1
|
Xiao J, Guo S, Wang D, An Q. Fenton-Like Reaction: Recent Advances and New Trends. Chemistry 2024; 30:e202304337. [PMID: 38373023 DOI: 10.1002/chem.202304337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The Fenton reaction refers to the reaction in which ferrous ions (Fe2+) produce hydroxyl radicals and other reactive oxidizing substances by decomposing hydrogen peroxide (H2O2). This paper reviews the mechanism, application system, and materials employed in the Fenton reaction including conventional homogeneous and non-homogeneous Fenton reactions as well as photo-, electrically-, ultrasonically-, and piezoelectrically-triggered Fenton reactions, and summarizes the applications in the degradation of soil oil pollutions, landfill leachate, textile wastewater, and antibiotics from a practical point of view. The mineralization paths of typical pollutant are elucidated with relevant case studies. The paper concludes with a summary and outlook of the further development of Fenton-like reactions.
Collapse
Affiliation(s)
- Jiaying Xiao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing), 100083, China
| | - Sufang Guo
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing), 100083, China
| | - Dong Wang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd
| | - Qi An
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing), 100083, China
| |
Collapse
|
2
|
Wei S, Huang Y, Huang W, Wang X, Liang J. Degradation of 2,4-Dichlorophenol by Nitrilotriacetic acid-modified photo-Fenton system: effects of organic and inorganic factors. ENVIRONMENTAL TECHNOLOGY 2023; 44:2011-2023. [PMID: 34913858 DOI: 10.1080/09593330.2021.2020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/09/2021] [Indexed: 05/25/2023]
Abstract
It has proved that the photo-Fenton system modified by polycarboxylic acid is effective against the degradation of organic pollutants. Still, its effect and impact on actual water bodies are not clear. Therefore, this study mainly discussed the effect of actual water elements on the degradation of 2,4-Dichlorophenol in photo-Fenton system modified by Nitrilotriacetic acid (NTA) and its mechanism in pure water. The specific research contents were: the effect of initial concentration of 2,4-Dichlorophenol on its degradation efficiency; the effect of organic matters on the degradation of 2,4-Dichlorophenol; the effect of cations and anions; the effect of different actual water bodies. And the main results were as follows: In the effect of initial concentration, when the concentration of 2,4-Dichlorophenol was 20 mg·L-1, the degradation efficiency was the best (reached 100%). But, with the increase of initial concentration, the degradation efficiency of the system became worse and worse; the coexistence of the same kind of organic compounds can inhibit each other's degradation, and the degradation rate of pollutants in the mixed system was slower than that in the single system; the addition of anions and cations inhibited the degradation of 2,4-Dichlorophenol, and the degradation efficiency varied with the concentration of ions, in which the effect of anions was more complex; the degradation efficiency of 2,4-Dichlorophenol in three kinds of actual water bodies was lower than in deionized water, especially in PPMW. However, the degradation rates of DSTP and NLW were the fastest in the first 20 min.
Collapse
Affiliation(s)
- Shiping Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Ying Huang
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, People's Republic of China
| | - Wenyu Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, People's Republic of China
| | - Xiaofei Wang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, People's Republic of China
| | - Jianwei Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
3
|
Synthesis and Characterization of N and Fe-Doped TiO2 Nanoparticles for 2,4-Dimethylaniline Mineralization. NANOMATERIALS 2022; 12:nano12152538. [PMID: 35893506 PMCID: PMC9331849 DOI: 10.3390/nano12152538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
The present study aimed to evaluate the feasibility of developing low-cost N- and Fe-doped TiO2 photocatalysts for investigating the mineralization of 2,4-dimethylaniline (2,4-DMA). With a single anatase phase, the photocatalysts showed high thermal stability with mass losses of less than 2%. The predominant oxidative state is Ti4+, but there is presence of Ti3+ associated with oxygen vacancies. In materials with N, doping was interstitial in the NH3/NH4+ form and for doping with Fe, there was a presence of Fe-Ti bonds (indicating substitutional occupations). With an improved band gap energy from 3.16 eV to 2.82 eV the photoactivity of the photocatalysts was validated with an 18 W UVA lamp (340–415 nm) with a flux of 8.23 × 10−6 Einstein s−1. With a size of only 14.45 nm and a surface area of 84.73 m2 g−1, the photocatalyst doped with 0.0125% Fe mineralized 92% of the 2,4-DMA in just 180 min. While the 3% N photocatalyst with 12.27 nm had similar performance at only 360 min. Factors such as high surface area, mesoporous structure and improved Ebg, and absence of Fe peak in XPS analysis indicate that doping with 0.0125% Fe caused a modification in TiO2 structure.
Collapse
|
4
|
Paula Floriano Santos A, Gozzi F, Evaristo de Carvalho A, Roberta Ferreira de Oliveira K, Rodrigues Lima Caires A, Pereira Cavalcante R, Fabbro Cunha R, Antônio da Silva D, Roberto Vieira Guelfi D, de Melo da Silva L, Ferreira da Silva T, Antonio Casagrande G, César de Oliveira S, Machulek Junior A. Leachate degradation using solar photo-fenton like process: Influence of coagulation-flocculation as a pre-treatment step. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Gutiérrez-Zapata HM, Rojas KL, Sanabria J, Rengifo-Herrera JA. 2,4-D abatement from groundwater samples by photo-Fenton processes at circumneutral pH using naturally iron present. Effect of inorganic ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6213-6221. [PMID: 27324499 DOI: 10.1007/s11356-016-7067-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/09/2016] [Indexed: 05/23/2023]
Abstract
This study evaluated, at laboratory scale, if the using iron naturally present (0.3 mg L-1) and adding 10 mg L-1 of hydrogen peroxide was effective to remove 24.3 mgL-1 of 2,4-dichlorophenoxyacetic acid (2,4-D) from groundwater samples by simulated solar irradiation (global intensity = 300 W m-2). Under these conditions, the degradation of 2,4-D reached 75.2 % and the apparition of its main oxidation byproduct 2,4-dichlorophenol (DCP) was observed. On the other hand, pH exhibited an increasing from 7.0 to 8.3 during the experiment. Experiments using Milli-Q water at pH 7.0, iron, and H2O2 concentrations of 0.3 and 10 mg L-1, respectively, were carried out in order to study the effect of ions such as carbonate species, phosphate, and fluoride in typical concentrations often found in groundwater. Ion concentrations were combined by using a factorial experimental design 23. Results showed that carbonates and fluoride did not produce a detrimental effect on the 2,4-D degradation, while phosphate inhibited the process. In this case, the pH increased also from 7.0 to 7.95 and 8.99. Effect of parameters such as pH, iron concentration, and hydrogen peroxide concentration on the 2,4-D degradation by the photo-Fenton process in groundwater was evaluated by using a factorial experimental design 23. Results showed that the pH was the main parameter affecting the process. This study shows for the first time that using the photo-Fenton process at circumneutral pH and iron naturally present seems to be a promising process to remove pesticides from groundwater.
Collapse
Affiliation(s)
- Héctor M Gutiérrez-Zapata
- Environmental Microbiology and Biotechnology Laboratory, Engineering School of Environmental and Natural Resources, Engineering Faculty, Universidad del Valle - Sede Meléndez, A.A. 25360, Calle 13 No. 100-00, Santiago de Cali, Valle, Colombia
| | - Karen L Rojas
- Environmental Microbiology and Biotechnology Laboratory, Engineering School of Environmental and Natural Resources, Engineering Faculty, Universidad del Valle - Sede Meléndez, A.A. 25360, Calle 13 No. 100-00, Santiago de Cali, Valle, Colombia
| | - Janeth Sanabria
- Environmental Microbiology and Biotechnology Laboratory, Engineering School of Environmental and Natural Resources, Engineering Faculty, Universidad del Valle - Sede Meléndez, A.A. 25360, Calle 13 No. 100-00, Santiago de Cali, Valle, Colombia.
| | - Julián Andrés Rengifo-Herrera
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. J.J. Ronco" (CINDECA), Departamento de Química, Facultad de Ciencias Exactas, UNLP-CCT La Plata, CONICET, 47 No. 257, 1900, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Chen J, Gao N, Lu X, Xia M, Gu Z, Jiang C, Wang Q. Degradation of 2,4-dichlorophenol from aqueous using UV activated persulfate: kinetic and toxicity investigation. RSC Adv 2016. [DOI: 10.1039/c6ra11166a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2,4-DCP is a high-toxicity phenol compound, which is difficult to remove, harmful to the health of people and seriously influences the aquatic ecosystems.
Collapse
Affiliation(s)
- Juxiang Chen
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
- College of Architecture and Civil Engineering
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Xian Lu
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Meng Xia
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Zhenchuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Chuang Jiang
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Qiongfang Wang
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| |
Collapse
|
7
|
|
8
|
Liu X, Fan JH, Ma LM. Simultaneously degradation of 2,4-dichlorophenol and EDTA in aqueous solution by the bimetallic Cu-Fe/O₂ system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1186-1198. [PMID: 25119276 DOI: 10.1007/s11356-014-3372-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
Oxidative degradation of aqueous organic contaminants 2,4-dichlorophenol (2,4-DCP) using ethylenediaminetetraacetic acid (EDTA)-enhanced bimetallic Cu-Fe system in the presence of dissolved oxygen was investigated. The proposed process was applied for the pH range of 3~7 with the degradation efficiency of 2,4-DCP and EDTA varying within 10 %, and achieved at 100 % degradation of 40 mg L(-1) 2,4-DCP in 1 h, at the initial pH of 3, 25 g L(-1) of bimetallic Fe-Cu powder (WCu/WFe = 0.01289) and initial EDTA of 0.57 mM. However, the removal efficiency of 2,4-DCP in control tests were 7.52 % (Cu-Fe/O2 system) and 84.32 % (EDTA-enhanced Fe/O2 process), respectively, after 3 h, reaction. The proposed main mechanism, involves the in situ generation of H2O2 by the electron transfer from Fe(0) to O2 which was enhanced by ethylenediaminetetraacetic acid (EDTA), and the in situ generation of ·OH via advanced oxidation reaction. Accordingly, 2,4-DCP was attacked by ·OH to achieve complete dechlorination and low molecular weight organic acids, even mineralized. Systematic studies on the effects of initial EDTA and 2,4-DCP concentration, Cu-Fe dosing, Cu content, and pH revealed that these effects need to be optimized to avoid the excessive consumption of ·OH and new EDTA and heavy metal Cu pollution.
Collapse
Affiliation(s)
- Xin Liu
- National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | | | | |
Collapse
|
9
|
Luna AJ, Nascimento CAO, Foletto EL, Moraes JEF, Chiavone-Filhoe O. Photo-Fenton degradation of phenol, 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol mixture in saline solution using a falling-film solar reactor. ENVIRONMENTAL TECHNOLOGY 2014; 35:364-371. [PMID: 24600876 DOI: 10.1080/09593330.2013.828762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, a saline aqueous solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) was treated by the photo-Fenton process in a falling-film solar reactor. The influence of the parameters such as initial pH (5-7), initial concentration of Fe2+ (1-2.5mM) and rate of H202 addition (1.87-3.74mmol min-1) was investigated. The efficiency of photodegradation was determined from the removal of dissolved organic carbon (DOC), described by the species degradation of phenol, 2,4-D and 2,4-DCP. Response surface methodology was employed to assess the effects of the variables investigated, i.e. [Fe2+], [H202] and pH, in the photo-Fenton process with solar irradiation. The results reveal that the variables' initial concentration of Fe2+ and H202 presents predominant effect on pollutants' degradation in terms of DOC removal, while pH showed no influence. Under the most adequate experimental conditions, about 85% DOC removal was obtained in 180 min by using a reaction system employed here, and total removal of phenol, 2,4- and 2,4-DCP mixture in about 30min.
Collapse
Affiliation(s)
- Airton J Luna
- National Institute of lndustrial Property, Rio de Janeiro 20090-910, Brazil
| | - Cláudio A O Nascimento
- Department of Chemical Engineering, University of São Paulo, São Paulo 05508-900, Brazil
| | - Edson Luiz Foletto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - José E F Moraes
- Department of Chemical Engineering, Federal University of São Paulo, São Paulo 09972-270, Brazil
| | - Osvaldo Chiavone-Filhoe
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal 59066-800, Brazil
| |
Collapse
|
10
|
Shih YJ, Su HT, Huang YH. Photoelectro-Fenton mineralization of phenol through optimization of ferrous regeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6184-6190. [PMID: 23589255 DOI: 10.1007/s11356-013-1669-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
The degradation of phenol in acidic solution at pH 3 has been investigated under various photo- and electrochemical conditions. A laboratory-scale reactor on which were mounted net electrodes (RuO2/IrO2-coated Ti anodes (DSA) and stainless steel cathodes) and 254 nm UV lamps was established to effectively reduce ferric reagents. The experimental results of the photoelectron-chemical reaction suggested that the current efficiency of reducing ferric ion was improved by increasing the number of electrodes used, and the UV lamps were important to inducing the reduction of ferric carboxylates, which were the major intermediates that were formed upon a particular degree of phenol oxidation. Accordingly, the addition of an initial concentration of 400 ppm ferrous salt and 10,200 ppm hydrogen peroxide (in a continuous mode) resulted in the removal of over 92 % of TOC (initial phenol = 2,000 ppm, TOC = 1,532 ppm) by 4 h of the photoelectro-Fenton and the sequential 2 h of the photo-Fenton processes. HPLC was utilized to monitor the formation of aromatic and carboxylate byproducts, and revealed that the aid of photo irradiation eliminated most of the oxalate residue from the final solution, which would have contributed to the 25 % of the TOC that was inactive in the electrolytic system.
Collapse
Affiliation(s)
- Yu-Jen Shih
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | | | | |
Collapse
|
11
|
Degradation of 2,4-Dichlorophenoxyacetic Acid by Electro-oxidation and Electro-Fenton/BDD Processes Using a Pre-pilot Plant. Electrocatalysis (N Y) 2013. [DOI: 10.1007/s12678-013-0135-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|