1
|
Abdi J, Mazloom G, Hayati B. Sonocatalytic degradation of tetracycline hydrochloride using SnO 2 hollow-nanofiber decorated with UiO-66-NH 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122572. [PMID: 39299111 DOI: 10.1016/j.jenvman.2024.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/18/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
In this study, a porous hollow nanofiber SnO2 was decorated with UiO-66-NH2 nanoparticles with straightforward solvothermal method and utilized for sonocatalytic degradation of tetracycline (TC) by ultrasonic irradiation (USI). The prepared materials were characterized using different techniques such as SEM, EDS, FTIR, XRD, BET, XPS, UV-DRS, EIS, and zeta potential. SnO2 PHNF/UiO-66-NH2 nanocomposite offered the highest apparent rate constant of 0.0397 min-1 which was 6.3 and 3.1 times higher than those obtained for SnO2 PHNF and UiO-66-NH2, respectively. The integration of nanocomposite components revealed the synergy factor of 1.58, which can be due to the created heterojunctions resulted in efficiently charge carriers separation and retaining high redox ability. The effects of different affecting parameters such as TC initial concentration, pH of the solution, catalyst dosage, trapping agents, and coexisting anions on the catalytic performance were examined. The inhibitory effects of anions were confirmed to be decreased in the sequence of Cl- > NO3- > SO42-, while the sonocatalytic efficiency of the nanocomposite improved considerably in the presence of humic acid and bicarbonate. Also, the excellent performance of the catalyst was preserved during six successive cycles, suggesting the high stability of the prepared catalyst. In addition, based on the scavenger analysis, the created O2·-, OH·, and holes were contributed to the TC degradation. In conclusion, the creation heterojunction is an impressive methodology for improving the sonocatalytic activity of a catalyst, and SnO2 PHNF/UiO-66-NH2 nanocomposite was introduced as a satisfactory catalyst in sonocatalytic degradation of organic contaminants.
Collapse
Affiliation(s)
- Jafar Abdi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Golshan Mazloom
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, Babolsar, Iran
| | - Bagher Hayati
- Department of Environmental Health, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| |
Collapse
|
2
|
Evazinejad-Galangashi R, Mohagheghian A, Shirzad-Siboni M. Catalytic wet air oxidation removal of tetracycline by La 2O 3 immobilized on recycled polyethylene terephthalate using the response surface methodology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122043. [PMID: 39126841 DOI: 10.1016/j.jenvman.2024.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
This study investigated the removal of tetracycline from the aqueous solutions by lanthanum oxide nanoparticles covered with polyethylene terephthalate (PET) using a low-cost and facile co-precipitation method, via catalytic wet air oxidation process (CWAO) by response surface methodology (RSM). XRD, FTIR, SEM, and EDX-map techniques have been employed to investigate the crystal structure, functional groups on the surface, morphologic characteristics, and elemental composition, respectively. Under optimum conditions (pH= 9, initial TC concentration= 20 mg L-1, nanocomposite dosage= 1.5 g L-1, pressure= 4 bar, temperature= 70 °C, and time= 90 min), TC removal efficiency by La2O3-PET was achieved at about 99.9%. The environmental parameters were assessed to determine tetracycline catalytic wet air oxidation degradation rate, which included cleaning gases, hydrogen peroxide, type of organic compounds, anions, radical scavenger and reusability. The ANOVA results indicated that the polynomial model proves that the model is entirely meaningful (F-value> 0.001 and P-value< 0.0001) and has high coefficient values of adjusted R2 (0.7404) and predicted R2 (0.5940). The findings indicated that the variables of time, pH, temperature, dosage, and TC concentration have the greatest role in removing tetracycline, respectively. However, pressure as a factor does not have a considerable influence on the performance of the system. In general, due to the presence of the role of additional anionics, the effectiveness of this method for removing tetracycline from drinking water was 82.76%. The catalyst indicated pleasing stability and recycling power during eight testing cycles. Further, the estimated electrical energy per order consumption (EEO) for the CWAO/La2O3-PET system was calculated as 5.31 kWh m-3 with an operational cost (OC) utilization of 1.78 USD kg-1 and it has been shown that this process is feasible and economically comparable to other CWAO processes. The breakdown intermediate products of tetracycline in the CWAO were examined using gas chromatography/mass spectrometry (GC-MS) analysis. The toxicity analyses for the removal of TC were carried out using Daphnia magna and the CWAO process achieved a remarkable decrease in the presence of La2O3-PET nanocomposite (LC50 and toxicity unit (TU) 48 h equal to 0.634 and 157.72 vol percent).
Collapse
Affiliation(s)
| | - Azita Mohagheghian
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran; Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Shirzad-Siboni
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran; Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
3
|
Akbari Beni F, Izadpanah Ostad M, Niknam Shahrak M, Ayati A. Unveiling the remarkable simultaneous adsorption-photocatalytic potential of Ag nanoparticles-anchored phosphotungestic acid loaded ZIF-8 for Congo red removal. ENVIRONMENTAL RESEARCH 2024; 252:119049. [PMID: 38704003 DOI: 10.1016/j.envres.2024.119049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
This research paper presents a direct approach to synthesize AgNPs deposited on polyoxometalate/ZIF-8 on-site (referred to as AgNPS@PW@ZIF-8) to develop a highly efficient photocatalyst in the water treatment. Phosphotungestic acid (PW) serves a multi-purpose in this context: it acts as a bridge layer between AgNPs and Zeolitic Imidazolate Framework-8 (ZIF-8), a local reducing agent, and a catalyst for electron transfer during the photocatalysis process. A comprehensive characterization of the resulting nanostructure was performed utilizing an array of techniques, such as XRD, FTIR, EDX, TEM, BET, Raman, and TGA. The nanostructure that was created exhibited effective removal of Congo red at different pH levels via a combination of simultaneous adsorption and photocatalysis. After 60 min at pH 7, the dye molecules were completely eliminated in the presence of 0.5 g/L AgNPS@PW@ZIF-8 at room temperature. The charge transfer can be facilitated by the PW bridge layer connecting AgNPs and ZIF-8, owing to the photoactive characteristics and strong electron transfer capabilities of PW molecules. Strong electron transferability of PW between Ag nanoparticles and ZIF-8 facilitates charge transfer and significantly improves the photocatalytic performance of ZIF-8. Moreover, the nanostructure demonstrated great structural stability and recyclability, sustaining a high efficiency of removal throughout five consecutive cycles through the implementation of a simple procedure. Widespread applications of the developed nanostructure in aquatic environments for adsorption and photocatalytic reactions are possible.
Collapse
Affiliation(s)
- Faeze Akbari Beni
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, P.O. Box 84686-94717, Iran
| | - Mohammad Izadpanah Ostad
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, P.O. Box 84686-94717, Iran
| | - Mahdi Niknam Shahrak
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, P.O. Box 84686-94717, Iran.
| | - Ali Ayati
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, P.O. Box 84686-94717, Iran; EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russian Federation.
| |
Collapse
|
4
|
Yang Y, Li J, Qu W, Wang W, Ma C, Xue H, Lv Y, He X. Sn/Sb-assisted alum sludge electrodes for eliminating hydrophilic organic pollutants in self-produced H 2O 2 electro-Fenton system: Insights into the co-oxidation mediated by 1O 2 and •OH(ads). JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134457. [PMID: 38688224 DOI: 10.1016/j.jhazmat.2024.134457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Few reports have focused on using particle electrodes with polar adsorbent properties in heterogeneous electro-Fenton (EF) system to improve the degradation of hydrophilic organic pollutants (HLOPs). In this study, a hydrophilic electrode Sn-Sb/AS was prepared by supporting metals Sn and Sb on alum sludge (AS), which can effectively degrade 91.68%, 92.54%, 89.62%, and 96.24% of the four types of HLOPs, chlorpyrifos (CPF), atrazine (ATZ), diuron (DIU), and glyphosate (PMG), respectively, within 40 min. The mineralization rates were 82.37%, 78.93%, 73.98%, and 85.65% for CPF, ATZ, DIU, and PMG, respectively. Based on the analysis of Electron Paramagnetic Resonance test, quenching test, and identified anthracene endoperoxide, the degradation at the cathode was attributed to non-radical oxidation via interaction with 1O2. In contrast, the anodic oxidation occurred via direct electron transfer at the anode and/or oxidation via interaction with adsorbed •OH (•OHads) around the particle electrodes. Furthermore, the reaction sites were calculated by Density functional theory (DFT) and Fukui function, corresponding to the electrophilic attack (fA-) of 1O2 and anodic direct oxidation, besides, the radical attack (fA0) of •OH(ads). Herein, this study proposes a targeted elimination strategy for HLOPs in wastewater treatment using particle electrodes with polar adsorbent properties in EF system.
Collapse
Affiliation(s)
- Yulin Yang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China
| | - Junfeng Li
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China.
| | - Wenying Qu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China
| | - Wenhuai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China
| | - Chengxiao Ma
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China
| | - Haibin Xue
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China
| | - Yang Lv
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China
| | - Xinlin He
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China.
| |
Collapse
|
5
|
Saveh H, Mazloom G, Abdi J. Synthesis of magnetic layered double hydroxide (Fe 3O 4@CuCr-LDH) decorated with ZIF-8 for efficient sonocatalytic degradation of tetracycline. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121338. [PMID: 38823296 DOI: 10.1016/j.jenvman.2024.121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/25/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
A series of Fe3O4@CuCr-LDH hybrids decorated with different amount of ZIF-8 (FLZ, 10-40 wt%) was prepared using simple methods and characterized with different techniques. The activity of the synthesized nanocomposites was investigated in the sonocatalytic degradation of tetracycline (TC) antibiotic from wastewater. When the content of ZIF-8 in the nanocomposite structure was 20 wt%, the FLZ-20 sonocatalyst exhibited the high performance in the sonocatalytic removal of TC. At optimum conditions (0.7 g/L catalyst dosage, pH of 7, 50 mg/L initial concentration of antibiotic, and 15 min sonication time) of the sonocatalytic removal of TC approached to 91.4% under ultrasonic irradiation (USI) using FLZ-20. This efficiency was much higher than those of obtained results by Fe3O4@CuCr-LDH and pristine ZIF-8. The formed ●OH and ●O2- exhibited the major roles in the sonocatalytic TC degradation process. The excellent performance of FLZ-20 can be attributed to the heterojunctions created between composite components, which could improve the electron transfer ability and effectively separate e-/h+ pairs. In addition, FLZ-20 showed the superior reusability and stability during three successive recycling. Moreover, the facile magnetically separation of the sonocatalyst from the aqueous solution was another outstanding feature, which prevents the formation of secondary pollutants. It can be concluded that the fabrication of heterojunctions is an efficient procedure to promote the sonocatalytic acting of the catalyst.
Collapse
Affiliation(s)
- Hannaneh Saveh
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, 47416-13534, Babolsar, Iran
| | - Golshan Mazloom
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, 47416-13534, Babolsar, Iran
| | - Jafar Abdi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, 3619995161, Shahrood, Iran.
| |
Collapse
|
6
|
Cimen A, Bilgic A, Bayrak M. Fabrication and characterization of new Fe 3O 4@SiO 2@TiO 2-CPTS-HBAP (FST-CH) nanoparticles for photocatalytic degradation and adsorption removal of rhodamine B dye in the aquatic environment. Heliyon 2024; 10:e29355. [PMID: 38623186 PMCID: PMC11016715 DOI: 10.1016/j.heliyon.2024.e29355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
In this study, Fe3O4@SiO2@TiO2-CPTS-HBAP (FST-CH) nanoparticle was prepared for the simultaneous adsorption and photocatalytic degradation of aromatic chemical pollutants (Rhodamine B dye) in aqueous solution. FST-CH nanoparticle was characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Energy Dispersive X-Ray (EDX) Fluorescence Spectrometer and X-Ray Diffraction (XRD) spectroscopy. The photocatalytic activity of rhodamine B dye (RhB) was evaluated with a Kerman UV 8/18 vertical roller photoreactor. About 56% of RhB in aqueous medium was adsorbed by FST-CH nanoparticles with only 45 min of stirring in the dark, and about 77.01% was degraded or converted to other structures under the photoreactor for 120 min. The photocatalytic degradation of RhB (apparent rate constant: 0.0026 mg dm-3 min-1) occurred by a pseudo-second order reaction. In addition, the recovery of the prepared magnetic FST-CH nanoparticle by an external magnetic field, exhibiting good magnetic response and reusability, shows that the obtained magnetic FST-CH nanoparticle is stable and maintains high degradation ratio and catalyst recovery even after four cycles. Thus, the prepared FST-CH nanoparticle can be highly recommended for its use in potential applications of water decontamination.
Collapse
Affiliation(s)
- Aysel Cimen
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Ali Bilgic
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Melike Bayrak
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
7
|
Yan F, Hu L, Wang M, Huang S, Zhang S, He L, Zhang Z. Multifunctional photocatalyst of graphitic carbon embedded with Fe 2O 3/Fe 3O 4 nanocrystals derived from lichen for efficient photodegradation of tetracycline and methyl blue. ENVIRONMENTAL TECHNOLOGY 2024; 45:2045-2066. [PMID: 36609215 DOI: 10.1080/09593330.2022.2164522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
We propose a feasible and economical method of constructing biomass-based multifunctional photocatalysts with excellent adsorption performance and high photodegradation abilities toward tetracycline (TC) and methyl blue (MB) under visible light. A series of novel hybrids of porous graphitic carbon embedded with Fe2O3/Fe3O4 nanocrystals (denoted as Fe2O3/Fe3O4@C) were derived from lichen doped with different dosages of Fe3+ by calcination at 700°C under a N2 atmosphere. The Fe2O3/Fe3O4@C hybrids exhibited nanoflake-like shapes, mesoporous structures, and efficient visible light harvesting, thus indicating enhanced adsorption ability and photoactivity toward pollutants. The formed Fe2O3/Fe3O4 heterojunction improved the separation efficiency and inhibited the recombination of photogenerated carriers, whereas the carbon network improved the transfer of photogenerated electrons. Under optimised conditions, the Fe2O3/Fe3O4@C-1 hybrid demonstrated enhanced photodegradation efficiencies of 96.4% for TC and 100% for MB under visible light. In addition, electron spin resonance and trapping measurements were performed to identify active species and determine the photocatalytic mechanism toward pollutants. •O2- and •OH were the active species involved, playing critical roles in the TC and MB photodegradation processes. In addition, a bacterium test revealed that the products of TC degradation by Fe2O3/Fe3O4@C-1 showed low biological toxicity. This work provides a promising preparation strategy or biomass-based photocatalysts for application in environmental pollutant treatment.
Collapse
Affiliation(s)
- Fufeng Yan
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. People's Republic of China
- Faculty of Education, Beijing Normal University, Beijing, P. R. People's Republic of China
| | - Lijun Hu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. People's Republic of China
| | - Minghua Wang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. People's Republic of China
| | - Shunjiang Huang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. People's Republic of China
| | - Shuai Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. People's Republic of China
| | - Linghao He
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. People's Republic of China
| | - Zhihong Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. People's Republic of China
| |
Collapse
|
8
|
Hasham Firooz M, Naderi A, Moradi M, Kalantary RR. Enhanced tetracycline degradation with TiO 2/natural pyrite S-scheme photocatalyst. Sci Rep 2024; 14:4954. [PMID: 38418921 PMCID: PMC10902398 DOI: 10.1038/s41598-024-54549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
In this study, TiO2 nanoparticles were employed as a photocatalyst for the degradation of tetracycline (TC) under visible light irradiation. The TiO2 nanoparticles were decorated on natural pyrite (TiO2/NP) and characterized using XRD, FTIR, and SEM-EDX methods. This study evaluated the impacts of various operational parameters such as pH, catalyst dosage, initial TC concentration, and light intensity on TC removal. The findings revealed that under optimal conditions (pH 7, catalyst: 2 g/L, TC: 30 mg/L, and light intensity: 60 mW/cm2), 100% of TC and 84% of TOC were removed within 180 min. The kinetics of TC elimination followed a first-order model. The dominant oxidation species involved in the photocatalytic elimination of TC was found to be ·OH radicals in the TiO2/NP system. The reuse experiments showed the high capability of the catalyst after four consecutive cycles. This study confirmed that the TiO2/NP system has high performance in photocatalytic TC removal under optimized experimental conditions.
Collapse
Affiliation(s)
- Masoumeh Hasham Firooz
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Azra Naderi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Rezaei Kalantary
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Moslehi MH, Zadeh MS, Nateq K, Shahamat YD, Khan NA, Nasseh N. Statistical computational optimization approach for photocatalytic-ozonation decontamination of metronidazole in aqueous media using CuFe 2O 4/SiO 2/ZnO nanocomposite. ENVIRONMENTAL RESEARCH 2024; 242:117747. [PMID: 38016498 DOI: 10.1016/j.envres.2023.117747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
The increasing use of pharmaceuticals and the ongoing release of drug residues into the environment have resulted in significant threats to environmental sustainability and water safety. In this sense, developing a robust and easy-recovered magnetic nanocomposite with eminent photocatalytic activity is very imperative for detoxifying pharmaceutical compounds. Herein, a systematic study was conducted to investigate the photocatalytic ozonation for eliminating metronidazole (MET) from aqueous media utilizing the CuFe2O4/SiO2/ZnO heterojunction under simulated sunlight irradiation. The composite material was fabricated by a facile hydrothermal method and diagnosed by multiple advanced analytical techniques. Modelling and optimization of MET decontamination by adopting the central composite design (CCD) revealed that 90 % of MET decontamination can be achieved within 120 min of operating time at the optimized circumstance (photocatalyst dose: 1.17 g/L, MET dose: 33.20 mg/L, ozone concentration: 3.99 mg/min and pH: 8.99). In an attempt to scrutinize the practical application of the CuFe2O4/SiO2/ZnO/xenon/O3 system, roughly 56.18% TOC and 73% COD were removed under the optimized operational circumstances during 120 min of degradation time. According to the radical quenching experiments, hydroxyl radicals (HO•) were the major oxidative species responsible for the elimination of MET. The MET degradation rate maintained at 83% after seven consecutive runs, manifesting the efficiency of CuFe2O4/SiO2/ZnO material in the MET removal. Ultimately, the photocatalytic ozonation mechanism over the CuFe2O4/SiO2/ZnO heterojunction of the fabricated nanocomposites was rationally proposed for MET elimination. In extension, the results drawn in this work indicate that integrating photocatalyst and ozonation processes by the CuFe2O4/SiO2/ZnO material can be applied as an efficient and promising method to eliminate tenacious and non-biodegradable contaminants from aqueous environments.
Collapse
Affiliation(s)
| | - Mohammad Shohani Zadeh
- Department of Safety, Health and Environmental Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| | - Kasra Nateq
- Department of Inspection Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| | - Yousef Dadban Shahamat
- Environmental Health Research Center, Department of Associate Professor, Faculty of Public Health, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Nadeem Ahmad Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Negin Nasseh
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Health Promotion and Education, School of Health, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
10
|
Radhakrishnan P, Sivasamy A. Photocatalytic reduction of chromium(VI) using multiwall carbon nanotubes/bismuth oxide nanocomposite under solar irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4747-4763. [PMID: 38105325 DOI: 10.1007/s11356-023-31433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Semiconductor photocatalysis is the most efficient advanced oxidation processes for wastewater treatment. A new carbon-based photocatalyst bismuth oxide/multi-walled carbon nanotube (Bi2O3/MWCNT) nanocomposite has a considerable impact on improving photocatalytic performance. Bi2O3/MWCNTs (BMC) nanocomposite was prepared through the hydrothermal processing with 2.5, 5, 7.5 and 10 wt% of MWCNTs. The prepared photocatalysts have been thoroughly examined by various techniques. The X-ray diffraction confirmed the prepared photocatalyst as α-Bi2O3 with high crystallinity. The band gap of Bi2O3 and BMC 7.5 nanocomposite was found to be 2.41 and 1.94 eV. The prepared photocatalyst revealed smooth and porous merged flower-like structure with respect to the addition of MWCNTs. The model pollutant chromium(VI) (Cr(VI)) has been used to check the reduction efficiency of the prepared photocatalyst under solar irradiation. It was found that BMC 7.5 nanocomposite showed enhanced photocatalytic metal ion reduction (87.48%) compared to pristine Bi2O3 (69.29%). The preliminary photocatalytic Cr(VI) ion reduction experiments were carried to determine the photoreduction efficiency of pristine bismuth oxide and bismuth MWCNT nanocomposite. The kinetic study on Cr(VI) ion reduction obeyed pseudo-first-order rate kinetics for both the prepared photocatalysts. The efficiency of the photocatalysts was further analysed by reusing the same up to 3 cycles without loss of the efficacy.
Collapse
Affiliation(s)
- Pravina Radhakrishnan
- Catalysis Science Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
- Department of Leather Technology, Anna University, Chennai, 600025, India
| | - Arumugam Sivasamy
- Catalysis Science Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.
- Department of Leather Technology, Anna University, Chennai, 600025, India.
| |
Collapse
|
11
|
Iqbal J, Su C, Ahmad M, Baloch MYJ, Rashid A, Ullah Z, Abbas H, Nigar A, Ali A, Ullah A. Hydrogeochemistry and prediction of arsenic contamination in groundwater of Vehari, Pakistan: comparison of artificial neural network, random forest and logistic regression models. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:14. [PMID: 38147177 DOI: 10.1007/s10653-023-01782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/10/2023] [Indexed: 12/27/2023]
Abstract
Arsenic contamination in the groundwater occurs in various parts of the world due to anthropogenic and natural sources, adversely affecting human health and ecosystems. The current study intends to examine the groundwater hydrogeochemistry containing elevated arsenic (As), predict As levels in groundwater, and determine the aptness of groundwater for drinking in the Vehari district, Pakistan. Four hundred groundwater samples from the study region were collected for physiochemical analysis. As levels in groundwater samples ranged from 0.1 to 52 μg/L, with an average of 11.64 μg/L, (43.5%), groundwater samples exceeded the WHO 2022 recommended limit of 10 μg/L for drinking purposes. Ion-exchange processes and the adsorption of ions significantly impacted the concentration of As. The HCO3- and Na+ are the dominant ions in the study area, and the water types of samples were CaHCO3, mixed CaMgCl, and CaCl, demonstrating that rock-water contact significantly impacts hydrochemical behavior. The geochemical modeling indicated negative saturation indices with calcium carbonate and other salt minerals, encompassing aragonite, calcite, dolomite, and halite. The dissolution mechanism suggested that these minerals might have implications for the mobilization of As in groundwater. A combination of human-induced and natural sources of contamination was unveiled through principal component analysis (PCA). Artificial neural networks (ANN), random forest (RF), and logistic regression (LR) were used to predict As in the groundwater. The data have been divided into two parts for statistical analysis: 20% for testing and 80% for training. The most significant input variables for As prediction was determined using Chi-squared analysis. The receiver operating characteristic area under the curve and confusion matrix were used to evaluate the models; the RF, ANN, and LR accuracies were 0.89, 0.85, and 0.76. The permutation feature and mean decrease in impurity determine ten parameters that influence groundwater arsenic in the study region, including F-, Fe2+, K+, Mg2+, Ca2+, Cl-, SO42-, NO3-, HCO3-, and Na+. The present study shows RF is the best model for predicting groundwater As contamination in the research area. The water quality index showed that 161 samples represent poor water, and 121 samples are unsuitable for drinking. Establishing effective strategies and regulatory measures is imperative in Vehari to ensure the sustainability of groundwater resources.
Collapse
Affiliation(s)
- Javed Iqbal
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China
| | - Chunli Su
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China.
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China.
| | - Maqsood Ahmad
- School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | | | - Abdur Rashid
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China
| | - Zahid Ullah
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China
| | - Hasnain Abbas
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China
| | - Anam Nigar
- School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Asmat Ali
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China
| | - Arif Ullah
- Institute of Geological Survey, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| |
Collapse
|
12
|
Zheng J, Zhang P, Li X, Ge L, Niu J. Insight into typical photo-assisted AOPs for the degradation of antibiotic micropollutants: Mechanisms and research gaps. CHEMOSPHERE 2023; 343:140211. [PMID: 37739134 DOI: 10.1016/j.chemosphere.2023.140211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Due to the incomplete elimination by traditional wastewater treatment, antibiotics are becoming emerging contaminants, which are proved to be ubiquitous and promote bacterial resistance in the aquatic systems. Antibiotic pollution has raised particular concerns, calling for improved methods to clean wastewater and water. Photo-assisted advanced oxidation processes (AOPs) have attracted increasing attention because of the fast reaction rate, high oxidation capacity and low selectivity to remove antibiotics from wastewater. On the basis of latest literature, we found some new breakthroughs in the degradation mechanisms of antibiotic micropollutants with respect to the AOPs. Therefore, this paper summarizes and highlights the degradation kinetics, pathways and mechanisms of antibiotics degraded by the photo-assisted AOPs, including the UV/O3 process, photo-Fenton technology, and photocatalysis. In the processes, functional groups are attacked by hydroxyl radicals, and major structures are destroyed subsequently, which depends on the classes of antibiotics. Meanwhile, their basic principles, current applications and influencing factors are briefly discussed. The main challenges, prospects, and recommendations for the improvement of photo-assisted AOPs are proposed to better remove antibiotics from wastewater.
Collapse
Affiliation(s)
- Jinshuai Zheng
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xuanyan Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
13
|
Popa A, Stefan M, Macavei S, Perhaita I, Tudoran LB, Toloman D. Facile Preparation of PVDF/CoFe 2O 4-ZnO Hybrid Membranes for Water Depollution. Polymers (Basel) 2023; 15:4547. [PMID: 38231983 PMCID: PMC10708052 DOI: 10.3390/polym15234547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
In this investigation, CoFe2O4-PVDF and CoFe2O4-ZnO-PVDF hybrid membranes were prepared using a modified phase inversion method in which a magnetic field was applied during the casting process to ensure a uniform distribution of nanomaterials on the membrane surface. Thus, better absorption of light and increased participation of nanoparticles in the photodegradation process is ensured. The influence of nanomaterials on the crystalline structure, surface morphology, and hydrophilicity properties of the PVDF membrane was investigated. The obtained results indicated that the hybrid membrane exhibited significant differences in its intrinsic properties due to the nanomaterials addition. The hydrophilicity properties of the PVDF membrane were improved by the presence of nanoparticles. The photocatalytic decomposition of aqueous Rhodamine B solution in the presence of the prepared membrane and under visible light irradiation was tested. The hybrid membrane containing CoFe2O4-ZnO on its surface exhibited a high removal rate.
Collapse
Affiliation(s)
- Adriana Popa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| | - Maria Stefan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| | - Sergiu Macavei
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| | - Ioana Perhaita
- Raluca Ripan Institute for Research in Chemistry, Babes Bolyai University, 30 Fantanele, 400294 Cluj-Napoca, Romania;
| | - Lucian Barbu Tudoran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| | - Dana Toloman
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| |
Collapse
|
14
|
Agurokpon D, Louis H, Benjamin I, Godfrey OC, Ghotekar S, Adeyinka AS. Impact of Polythiophene ((C 4H 4S) n; n = 3, 5, 7, 9) Units on the Adsorption, Reactivity, and Photodegradation Mechanism of Tetracycline by Ti-Doped Graphene/Boron Nitride (Ti@GP_BN) Nanocomposite Materials: Insights from Computational Study. ACS OMEGA 2023; 8:42340-42355. [PMID: 38024685 PMCID: PMC10652268 DOI: 10.1021/acsomega.3c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023]
Abstract
This study addresses the formidable persistence of tetracycline (TC) in the environment and its adverse impact on soil, water, and microbial ecosystems. To combat this issue, an innovative approach by varying polythiophene ((C4H4S)n; n = 3, 5, 7, 9) units and the subsequent interaction with Ti-doped graphene/boron nitride (Ti@GP_BN) nanocomposites was applied as catalysts for investigating the molecular structure, adsorption, excitation analysis, and photodegradation mechanism of tetracycline within the framework of density functional theory (DFT) at the B3LYP-gd3bj/def2svp method. This study reveals a compelling correlation between the adsorption potential of the nanocomposites and their corresponding excitation behaviors, particularly notable in the fifth and seventh units of the polythiophene configuration. These units exhibit distinct excitation patterns, characterized by energy levels of 1.3406 and 924.81 nm wavelengths for the fifth unit and 1.3391 and 925.88 nm wavelengths for the seventh unit. Through exploring deeper, the examination of the exciton binding energy emerges as a pivotal factor, bolstering the outcomes derived from both UV-vis transition analysis and adsorption exploration. Notably, the calculated exciton binding energies of 0.120 and 0.103 eV for polythiophene units containing 5 and 7 segments, respectively, provide compelling confirmation of our findings. This convergence of data reinforces the integrity of our earlier analyses, enhancing our understanding of the intricate electronic and energetic interplay within these intricate systems. This study sheds light on the promising potential of the polythiophene/Ti-doped graphene/boron nitride nanocomposite as an efficient candidate for TC photodegradation, contributing to the advancement of sustainable environmental remediation strategies. This study was conducted theoretically; hence, experimental studies are needed to authenticate the use of the studied nanocomposites for degrading TC.
Collapse
Affiliation(s)
- Daniel
C. Agurokpon
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, Calabar 540221, Nigeria
- Centre for
Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital
and Research Institute, Chettinad Academy
of Research and Education, Kelambakkam 603103, Tamil Nadu India
| | - Innocent Benjamin
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Obinna C. Godfrey
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Biochemistry, University of Calabar, Calabar 540221, Nigeria
| | - Suresh Ghotekar
- Department
of Chemistry, Smt. Devkiba Mohansinhji, Chauhan College of Commerce
and Science, University of Mumbai, Silvassa 396, India
| | - Adedapo S. Adeyinka
- Department
of Chemical Sciences, University of Johannesburg, Auckland Park 2006, South-Africa
| |
Collapse
|
15
|
Shkir M, AlAbdulaal TH, Ubaidullah M, Reddy Minnam Reddy V. Novel Bi 2WO 6/MWCNT nanohybrids synthesis for high-performance photocatalytic activity of ciprofloxacin degradation under simulated sunlight irradiation. CHEMOSPHERE 2023; 338:139432. [PMID: 37419154 DOI: 10.1016/j.chemosphere.2023.139432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
In this research, novel Bi2WO6/MWCNT nanohybrids were synthesized via a cost-effective hydrothermal route. The photocatalytic performance of these specimens was tested through the photodegradation of Ciprofloxacin (CIP) under simulated sunlight. Various physicochemical techniques systematically characterized the prepared pure, Bi2WO6/MWCNT nanohybrid photocatalysts. The XRD and Raman spectra revealed the structural/phase properties of Bi2WO6/MWCNT nanohybrids. FESEM and TEM pictures revealed the attachment and distribution of plate-like Bi2WO6 nanoparticles along the nanotubes. The optical absorption and bandgap energy of Bi2WO6 was affected by the addition of MWCNT, which was analyzed by UV-DRS spectroscopy. The introduction of MWCNT reduces the bandgap value of Bi2WO6 from 2.76 to 2.46 eV. The BWM-10 nanohybrid showed superior photocatalytic activity for CIP photodegradation; 91.3% of CIP was degraded under sunlight irradiation. The PL and transient photocurrent test confirm that photoinduced charge separation efficiency is better in BWM-10 nanohybrids. The scavenger test indicates that h+ & •O2 have mainly contributed to the CIP degradation process. Furthermore, the BWM-10 catalyst demonstrated outstanding reusability and firmness in four successive cycles. It is anticipated that the Bi2WO6/MWCNT nanohybrids will be employed as photocatalysts for environmental remediation and energy conversion. This research presents a novel technique for developing an effective photocatalyst for pollutant degradation.
Collapse
Affiliation(s)
- Mohd Shkir
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - T H AlAbdulaal
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia; Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | | |
Collapse
|
16
|
Varghese D, Joe Raja Ruban M, Joselene Suzan Jennifer P, AnnieCanisius D, Chakko S, Muthupandi S, Madhavan J, Victor Antony Raj M. Comprehensive analysis of NiFe 2O 4/MWCNTs nanocomposite to degrade a healthcare waste - tetracycline. RSC Adv 2023; 13:28339-28361. [PMID: 37767116 PMCID: PMC10520693 DOI: 10.1039/d3ra05398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Tetracycline (TC), a commonly used antibiotic for studying bacterial illnesses in living organisms, poses a significant risk to the aquatic environment. Despite various conventional methods having been attempted to remove TC antibiotics from water solutions, they have not proven effective. Consequently, the focus of the research is on the photocatalytic degradation of TC. According to the research, MWCNTs were successfully incorporated into NiFe2O4 nanoparticles, which reduced the pace at which charge carriers recombined after joining with MWCNTs. Subsequently, the catalyst's efficacy was assessed in a batch reactor by analyzing the weight percentage change of the nanocomposite, the initial concentration of TC antibiotics, the effects of pH and contact time. The identical operational parameters were employed to investigate the degradation of TC using NiFe2O4 and MWCNTs as individual pure materials. The findings indicated that the photocatalytic process using NiFe2O4/MWCNTs achieved a degradation efficiency of 95.8% for TC at a pH value of 9. This result was obtained after a reaction time of 120 minutes, the concentration of TC solution was 10 mg L-1, with a nanocomposite dose of 0.6 g L-1 of TN 04 and 120 W m-2. The pseudo-first-order approach was used to estimate the rate at which TC degrades. After four consecutive uses, it was observed that the photocatalysts maintained their original properties, with only a slight decrease of approximately 2.4% in the removal efficiency. The study demonstrated that the NiFe2O4/MWCNTs nanocomposite exhibited considerable efficiency in degrading TC. Due to its simple manufacture and useful recovery, it has the potential to function well as a catalyst for the removal and degradation of pharmaceutical organic contaminants.
Collapse
Affiliation(s)
- Davis Varghese
- Department of Physics, Loyola College, Affiliated to the University of Madras Chennai 600034 India
- Loyola Institute of Frontier Energy, Loyola College Chennai 600034 India
| | - M Joe Raja Ruban
- Department of Physics, Loyola College, Affiliated to the University of Madras Chennai 600034 India
- Loyola Institute of Frontier Energy, Loyola College Chennai 600034 India
| | - P Joselene Suzan Jennifer
- Department of Physics, Loyola College, Affiliated to the University of Madras Chennai 600034 India
- Loyola Institute of Frontier Energy, Loyola College Chennai 600034 India
| | - D AnnieCanisius
- Department of Physics, Loyola College, Affiliated to the University of Madras Chennai 600034 India
- Loyola Institute of Frontier Energy, Loyola College Chennai 600034 India
| | - Seena Chakko
- PG and Research Department of Chemistry, Christ College Irinjalakuda 680125 India
| | - S Muthupandi
- Department of Physics, Loyola College, Affiliated to the University of Madras Chennai 600034 India
| | - J Madhavan
- Department of Physics, Loyola College, Affiliated to the University of Madras Chennai 600034 India
| | - M Victor Antony Raj
- Department of Physics, Loyola College, Affiliated to the University of Madras Chennai 600034 India
- Loyola Institute of Frontier Energy, Loyola College Chennai 600034 India
| |
Collapse
|
17
|
Pete KY, Kabuba J, Otieno B, Ochieng A. Modeling adsorption and photocatalytic treatment of recalcitrant contaminant on multi-walled carbon/TiO 2 nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94154-94165. [PMID: 37526826 PMCID: PMC10468944 DOI: 10.1007/s11356-023-28852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
A nanocomposite photocatalyst consisting of titanium dioxide (TiO2) supported on multiwalled carbon nanotubes (MWCNTs) has been successfully prepared and used for the treatment of wastewater contaminated with tetracycline (TC), a recalcitrant antibiotic pollutant. The TiO2/MCNT composites were prepared by a simple evaporation-drying method. The properties of MWCNT/TiO2 were optimized by dispersing different amounts of TiO2 onto MWCNT. The structural and optical characteristics of the nano-engineered photocatalyst composite were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) techniques. Photocatalytic degradation of TC was conducted in a quartz glass reactor. Different kinetic models were used to demonstrate the governing mechanisms. The findings revealed that the TiO2/MWCNT composite had enhanced photocatalytic activity (95% TC removal) compared to TiO2 (86% removal). The photocatalyst nanocomposite exhibited overall pseudo-second-order reaction kinetics and favored the Langmuir adsorption isotherm. Although up to 95% degradation of TC was achieved, only 75% of it was mineralized as a result of the formation of stable refractory intermediates.
Collapse
Affiliation(s)
- Kwena Yvonne Pete
- Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa.
| | - John Kabuba
- Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Benton Otieno
- Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Aoyi Ochieng
- Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| |
Collapse
|
18
|
Wang L, Xu Y, Qin T, Wu M, Chen Z, Zhang Y, Liu W, Xie X. Global trends in the research and development of medical/pharmaceutical wastewater treatment over the half-century. CHEMOSPHERE 2023; 331:138775. [PMID: 37100249 PMCID: PMC10123381 DOI: 10.1016/j.chemosphere.2023.138775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
The COVID-19 pandemic has severely impacted public health and the worldwide economy. The overstretched operation of health systems around the world is accompanied by potential and ongoing environmental threats. At present, comprehensive scientific assessments of research on temporal changes in medical/pharmaceutical wastewater (MPWW), as well as estimations of researcher networks and scientific productivity are lacking. Therefore, we conducted a thorough literature study, using bibliometrics to reproduce research on medical wastewater over nearly half a century. Our primary goal is systematically to map the evolution of keyword clusters over time, and to obtain the structure and credibility of clusters. Our secondary objective was to measure research network performance (country, institution, and author) using CiteSpace and VOSviewer. We extracted 2306 papers published between 1981 and 2022. The co-cited reference network identified 16 clusters with well-structured networks (Q = 0.7716, S = 0.896). The main trends were as follows: 1) Early MPWW research prioritized sources of wastewater, and this cluster was considered to be the mainstream research frontier and direction, representing an important source and priority research area. 2) Mid-term research focused on characteristic contaminants and detection technologies. Particularly during 2000-2010, a period of rapid developments in global medical systems, pharmaceutical compounds (PhCs) in MPWW were recognized as a major threat to human health and the environment. 3) Recent research has focused on novel degradation technologies for PhC-containing MPWW, with high scores for research on biological methods. Wastewater-based epidemiology has emerged as being consistent with or predictive of the number of confirmed COVID-19 cases. Therefore, the application of MPWW in COVID-19 tracing will be of great interest to environmentalists. These results could guide the future direction of funding agencies and research groups.
Collapse
Affiliation(s)
- Ling Wang
- Department of Nursing, The Second Hospital of Nanjing, Nursing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, 210003, China
| | - Yixia Xu
- Department of Nursing, The Second Hospital of Nanjing, Nursing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, 210003, China
| | - Tian Qin
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Mengting Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Zhiqin Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Yalan Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Wei Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China.
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
19
|
Aghapour AA, Alizadeh N, Khorsandi H. Biological degradation and mineralization of tetracycline antibiotic using SBR equipped with a vertical axially rotating biological bed (SBR-VARB). Biodegradation 2023; 34:325-340. [PMID: 36840888 PMCID: PMC10191986 DOI: 10.1007/s10532-023-10018-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
Tetracycline (TC) is a widely used antibiotic with a complex aromatic chemical structure and is highly resistant to biodegradation. In this study, an SBR equipped with a vertical axially rotating biological bed (SBR-VARB) was used for the biodegradation and mineralization of TC. SBR-VARB showed high efficiency in removing TC (97%), total phenolic compounds (TP) (95%), and COD (85%) under optimal operating conditions (TC = 50 mg/L, HRT = 1.75 d, and OLR = 36 g COD/m3 d). The SBR-VARB was able to treat higher concentrations of TC in shorter HRT than reported in previous studies. The contribution of VARB to improve SBR efficiency in removing TC, TP, and COD was 16, 36, and 48%, respectively. Intermediate compounds formed during the biodegradation of TC were identified using GC-MS under the optimal operating conditions of the bioreactor. These are mainly organic compounds with linear chemical structures. Based on the complete biodegradation of TC under the optimal operating conditions of the bioreactor, 93% and 36% of the chlorine and nitrogen atoms in the chemical structure of TC appeared in the wastewater, respectively. According to the sequence analysis of 16SrDNA, Pseudomonas sp., Kocuria Polaris, and Staphylococcus sp. were identified in the biofilm of VARB and the suspended biomass of the bioreactor. Therefore, SBR-VARB showed high efficiency in the biodegradation and mineralization of TC and can be used as a suitable option for treating wastewater containing antibiotics and other toxic compounds.
Collapse
Affiliation(s)
- Ali Ahmad Aghapour
- Department of Environmental Health Engineering, Urmia University of Medical Sciences, Urmia, Iran.
| | - Nazila Alizadeh
- Department of Environmental Health Engineering, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Khorsandi
- Department of Environmental Health Engineering, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
20
|
Guo X, Wu Z, Wang Z, Lin F, Li P, Liu J. Preparation of Chitosan-Modified Bentonite and Its Adsorption Performance on Tetracycline. ACS OMEGA 2023; 8:19455-19463. [PMID: 37305296 PMCID: PMC10249085 DOI: 10.1021/acsomega.3c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023]
Abstract
In this study, chitosan-modified bentonite was synthesized using the coprecipitation method. When the Na2CO3 content was 4% (weight of soil) and the mass ratio of chitosan to bentonite was 1:5, the adsorption performance of the chitosan/bentonite composite was best. The adsorbent was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller measurement. Various characterization results demonstrate that chitosan successfully entered the bentonite interlayer and increased layer spacing but did not modify bentonite's laminar mesoporous structure, and the -CH3 and -CH2 groups of chitosan appeared on chitosan-modified bentonite. Tetracycline was used as the target pollutant in the static adsorption experiment. The adsorption capacity was 19.32 mg/g under optimal conditions. The adsorption process was more consistent with the Freundlich model and the pseudo-second-order kinetic model, indicating that it was a nonmonolayer chemisorption process. The adsorption process is a spontaneous, endothermic, entropy-increasing process, according to thermodynamic characteristics.
Collapse
Affiliation(s)
- Xuebai Guo
- Henan
Vocational College of Water Conservancy and Environment, Zhengzhou 450008, China
| | - Zhenjun Wu
- School
of Environmental Engineering, Henan University
of Technology, Zhengzhou 450001, China
- Henan
Xinanli Security Technology Co., Ltd. Post-Doctoral Workstation, Zhengzhou 450001, China
| | - Zelong Wang
- School
of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Fangfang Lin
- Henan
Institute of Metrology, Zhengzhou 450008, China
| | - Penghui Li
- School
of Environmental Engineering, Henan University
of Technology, Zhengzhou 450001, China
| | - Jiaxin Liu
- School
of Environmental Engineering, Henan University
of Technology, Zhengzhou 450001, China
| |
Collapse
|
21
|
Da Silva GH, Franqui LS, De Farias MA, De Castro VLSS, Byrne HJ, Martinez DST, Monteiro RTR, Casey A. TiO 2-MWCNT nanohybrid: Cytotoxicity, protein corona formation and cellular internalisation in RTG-2 fish cell line. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106434. [PMID: 36870176 DOI: 10.1016/j.aquatox.2023.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Titanium dioxide nanoparticles-multiwalled carbon nanotubes (TiO2-MWCNT) nanohydrid has an enhanced photocatalytic activity across the visible light with promising applications in environmental remediation, solar energy devices and antimicrobial technologies. However, it is necessary to evaluate the toxicological effects of TiO2-MWCNT towards safe and sustainable development of nanohybrids. In this work, we studied the cytotoxicity, protein corona formation and cellular internalisation of TiO2-MWCNT on fibroblasts derived from gonadal rainbow trout tissue (RTG-2) for the first time. This nanohydrid did not show any toxicity effect on RTG-2 cells up to 100 mg L-1 after 24 h of exposure as monitored by alamar blue, neutral red and trypan blue assays (in presence or absence of foetal bovine serum, FBS). Futhermore, cryo-transmission electron microscopy analysis demonstrated that TiO2 particles is attached on nanotube surface after FBS-protein corona formation in cell culture medium. Raman spectroscopy imaging showed that TiO2-MWCNT can be internalised by RTG-2 cells. This work is a novel contribution towards better understanding the nanobiointeractions of nanohydrids linked to their in vitro effects on fish cells in aquatic nanoecotoxicology.
Collapse
Affiliation(s)
- Gabriela H Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; Laboratory of Ecotoxicology and Biosafety, EMBRAPA Environment, Jaguariúna, São Paulo, Brazil; FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland.
| | - Lidiane Silva Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Marcelo A De Farias
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland
| | - Diego S T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Regina T R Monteiro
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Alan Casey
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
22
|
Xing Z, Wang Z, Chen W, Zhang M, Fu X, Gao Y. Degradation of levofloxacin in wastewater by photoelectric and ultrasonic synergy with TiO 2/g-C 3N 4@AC combined electrode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117168. [PMID: 36603258 DOI: 10.1016/j.jenvman.2022.117168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
A novel particle combined electrode named TiO2/g-C3N4@AC (TGCN-AC) was prepared by loading TiO2 and g-C3N4 on activated carbon through gel method, which was used to degrade levofloxacin (LEF) in pharmaceutical wastewater by photoelectric process. The remarkable physicochemical features of particle electrodes were verified by using diverse characterization techniques including SEM-EDS, XRD, FT-IR, BET and pHZPC. EIS-CV and photocurrent showed excellent electrocatalysis and photoelectrocatalysis performance of particle electrodes. The photocatalytic characteristics and fluorescence properties of the particle electrode were proved by UV-vis DRS and PL spectra measurements. Combined with Tauc's plot and Mott-Schottky plots curves, the ECB and EVB of particle electrodes were determined. The experiments on different influence factors such as pH, ultrasonic, aeration, current density and the concentration of LEF were carried out in the photoelectric reactor. Under the conditions of pH values 3.0, 200 W ultrasonic, 8 L/min aeration, the mass ratio of g-C3N4 and TiO2 is 8%, after 4.0 h of photoelectric process, about 94.76% of LEF (20 mg/L) in water was degraded. TGCN-AC also has excellent reusability. The degradation rate of LEF can still reach 71.17% after repeated use for 6 times. Scavenger studies showed that h+ and O2- were the main active species. By observing the colony size of E. coli, it was proved that the LEF in the effluent had no antibacterial activity. The degradation pathways of LEF was analyzed and drawn by HPLC-MS spectra.
Collapse
Affiliation(s)
- Zihao Xing
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Zijing Wang
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Wenhui Chen
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Manying Zhang
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Xiaofei Fu
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Yong Gao
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China.
| |
Collapse
|
23
|
Sun J, Ji L, Han X, Wu Z, Cai L, Guo J, Wang Y. Mesoporous Activated Biochar from Crab Shell with Enhanced Adsorption Performance for Tetracycline. Foods 2023; 12:foods12051042. [PMID: 36900558 PMCID: PMC10000494 DOI: 10.3390/foods12051042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
In this study, three mesoporous-activated crab shell biochars were prepared by carbonation and chemical activation with KOH (K-CSB), H3PO4 (P-CSB), and KMnO4 (M-CSB) to evaluate their tetracycline (TC) adsorption capacities. Characterization by SEM and a porosity analysis revealed that the K-CSB, P-CSB, and M-CSB possessed a puffy, mesoporous structure, with K-CSB exhibiting a larger specific surface area (1738 m2/g). FT-IR analysis revealed that abundant, surface ox-containing functional groups possessed by K-CSB, P-CSB, and M-CSB, such as -OH, C-O, and C=O, enhanced adsorption for TC, thereby enhancing their adsorption efficiency for TC. The maximum TC adsorption capacities of the K-CSB, P-CSB, and M-CSB were 380.92, 331.53, and 281.38 mg/g, respectively. The adsorption isotherms and kinetics data of the three TC adsorbents fit the Langmuir and pseudo-second-order model. The adsorption mechanism involved aperture filling, hydrogen bonding, electrostatic action, π-π EDA action, and complexation. As a low-cost and highly effective adsorbent for antibiotic wastewater treatment, activated crab shell biochar has enormous application potential.
Collapse
Affiliation(s)
- Jiaxing Sun
- National Marine Facilities Aquaculture Engineering Technology Research Center, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lili Ji
- National Marine Facilities Aquaculture Engineering Technology Research Center, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence:
| | - Xiao Han
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhaodi Wu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lu Cai
- Institute of Ocean Higher Education, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jian Guo
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yaning Wang
- National Marine Facilities Aquaculture Engineering Technology Research Center, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
24
|
Kaushal S, Kumar A, Bains H, Singh PP. Photocatalytic degradation of tetracycline antibiotic and organic dyes using biogenic synthesized CuO/Fe 2O 3 nanocomposite: pathways and mechanism insights. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37092-37104. [PMID: 36564698 DOI: 10.1007/s11356-022-24848-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Tetracycline (TC) is a frequently administered antibiotic in many countries, due to its low price and excellent potency. However, certain antibiotics can be hazardous to living creatures due to their accumulation by complexation with metal ions which can contribute to teratogenicity and carcinogenicity. In this investigation, copper oxide-ferric oxide nanocomposite (CuO/Fe2O3 nanocomposite) was synthesized employing Psidium guajava (P. guajava) leaf extract as a reductant as well as a capping agent in an environment friendly and economical green synthesis method. The as-synthesized CuO/Fe2O3 nanocomposite was comprehensively characterized using various sophisticated techniques and its efficiency as a photocatalyst for degradation of tetracycline (TC) antibiotic and toxic dyes, i.e., rhodamine B (RhB) and methylene blue (MB) were investigated. The CuO/Fe2O3 nanocomposite exhibited exceptional efficiency for degradation of TC antibiotic (88% removal in 80 min), RhB (96% removal in 40 min), and MB (93% elimination in 40 min) with apparent rate constant of 0.048, 0.068, and 0.032 min-1, respectively. In the degradation experiments, photocatalytic activity of CuO/Fe2O3 nanocomposite was studied by varying different factors such as time of contact, catalyst dose, and solution pH. The role of reactive species in antibiotics and dye degradation was validated by radical scavenging studies which indicated that.OH radical played a critical role in photocatalytic decomposition. Furthermore, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.
Collapse
Affiliation(s)
- Sandeep Kaushal
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India.
| | - Avdhesh Kumar
- JLC College Chapra, JP University, Chapra, Bihar, India
| | - Himani Bains
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Prit Pal Singh
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| |
Collapse
|
25
|
Moghaddam AA, Mohammadi L, Bazrafshan E, Batool M, Behnampour M, Baniasadi M, Mohammadi L, Zafar MN. Antibiotics sequestration using metal nanoparticles: An updated systematic review and meta-analysis. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
26
|
Zhang W, Lu J, Liu S, Wang C, Zuo Q, Gong L. The Potential of Spent Coffee Grounds @ MOFs Composite Catalyst in Efficient Activation of PMS to Remove the Tetracycline Hydrochloride from an Aqueous Solution. TOXICS 2023; 11:88. [PMID: 36850964 PMCID: PMC9965720 DOI: 10.3390/toxics11020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The efficient removal of Tetracycline Hydrochloride (TC) from wastewater, which is a difficult process, has attracted increasing attention. Aiming to synchronously achieve the goal of natural waste utilization and PMS activation, we have combined the MOFs material with waste coffee grounds (CG). The catalytic activity of the CG@ZIF-67 composite in the TC removal process was thoroughly evaluated, demonstrating that the TC removal rate could reach 96.3% within 30 min at CG@ZIF-67 composite dosage of 100 mg/L, PMS concertation of 1.0 mM, unadjusted pH 6.2, and contact temperate of 293.15 K. The 1O2 and ·SO4- in the CG@ZIF-67/PMS/TC system would play the crucial role in the TC degradation process, with 1O2 acting as the primary ROS. The oxygen-containing functional groups and graphite N on the surface of CG@ZIF-67 composite would play a major role in efficiently activating PMS and correspondingly degrading TC. In addition, the CG@ZIF-67/PMS/TC system could withstand a wide pH range (3-11). The application of CG in preparing MOF-based composites will provide a new method of removing emerging pollutants from an aqueous solution.
Collapse
Affiliation(s)
- Wei Zhang
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan 467036, China
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, China
| | - Jiajia Lu
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Shoushu Liu
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Chen Wang
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Qiting Zuo
- Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan 467036, China
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Gong
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan 467036, China
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, China
| |
Collapse
|
27
|
Jiang T, Wang B, Gao B, Cheng N, Feng Q, Chen M, Wang S. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: Mechanisms and applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130075. [PMID: 36209607 DOI: 10.1016/j.jhazmat.2022.130075] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/10/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Biochar has shown large potential in environmental remediation because of its low cost, large specific surface area, porosity, and high conductivity. Biochar-assisted advanced oxidation processes (BC-AOPs) have recently attracted increasing attention to the remediation of organic pollutants from water. However, the effects of biochar properties on catalytic performance need to be further explored. There are still controversial and knowledge gaps in the reaction mechanisms of BC-AOPs, and regeneration methods of biochar catalysts are lacking. Therefore, it is necessary to systematically review the latest research progress of BC-AOPs in the treatment of organic pollutants in water. In this review, first of all, the effects of biochar properties on catalytic activity are summarized. The biochar properties can be optimized by changing the feedstocks, preparation conditions, and modification methods. Secondly, the catalytic active sites and degradation mechanisms are explored in different BC-AOPs. Different influencing factors on the degradation process are analyzed. Then, the applications of BC-AOPs in environmental remediation and regeneration methods of different biochar catalysts are summarized. Finally, the development prospects and challenges of biochar catalysts in environmental remediation are put forward, and some suggestions for future development are proposed.
Collapse
Affiliation(s)
- Tao Jiang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| | - Bing Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Ning Cheng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
28
|
Yaghmaeian K, Yousefi N, Bagheri A, Mahvi AH, Nabizadeh R, Dehghani MH, Fekri R, Akbari-adergani B. Combination of advanced nano-Fenton process and sonication for destruction of diclofenac and variables optimization using response surface method. Sci Rep 2022; 12:20954. [PMID: 36470913 PMCID: PMC9722934 DOI: 10.1038/s41598-022-25349-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Diclofenac (DCF) as a non-steroidal pharmaceutical has been detected in aquatic samples more than other compounds due to its high consumption and limited biodegradability. In this study, ultrasound waves were applied along with an advanced nano-Fenton process (US/ANF) to remove DCF, and subsequently, the synergistic effect was determined. Before that, the efficiency of the US and ANF processes was separately studied. The central composite design was used as one of the most applicable responses surface method techniques to determine the main and interactive effect of the factors influencing DCF removal efficiency in US/ANF. The mean DCF removal efficiency under different operational conditions and at the time of 1-10 min was obtained to be about 4%, 83%, and 95% for the US, ANF, and US/ANF, respectively. Quadratic regression equations for two frequencies of US were developed using multiple regression analysis involving main, quadratic, and interaction effects. The optimum condition for DCF removal was obtained at time of 8.17 min, H/F of 10.5 and DCF concentration of 10.12 at 130 kHz US frequency. The synergy index values showed a slight synergistic effect for US/ANF (1.1). Although the synergistic effect of US/ANF is not very remarkable, it can be considered as a quick and efficient process for the removal of DCF from wastewater with a significant amount of mineralization.
Collapse
Affiliation(s)
- Kamyar Yaghmaeian
- grid.411705.60000 0001 0166 0922Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Yousefi
- grid.411705.60000 0001 0166 0922Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Bagheri
- grid.411705.60000 0001 0166 0922Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Health, Safety, and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- grid.411705.60000 0001 0166 0922Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Center for Solid Waste Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- grid.411705.60000 0001 0166 0922Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- grid.411705.60000 0001 0166 0922Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Center for Solid Waste Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Rana Fekri
- grid.411600.2Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrouz Akbari-adergani
- grid.415814.d0000 0004 0612 272XNanotechnology Products Laboratory, Food and Drug Laboratory Research Center, Food and Drug Organization, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
29
|
Yaacob NA, Khasri A, Mohd Salleh NH, Mohd Jamir MR. Optimization of AC/TiO 2-Cu ternary composite preparation with enhanced UV light activity for adsorption–photodegradation of metronidazole via RSM-CCD. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2143367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Azduwin Khasri
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | | | - Mohd Ridzuan Mohd Jamir
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
30
|
Ma R, Xue Y, Ma Q, Chen Y, Yuan S, Fan J. Recent Advances in Carbon-Based Materials for Adsorptive and Photocatalytic Antibiotic Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224045. [PMID: 36432330 PMCID: PMC9694191 DOI: 10.3390/nano12224045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/14/2023]
Abstract
Antibiotics have been a primary environmental concern due to their widespread dispersion, harmful bioaccumulation, and resistance to mineralization. Unfortunately, typical processes in wastewater treatment plants are insufficient for complete antibiotic removal, and their derivatives in effluent can pose a threat to human health and aquatic communities. Adsorption and photocatalysis are proven to be the most commonly used and promising tertiary treatment methods. Carbon-based materials, especially those based on graphene, carbon nanotube, biochar, and hierarchical porous carbon, have attracted much attention in antibiotic removal as green adsorbents and photocatalysts because of their availability, unique pore structures, and superior physicochemical properties. This review provides an overview of the characteristics of the four most commonly used carbonaceous materials and their applications in antibiotic removal via adsorption and photodegradation, and the preparation of carbonaceous materials and remediation properties regarding target contaminants are clarified. Meanwhile, the fundamental adsorption and photodegradation mechanisms and influencing factors are summarized. Finally, existing problems and future research needs are put forward. This work is expected to inspire subsequent research in carbon-based adsorbent and photocatalyst design, particularly for antibiotics removal.
Collapse
|
31
|
Li C, Kan C, Meng X, Liu M, Shang Q, Yang Y, Wang Y, Cui X. Self-Assembly 2D Ti 3C 2/g-C 3N 4 MXene Heterojunction for Highly Efficient Photocatalytic Degradation of Tetracycline in Visible Wavelength Range. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4015. [PMID: 36432301 PMCID: PMC9699115 DOI: 10.3390/nano12224015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
An ultrathin 2D Ti3C2/g-C3N4 MXene (2D-TC/CN) heterojunction was synthesized, using a facile self-assembly method; the perfect microscopic-morphology and the lattice structure presented in the sample with a 2 wt% content of Ti3C2 were observed by the field-emission scanning electron microscopy (SEM) and transmission electron microscope (TEM). The optimized sample (2-TC/CN) exhibited excellent performance in degrading the tetracycline (TC), and the degradation rate reached 93.93% in the conditions of 20 mg/L, 50 mL of tetracycline within 60 min. Except for the increased specific-surface area, investigated by UV-vis diffuse reflectance spectra (UV-vis DRS) and X-ray photoelectron microscopy (XPS) valence spectra, the significantly enhanced photocatalytic activity of the 2-TC/CN could also be ascribed to the formation of Ti-N bonds between Ti3C2 and g-C3N4 nanosheets, which reduced the width of the band gap through adjusting the position of the valence band, thus resulting in the broadened light-absorption. Furthermore, the facilitated electron transmission was also proved by time-resolved photoluminescence (TRPL) and electrochemical impedance spectroscopy (EIS), which is effective in improving the quantum efficiency of photo-generated electrons. In addition, the resulting radical-capture experiment suggested that superoxide radicals have the greatest influence on photodegradation performance, with the photodegradation rate of TC reducing from 93.16% to 32.08% after the capture of superoxide radicals, which can be attributed to the production of superoxide radicals only, by the 2-TC/CN composites with a high conduction-band value (-0.62 eV). These facilely designed 2D Ti3C2/g-C3N4 composites possess great application potential for the photodegradation of tetracycline and other antibiotics.
Collapse
|
32
|
Jinbo H, Dengzheng G, Xiaolong H, li W, Qingbin G. Rational construction of FeOOH/Cl-g-C3N4 heterojunction for inducing Fenton catalysis and boosting visible-light-driven photocatalysis: Enhanced catalytic properties and mechanism insight. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Kumar S, Sharma R, Gupta A, Dubey KK, Khan AM, Singhal R, Kumar R, Bharti A, Singh P, Kant R, Kumar V. TiO 2 based Photocatalysis membranes: An efficient strategy for pharmaceutical mineralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157221. [PMID: 35809739 DOI: 10.1016/j.scitotenv.2022.157221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Among the various emerging contaminants, pharmaceuticals (PhACs) seem to have adverse effects on the quality of water. Even the smallest concentration of PhACs in ground water and drinking water is harmful to humans and aquatic species. Among all the deaths reported due to COVID-19, the mortality rate was higher for those patients who consumed antibiotics. Consequently, PhAC in water is a serious concern and their removal needs immediate attention. This study has focused on the PhACs' degradation by collaborating photocatalysis with membrane filtration. TiO2-based photocatalytic membrane is an innovative strategy which demonstrates mineralization of PhACs as a safer option. To highlight the same, an emphasis on the preparation and reinforcing properties of TiO2-based nanomembranes has been elaborated in this review. Further, mineralization of antibiotics or cytostatic compounds and their degradation mechanisms is also highlighted using TiO2 assisted membrane photocatalysis. Experimental reactor configurations have been discussed for commercial implementation of photoreactors for PhAC degradation anchored photocatalytic nanomembranes. Challenges and future perspectives are emphasized in order to design a nanomembrane based prototype in future for wastewater management.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemistry, University of Delhi, Delhi, India; Department of Chemistry, Kirori Mal College, University of Delhi, India
| | - Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, India.
| | | | - A M Khan
- Department of Chemistry, Motilal Nehru College, India
| | - Rahul Singhal
- Department of Chemistry, Shivaji College, Delhi, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Akhilesh Bharti
- Department of Chemistry, Kirori Mal College, University of Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, Delhi, India
| | - Ravi Kant
- Department of Chemistry, Zakir Hussain Delhi College, Delhi, India
| | - Vinod Kumar
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi, India.
| |
Collapse
|
34
|
Abbasnia A, Zarei A, Yeganeh M, Sobhi HR, Gholami M, Esrafili A. Removal of tetracycline antibiotics by adsorption and photocatalytic-degradation processes in aqueous solutions using metal organic frameworks (MOFs): A systematic review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
35
|
0D/1D Bi2O3@TNTs composites synthesized by the decoration of Bi2O3 quantum dots onto titanate nanotubes: synergistic adsorption of U(VI) and tetracycline. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Synthesis of Ce0.1La0.9MnO3 Perovskite for Degradation of Endocrine-Disrupting Chemicals under Visible Photons. Catalysts 2022. [DOI: 10.3390/catal12101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The UN Environmental Protection Agency has recognized 4-n-Nonylphenol (NP) and bisphenol A (BPA) as among the most hazardous chemicals, and it is essential to minimize their concentrations in the wastewater stream. These industrial chemicals have been witnessed to cause endocrine disruption. This report describes the straightforward hydrothermal approach adopted to produce Ce0.1La0.9MnO3 (CLMO) perovskite’s structure. Several physiochemical characterization approaches were performed to understand the Ce0.1La0.9MnO3 (CLMO) perovskite crystalline phase, element composition, optical properties, microscopic topography, and molecular oxidation state. Here, applying visible photon irradiation, the photocatalytic capability of these CLMO nanostructures was evaluated for the elimination of NP and BPA contaminants. To optimize the reaction kinetics, the photodegradation of NP and BPA pollutants on CLMO, perovskite was studied as a specification of pH, catalyst dosage, and initial pollutant concentration. Correspondingly, 92% and 94% of NP and BPA pollutants are degraded over CLMO surfaces within 120 and 240 min, respectively. Since NP and BPA pollutants have apparent rate constants of 0.0226 min−1 and 0.0278 min−1, respectively, they can be satisfactorily fitted by pseudo-first-order kinetics. The decomposition of NP and BPA contaminants is further evidenced by performing FT-IR analysis. Owing to its outstanding photocatalytic execution and simplistic separation, these outcomes suggest that CLMO is an intriguing catalyst for the efficacious removal of NP and BPA toxicants from the aqueous phase. This is pertinent for the treatment of endocrine-disrupting substances in bioremediation.
Collapse
|
37
|
Wastewater Purification and All-Solid Z-Scheme Heterojunction ZnO-C/MnO2 Preparation: Properties and Mechanism. Catalysts 2022. [DOI: 10.3390/catal12101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unlike many studies on the preparation of Z-scheme heterojunctions by doping precious metals, in this paper we first prepared a core-shell material obtained by C doping in ZnO and then composite with MnO2 to form a heterojunction; that is, a low-cost and highly catalytic ternary composite catalyst was prepared by a simple hydrothermal reaction. Meanwhile, a large amount of experimental data have enabled the heterostructure type as well as the mechanism of photocatalytic performance to be fully demonstrated. It is proven that C as an intermediate medium achieves electron transport while making up the deficiency of ZnO, and constitutes an all-solid state Z-scheme heterojunction, which enables the rapid transfer of photogenerated electron pairs and visible light irradiation to the stream to improve the photocatalytic performance of the composite photocatalyst. In terms of examination of degradation performance, this catalyst showed a high photodegradation rate of tetracycline hydrochloride (TC) of 92.6% within 60 min, and the surface ZnO-C/MnO2 catalysts also showed good degradation effect on practical petrochemical wastewater in CODcr degradation experiments.
Collapse
|
38
|
Antonopoulou M. Homogeneous and Heterogeneous Photocatalysis for the Treatment of Pharmaceutical Industry Wastewaters: A Review. TOXICS 2022; 10:toxics10090539. [PMID: 36136504 PMCID: PMC9503482 DOI: 10.3390/toxics10090539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 05/14/2023]
Abstract
Pharmaceuticals are biologically active compounds used for therapeutical purposes in humans and animals. Pharmaceuticals enter water bodies in various ways and are detected at concentrations of ng L-1-μg L-1. Their presence in the environment, and especially long-term pollution, can cause toxic effects on the aquatic ecosystems. The pharmaceutical industry is one of the main sources introducing these compounds in aquatic systems through the disposal of untreated or partially treated wastewaters produced during the different procedures in the manufacturing process. Pharmaceutical industry wastewaters contain numerous pharmaceutical compounds and other chemicals and are characterized by high levels of total dissolved solids (TDS), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). The toxic and recalcitrant nature of this type of wastewater hinders conventional biological processes, leading to its ineffective treatment. Consequently, there is an urgent demand for the development and application of more efficient methods for the treatment of pharmaceutical industry wastewaters. In this context, advanced oxidation processes (AOPs) have emerged as promising technologies for the treatment of pharmaceutical industry wastewaters through contaminant removal, toxicity reduction as well as biodegradability improvement. Therefore, a comprehensive literature study was conducted to review the recent published works dealing with the application of heterogeneous and homogeneous photocatalysis for pharmaceutical industry wastewater treatment as well as the advances in the field. The efficiency of the studied AOPs to treat the wastewaters is assessed. Special attention is also devoted to the coupling of these processes with other conventional methods. Simultaneously with their efficiency, the cost estimation of individual and integrated processes is discussed. Finally, the advantages and limitations of the processes, as well as their perspectives, are addressed.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Environmental Engineering, University of Patras, 30100 Agrinio, Greece
| |
Collapse
|
39
|
Photocatalytic oxidation of oxytetracycline hydrochloride by using natural marine material supported perovskite composites. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Dao X, Hao H, Bi J, Sun S, Huang X. Surface Complexation Enhanced Adsorption of Tetracycline by ALK-MXene. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuan Dao
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongxun Hao
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Co-Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jingtao Bi
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrongdao Road, Hongqiao District, Tianjin 300130, China
| | - Shiyu Sun
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xin Huang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Co-Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
41
|
Pandi K, Preeyanghaa M, Vinesh V, Madhavan J, Neppolian B. Complete photocatalytic degradation of tetracycline by carbon doped TiO 2 supported with stable metal nitrate hydroxide. ENVIRONMENTAL RESEARCH 2022; 207:112188. [PMID: 34624267 DOI: 10.1016/j.envres.2021.112188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Visible light-driven carbon-doped TiO2 supported with metal nitrate hydroxide (CT-Ni/Co/Cu) nanocomposites were prepared and characterized by various studies. It is fascinating to note that particle size of TiO2 was substantially reduced from 5 μm to 50 nm after doping of carbon which was confirmed by FESEM. Moreover, the incorporation of stable metal (Cu) nitrate hydroxide further enhanced the visible light absorption up to 800 nm as evident by UV-DRS. The carbon doping and copper nitrate formation are validated by the Ti-O-C and N-O bonds using XPS and FTIR spectra. The photocatalytic activity of as-prepared photocatalyst was tested for the tetracycline degradation (TC, 10 mg/mL) under light irradiation. Significantly, 3 wt% carbon-doped TiO2 (31CT) with Cu (II) hydroxide nitrate nanocomposite photocatalyst exhibited an excellent photocatalytic activity (97%, within 1 h), and the corresponding reaction rate was around 2 times higher than bare TiO2. The excellent photocatalytic activity of 31CT-Cu nanocomposite was due to enhanced adsorbent of TC via carbon doping, visible light absorption, improved photo-generated carrier separation and migration by metal nitrate hydroxide as a support. This work may promote the development of a new carbon-doped TiO2 supported with highly stable metal nitrate hydroxide nanocomposite by facile method and used as an efficient photocatalyst for photodegradation of environmental pollutants.
Collapse
Affiliation(s)
- Kavitha Pandi
- Department of Physics and Nanotechnology & SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Mani Preeyanghaa
- Department of Physics and Nanotechnology & SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Vasudevan Vinesh
- Department of Physics and Nanotechnology & SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Jagannathan Madhavan
- Department of Chemistry, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Bernaurdshaw Neppolian
- Department of Physics and Nanotechnology & SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
42
|
Abstract
Nowadays, water pollution is one of the most dangerous environmental problems in the world. The presence of the so-called emerging pollutants in the different water bodies, impossible to eliminate through conventional biological and physical treatments used in wastewater treatment plants due to their persistent and recalcitrant nature, means that pollution continues growing throughout the world. The presence of these emerging pollutants involves serious risks to human and animal health for aquatic and terrestrial organisms. Therefore, in recent years, advanced oxidation processes (AOPs) have been postulated as a viable, innovative and efficient technology for the elimination of these types of compounds from water bodies. The oxidation/reduction reactions triggered in most of these processes require a suitable catalyst. The most recent research focuses on the use and development of different types of heterogeneous catalysts, which are capable of overcoming some of the operational limitations of homogeneous processes such as the generation of metallic sludge, difficult separation of treated water and narrow working pH. This review details the current advances in the field of heterogeneous AOPs, Fenton processes and photocatalysts for the removal of different types of emerging pollutants.
Collapse
|
43
|
Jin D, He D, Lv Y, Zhang K, Zhang Z, Yang H, Liu C, Qu J, Zhang YN. Preparation of metal-free BP/CN photocatalyst with enhanced ability for photocatalytic tetracycline degradation. CHEMOSPHERE 2022; 290:133317. [PMID: 34921858 DOI: 10.1016/j.chemosphere.2021.133317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The successful application of photocatalysis in practical water treatment opreations relies greatly on the development of highly efficient, stable and low-cost photocatalysts. The low-cost metal-free photocatalyst made up of black phosphorus (BP) and graphitic carbon nitride (CN) was successfully constructed and firstly used for the photocatalytic treatment of antibiotic contaminants in this work. Compared with bare CN, the BP/CN photocatalyst exhibited the enhanced photocatalytic performance for tetracycline hydrochloride (HTC) degradation, that 99% of HTC was removed by 6BP/CN (doping amount of BP was 6%) within 30 min under the simulated visible-light irradiation. The efficiency was even comparable to those of some high-efficiency photocatalysts recently-reported such as Fe0@POCN, CuInS2/Bi2MoO6 and Cu2O@HKUST-1. Under natural sunlight illumination, the determined apparent rate constant for degradation of HTC by BP/CN was 2.7 times as that by P25 TiO2. The experimental results indicated that loading BP on CN could enhance the separation of charge carriers and promote the ability of light absorption for visible-light, thus leading to a greater catalytic activity. Meanwhile, the influences of different operating variables (pH, water, ion and HTC concentration) on HTC degradation were studied in detail. Furthermore, the degradation pathway of HTC was also proposed. In addition, the photocatalytic activity of the BP/CN for production of hydrogen peroxide (H2O2) was also studied, which could reach up to 501.04 μmol g-1h-1. It is anticipated that BP/CN photocatalyst could be used for practical water treatment.
Collapse
Affiliation(s)
- Dexin Jin
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Dongyang He
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yihan Lv
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kangning Zhang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhaocheng Zhang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Hao Yang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Chuanhao Liu
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China.
| |
Collapse
|
44
|
Wei L, Shi D, Qi Y, Zhang Y. Synthetic Mechanism of UiO‐66‐NH
2
/BiVO
4
/BiOBr Spherical and Lamellar Dual Z‐scheme Heterojunction and Efficient Photocatalytic Degradation of Tetracycline Under Visible Light. ChemistrySelect 2022. [DOI: 10.1002/slct.202103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lihong Wei
- College of energy and environment Shenyang Aerospace University 110122 No.37Daoyi south street, Shenbei new district Shenyang China
| | - Dongni Shi
- College of energy and environment Shenyang Aerospace University 110122 No.37Daoyi south street, Shenbei new district Shenyang China
| | - Yuwen Qi
- College of energy and environment Shenyang Aerospace University 110122 No.37Daoyi south street, Shenbei new district Shenyang China
| | - Yao Zhang
- College of energy and environment Shenyang Aerospace University 110122 No.37Daoyi south street, Shenbei new district Shenyang China
| |
Collapse
|
45
|
Qin T, Wang B, Zhang X, Yang S, Chen L, Li Y, Bai G, Yan X. Construction of Azobenzene Covalent Organic Frameworks as High-Performance Heterogeneous Photocatalyst. Catal Letters 2022. [DOI: 10.1007/s10562-021-03887-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Hunge YM, Yadav AA, Kang SW, Kim H. Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites. J Colloid Interface Sci 2022; 606:454-463. [PMID: 34399362 DOI: 10.1016/j.jcis.2021.07.151] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/18/2023]
Abstract
Tetracycline (TC) is a persistent antibiotic used in many countries, including China, India, and the United States of America (USA), because of its low price and effectiveness in enhancing livestock production. However, such antibiotics can have toxic effects on living organisms via complexation with metals, and their accumulation leading to teratogenicity and carcinogenicity. In this study, two-dimensional molybdenum disulfide/titanium dioxide (MoS2/TiO2) composites with different amounts of molybdenum disulfide (MoS2) were prepared via a simple, cost-effective, and pollution-free hydrothermal route. The synthesized MoS2/TiO2 microstructures were thoroughly characterized and their performance for the photocatalytic degradation of antibiotics such as TC was investigated. In the degradation experiments, the photocatalytic activities of TiO2 and the MoS2/TiO2 composites were compared, and the effects of different parameters, such as catalyst dose and electrolyte solution pH, were investigated. Under irradiation, the MoS2/TiO2 composites possessed superior photodegradation activity toward TC because of their excellent adsorption abilities, suitable band positions, and large surface areas as well as the effective charge-transfer ability of MoS2. Kinetics studies revealed that the photocatalytic degradation process followed pseudo-first-order reaction kinetics. In addition, a degradation mechanism for TC was proposed.
Collapse
Affiliation(s)
- Y M Hunge
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - A A Yadav
- Department of Automotive Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Seok-Won Kang
- Department of Automotive Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hyunmin Kim
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
47
|
Qian S, Qiao F, Zhou L, Liu Y, Liu W, Yang J, Wang T, Li H. Performance and Mechanism Analysis of Photocatalytic Degradation of Tetracycline by SiC/CdS Composites. CrystEngComm 2022. [DOI: 10.1039/d2ce00906d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In view of the high cost and low efficiency of tetracycline biooxidation treatment, SiC/CdS composites were constructed by chemical vapor phase method and water bath method in this work. Firstly,...
Collapse
|
48
|
Pan F, Wang Y, Zhao K, Hu J, Liu H, Hu Y. Photocatalytic degradation of tetracycline hydrochloride with visible light-responsive bismuth tungstate/conjugated microporous polymer. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Taleghani MS, Tabrizi NS, Sangpour P. Enhanced visible-light photocatalytic activity of titanium dioxide doped CNT-C aerogel. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Shabir M, Shezad N, Shafiq I, Maafa IM, Akhter P, Azam K, Ahmed A, Lee SH, Park YK, Hussain M. Carbon nanotubes loaded N,S-codoped TiO2: Heterojunction assembly for enhanced integrated adsorptive-photocatalytic performance. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|