1
|
Wang Z, Li X, Li Y, Liu H, Ki Lin CS, Sun J, Wang Q. Unveiling the occurrence and ecological risks of triclosan in surface water through meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124901. [PMID: 39243936 DOI: 10.1016/j.envpol.2024.124901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Triclosan, a widely used antimicrobial agent, is frequently detected in aquatic environments, prompting concerns about its toxic effects on aquatic species. Understanding its occurrence and ecological risks is crucial for mitigating triclosan contamination, formulating water quality criteria, and protecting aquatic organisms. This study systematically analyzed triclosan occurrence and ecological risks in surface water across China using the Risk Quotient methodology. A total of 139 and 134 data points were collected for triclosan concentrations and toxicities of aquatic organisms, respectively. Triclosan concentrations in surface water across China ranged from 0.06 to 612 ng/L. Higher triclosan levels were observed in Eastern China compared to Central and Western China, with the average concentration being 4.21- and 7.25-fold higher, respectively. Specifically, the Southeast Rivers Basin (132.98 ng/L) and Pearl River Basin (86.64 ng/L) exhibited maximum triclosan levels, 2.57-19.58 times higher than the other river basins. Further analysis revealed elevated triclosan concentrations in small rivers and surface water within residential areas, with values of 246.1 ng/L in Zhejiang, 86.64 ng/L in Guangdong, 67.58 ng/L in Jiangsu, and 127.99 ng/L in Beijing. Additionally, species sensitivity distribution curves indicated that algae was the most sensitive species to triclosan exposure, followed by invertebrates, while fish exhibited the highest tolerance. The Predicted No-Effect Concentration for the algae, invertebrates, fish, and combined aquatic species were determined to be 0.09, 2.95, 4.44, and 1.51 μg/L, respectively. The occurrence of triclosan in surface water across China did not pose widespread ecological risks. However, targeted monitoring and mitigation efforts are needed, especially in highly developed regions. This study provides crucial insights into the status of triclosan contaminations and risks in China and contributes valuable knowledge to global efforts aimed at safeguarding aquatic ecosystems.
Collapse
Affiliation(s)
- Zhenyao Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yi Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
2
|
Jiang Y, Liu L, Jin B, Liu Y, Liang X. Critical review on the environmental behaviors and toxicity of triclosan and its removal technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173013. [PMID: 38719041 DOI: 10.1016/j.scitotenv.2024.173013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
As a highly effective broad-spectrum antibacterial agent, triclosan (TCS) is widely used in personal care and medical disinfection products, resulting in its widespread occurrence in aquatic and terrestrial environments, and even in the human body. Notably, the use of TCS surged during the COVID-19 outbreak, leading to increasing environmental TCS pollution pressure. From the perspective of environmental health, it is essential to systematically understand the environmental occurrence and behavior of TCS, its toxicological effects on biota and humans, and technologies to remove TCS from the environment. This review comprehensively summarizes the current knowledge regarding the sources and behavior of TCS in surface water, groundwater, and soil systems, focusing on its toxicological effects on aquatic and terrestrial organisms. Effluent from wastewater treatment plants is the primary source of TCS in aquatic systems, whereas sewage application and/or wastewater irrigation are the major sources of TCS in soil. Human exposure pathways to TCS and associated adverse outcomes were also analyzed. Skin and oral mucosal absorption, and dietary intake are important TCS exposure pathways. Reducing or completely degrading TCS in the environment is important for alleviating environmental pollution and protecting public health. Therefore, this paper reviews the removal mechanisms, including adsorption, biotic and abiotic redox reactions, and the influencing factors. In addition, the advantages and disadvantages of the different techniques are compared, and development prospects are proposed. These findings provide a basis for the management and risk assessment of TCS and are beneficial for the application of treatment technology in TCS removal.
Collapse
Affiliation(s)
- Yanhong Jiang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liangying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China.
| | - Biao Jin
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yi Liu
- Shandong Vocational College of Light Industry, Zibo 255300, PR China.
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
3
|
Ramírez-Hernández M, Cox J, Thomas B, Asefa T. Nanomaterials for Removal of Phenolic Derivatives from Water Systems: Progress and Future Outlooks. Molecules 2023; 28:6568. [PMID: 37764344 PMCID: PMC10535519 DOI: 10.3390/molecules28186568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Environmental pollution remains one of the most challenging problems facing society worldwide. Much of the problem has been caused by human activities and increased usage of various useful chemical agents that inadvertently find their way into the environment. Triclosan (TCS) and related phenolic compounds and derivatives belong to one class of such chemical agents. In this work, we provide a mini review of these emerging pollutants and an outlook on the state-of-the-art in nanostructured adsorbents and photocatalysts, especially nanostructured materials, that are being developed to address the problems associated with these environmental pollutants worldwide. Of note, the unique properties, structures, and compositions of mesoporous nanomaterials for the removal and decontamination of phenolic compounds and derivatives are discussed. These materials have a great ability to scavenge, adsorb, and even photocatalyze the decomposition of these compounds to mitigate/prevent their possible harmful effects on the environment. By designing and synthesizing them using silica and titania, which are easier to produce, effective adsorbents and photocatalysts that can mitigate the problems caused by TCS and its related phenolic derivatives in the environment could be fabricated. These topics, along with the authors' remarks, are also discussed in this review.
Collapse
Affiliation(s)
- Maricely Ramírez-Hernández
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Jordan Cox
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Belvin Thomas
- Department of Chemistry and Chemical Biology, Rutgers, New Brunswick, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Tewodros Asefa
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, New Brunswick, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Lu T, Zhang T, Yang W, Yang B, Cao J, Yang Y, Li M. Molecular Toxicity Mechanism Induced by the Antibacterial Agent Triclosan in Freshwater Euglena gracilis Based on the Transcriptome. TOXICS 2023; 11:toxics11050414. [PMID: 37235229 DOI: 10.3390/toxics11050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Triclosan (TCS), a commonly used antibacterial preservative, has been demonstrated to have high toxicological potential and adversely affects the water bodies. Since algae are one of the most significant primary producers on the planet, understanding the toxicological processes of TCS is critical for determining its risk in aquatic ecosystems and managing the water environment. The physiological and transcriptome changes in Euglena gracilis were studied in this study after 7 days of TCS treatment. A distinct inhibition ratio for the photosynthetic pigment content in E. gracilis was observed from 2.64% to 37.42% at 0.3-1.2 mg/L, with TCS inhibiting photosynthesis and growth of the algae by up to 38.62%. Superoxide dismutase and glutathione reductase significantly changed after exposure to TCS, compared to the control, indicating that the cellular antioxidant defense responses were induced. Based on transcriptomics, the differentially expressed genes were mainly enriched in biological processes involved in metabolism pathways and microbial metabolism in diverse environments. Integrating transcriptomics and biochemical indicators found that changed reactive oxygen species and antioxidant enzyme activities stimulating algal cell damage and the inhibition of metabolic pathways controlled by the down-regulation of differentially expressed genes were the main toxic mechanisms of TCS exposure to E. gracilis. These findings establish the groundwork for future research into the molecular toxicity to microalgae induced by aquatic pollutants, as well as provide fundamental data and recommendations for TCS ecological risk assessment.
Collapse
Affiliation(s)
- Ting Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Weishu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yang Yang
- School of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Mo J, Qi Q, Hao Y, Lei Y, Guo J. Transcriptional response of a green alga (Raphidocelis subcapitata) exposed to triclosan: photosynthetic systems and DNA repair. J Environ Sci (China) 2022; 111:400-411. [PMID: 34949369 DOI: 10.1016/j.jes.2021.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 06/14/2023]
Abstract
Recent studies show that triclosan (TCS) exposure causes reduction in pigments, suppression of photosynthesis, and induction of oxidative stress at the physiological level, resulting in morphological alteration and growth inhibition in algae including Raphidocelis subcapitata (R. subcapitata, a freshwater model green alga). However, the underlying molecular mechanisms remain to be elucidated, especially at environmentally relevant concentrations. The present study uncovered the transcriptional profiles and molecular mechanisms of TCS toxicity in R. subcapitata using next-generation sequencing. The algal growth was drastically inhibited following a 7-day exposure at both 75 and 100 μg/L TCS, but not at 5 μg/L (environmentally realistic level). The transcriptomic analysis shows that molecular signaling pathways including porphyrin and chlorophyll metabolism, photosynthesis - antenna proteins, and photosynthesis were suppressed in all three TCS treatments, and the perturbations of these signaling pathways were exacerbated with increased TCS exposure concentrations. Additionally, signaling of replication-coupled DNA repair was only activated in 100 μg/L TCS treatment. These results indicate that photosynthesis systems were sensitive targets of TCS toxicity in R. subcapitata, which is distinct from the inhibition of lipid synthesis by TCS in bacteria. This study provides novel knowledge on molecular mechanisms of TCS toxicity in R. subcapitata.
Collapse
Affiliation(s)
- Jiezhang Mo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qianju Qi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yongrong Hao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yuan Lei
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
6
|
Miazek K, Brozek-Pluska B. Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review. Int J Mol Sci 2019; 20:ijms20102492. [PMID: 31137560 PMCID: PMC6567089 DOI: 10.3390/ijms20102492] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
In this review, the effect of pharmaceuticals (PHRs) and personal care products (PCPs) on microalgal growth and metabolism is reported. Concentrations of various PHRs and PCPs that cause inhibition and toxicity to growths of different microalgal strains are summarized and compared. The effect of PHRs and PCPs on microalgal metabolism (oxidative stress, enzyme activity, pigments, proteins, lipids, carbohydrates, toxins), as well as on the cellular morphology, is discussed. Literature data concerning the removal of PHRs and PCPs from wastewaters by living microalgal cultures, with the emphasis on microalgal growth, are gathered and discussed. The potential of simultaneously bioremediating PHRs/PCPs-containing wastewaters and cultivating microalgae for biomass production in a single process is considered. In the light of reviewed data, the feasibility of post-bioremediation microalgal biomass is discussed in terms of its contamination, biosafety and further usage for production of value-added biomolecules (pigments, lipids, proteins) and biomass as a whole.
Collapse
Affiliation(s)
- Krystian Miazek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Beata Brozek-Pluska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
7
|
Palli L, Spina F, Varese GC, Vincenzi M, Aragno M, Arcangeli G, Mucci N, Santianni D, Caffaz S, Gori R. Occurrence of selected pharmaceuticals in wastewater treatment plants of Tuscany: An effect-based approach to evaluate the potential environmental impact. Int J Hyg Environ Health 2019; 222:717-725. [DOI: 10.1016/j.ijheh.2019.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/14/2023]
|