimed to provide insight into its potential role in the bioremediation of soils contaminated with heavy hydrocarbons. Several Trichoderma species are associated with the ability to metabolize a variety of both high and low molecular weight polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, chrysene, pyrene, and benzo[a]pyrene. PAH-degrading species include Trichoderma hamatum, Trichoderma harzianum, Trichoderma reesei, Trichoderma koningii, Trichoderma viride, Trichoderma virens, and Trichoderma asperellum using alternate enzyme systems commonly seen in other organisms, such as multicooper laccases, peroxidases, and ring-cleavage dioxygenases. Within these species, T. asperellum stands out as a versatile organism with remarkable degrading abilities, high tolerance, and a remarkable potential to be used as a remediation agent in polluted soils.
Collapse
|
27
|
Simister RL, Poutasse CM, Thurston AM, Reeve JL, Baker MC, White HK. Degradation of oil by fungi isolated from Gulf of Mexico beaches. MARINE POLLUTION BULLETIN 2015; 100:327-333. [PMID: 26323859 DOI: 10.1016/j.marpolbul.2015.08.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/12/2015] [Accepted: 08/16/2015] [Indexed: 06/04/2023]
Abstract
Fungi of the Ascomycota phylum were isolated from oil-soaked sand patties collected from beaches following the Deepwater Horizon oil spill. To examine their ability to degrade oil, fungal isolates were grown on oiled quartz at 20°C, 30°C and 40°C. Consistent trends in oil degradation were not related to fungal species or temperature and all isolates degraded variable quantities of oil (32-65%). Fungal isolates preferentially degraded short (<C18; 90-99%) as opposed to long (C19-C36; 7-87%) chain n-alkanes and straight chain C17- and C18-n-alkanes (91-99%) compared to their branched counterparts, pristane and phytane (70-98%). Polycyclic aromatic hydrocarbon (PAH) compounds were also degraded by the fungal isolates (42-84% total degraded), with a preference for low molecular weight over high molecular weight PAHs. Overall, these findings contribute to our understanding of the capacity of fungi to degrade oil in the coastal marine environment.
Collapse
Affiliation(s)
- R L Simister
- Department of Chemistry, Haverford College, 370 Lancaster Ave, Haverford, PA 19041, United States
| | - C M Poutasse
- Department of Chemistry, Haverford College, 370 Lancaster Ave, Haverford, PA 19041, United States
| | - A M Thurston
- Department of Chemistry, Haverford College, 370 Lancaster Ave, Haverford, PA 19041, United States
| | - J L Reeve
- Department of Chemistry, Haverford College, 370 Lancaster Ave, Haverford, PA 19041, United States
| | - M C Baker
- Department of Chemistry, Haverford College, 370 Lancaster Ave, Haverford, PA 19041, United States
| | - H K White
- Department of Chemistry, Haverford College, 370 Lancaster Ave, Haverford, PA 19041, United States.
| |
Collapse
|
28
|
Zafra G, Moreno-Montaño A, Absalón ÁE, Cortés-Espinosa DV. Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1034-42. [PMID: 25106516 DOI: 10.1007/s11356-014-3357-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/17/2014] [Indexed: 05/15/2023]
Abstract
Trichoderma asperellum H15, a previously isolated strain characterized by its high tolerance to low (LMW) and high molecular weight (HMW) PAHs, was tested for its ability to degrade 3-5 ring PAHs (phenanthrene, pyrene, and benzo[a]pyrene) in soil microcosms along with a biostimulation treatment with sugarcane bagasse. T. asperellum H15 rapidly adapted to PAH-contaminated soils, producing more CO2 than uncontaminated microcosms and achieving up to 78 % of phenanthrene degradation in soils contaminated with 1,000 mg Kg(-1) after 14 days. In soils contaminated with 1,000 mg Kg(-1) of a three-PAH mixture, strain H15 was shown to degrade 74 % phenanthrene, 63 % pyrene, and 81 % of benzo[a]pyrene. Fungal catechol 1,2 dioxygenase, laccase, and peroxidase enzyme activities were found to be involved in the degradation of PAHs by T. asperellum. The results demonstrated the potential of T. asperellum H15 to be used in a bioremediation process. This is the first report describing the involvement of T. asperellum in LMW and HMW-PAH degradation in soils. These findings, along with the ability to remove large amounts of PAHs in soil found in the present work provide enough evidence to consider T. asperellum as a promising and efficient PAH-degrading microorganism.
Collapse
Affiliation(s)
- German Zafra
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Ines Tecuexcomac-Tepetitla Km 1.5, Tepetitla, Tlaxcala, México, C.P. 70900
| | | | | | | |
Collapse
|