1
|
Mzyece CC, Glendell M, Gagkas Z, Quilliam RS, Jones I, Pagaling E, Akoumianaki I, Newman C, Oliver DM. Eliciting expert judgements to underpin our understanding of faecal indicator organism loss from septic tank systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171074. [PMID: 38378059 DOI: 10.1016/j.scitotenv.2024.171074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Septic tank systems (STS) in rural catchments represent a potential source of microbial pollution to watercourses; however, data concerning the risk of faecal indicator organism (FIO) export from STS to surface waters are scarce. In the absence of empirical data, elicitation of expert judgements can provide an alternative approach to aid understanding of FIO pollution risk from STS. Our study employed a structured elicitation process using the Sheffield Elicitation Framework to obtain expert judgements on the proportion of FIOs likely to be delivered from STS to watercourses, based on 36 scenarios combining: (i) septic tank effluent movement risk, driven by soil hydro-morphological characteristics; (ii) distance of septic tank to watercourse; and (iii) degree of slope. Experts used the tertile method to elicit a range of values representing their beliefs of the proportion of FIOs likely to be delivered to a watercourse for each scenario. The experts judged that 93 % of FIOs would likely be delivered from an STS to a watercourse under the highest risk scenario that combined (i) very high STS effluent movement risk, (ii) STS distance to watercourse <10 m, and (iii) a location on a steep slope with gradient >25 %. Under the lowest risk scenario, the proportion of FIOs reaching a watercourse would likely reduce to 5 %. Expert confidence was high for scenarios that represented extremes of risk, while uncertainty increased for scenarios depicting intermediate risk conditions. The behavioural aggregation process employed to obtain a consensus among the experts proved to be useful for highlighting both areas of strong consensus and high uncertainty. The latter therefore represent priorities for future empirical research to further improve our understanding of potential pollution risk from septic tanks and in turn enable better assessments of potential threats to water quality in rural catchments throughout the world where decentralised wastewater systems are common.
Collapse
Affiliation(s)
- Chisha Chongo Mzyece
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom of Great Britain and Northern Ireland.
| | - Miriam Glendell
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Zisis Gagkas
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Ian Jones
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Eulyn Pagaling
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Ioanna Akoumianaki
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Claire Newman
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
2
|
Jordan MA, Ojeda AS, Larson EA, Rogers SR. Investigating the Relationship between Surface Water Pollution and Onsite Wastewater Treatment Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17042-17050. [PMID: 37878501 DOI: 10.1021/acs.est.2c09590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Onsite wastewater treatment systems (OWTSs) are important nonpoint sources (NPSs) of pollution to consider in watershed management. However, limited OWTS data availability makes it challenging to account for them as an NPS of water pollution. In this study, we succeeded in obtaining OWTS permits and integrated them with environmental data to model the pollution potential from OWTSs at the watershed scale using GIS-based multicriteria decision analysis. Then, in situ water quality parameters─Escherichia coli (E. coli), total nitrogen, total phosphorus, temperature, and pH─were measured along the main tributary at base-flow conditions. Three general linear models were developed to relate E. coli to water quality parameters and OWTS pollution indicators. It was found that the model with the OWTS pollution potential had the lowest corrected Akaike information criterion (AICc) value (35.01) compared to the models that included classified OWTS pollution potential input criteria (AICc = 36.76) and land cover (AICc = 36.74). These results demonstrate that OWTSs are a significant contributor to surface water pollution, and future efforts should be made to improve access to OWTS data (i.e., location and age) to account for these systems as an NPS of water pollution.
Collapse
Affiliation(s)
- Mallory A Jordan
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, United States
| | - Ann S Ojeda
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, United States
| | - Eleanore A Larson
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, United States
| | - Stephanie R Rogers
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
3
|
Tomczyk N, Naslund L, Cummins C, Bell EV, Bumpers P, Rosemond AD. Nonpoint source pollution measures in the Clean Water Act have no detectable impact on decadal trends in nutrient concentrations in U.S. inland waters. AMBIO 2023; 52:1475-1487. [PMID: 37351775 PMCID: PMC10406756 DOI: 10.1007/s13280-023-01869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 06/24/2023]
Abstract
The Clean Water Act (CWA) of 1972 regulates water quality in U.S. inland waters under a system of cooperative federalism in which states are delegated implementation and enforcement authority of CWA provisions by the U.S. Environmental Protection Agency. We leveraged heterogeneity in state implementation of the CWA to evaluate the efficacy of its nonpoint source provisions in reducing nutrient pollution, the leading cause of water quality impairment in U.S. inland waters. We used national survey data to estimate changes in nutrient concentrations over a decade and evaluated the effect of state-level policy implementation. We found no evidence to support an effect of (i) grant spending on nonpoint source pollution remediation, (ii) nutrient criteria development, or (iii) water quality monitoring intensity on 10-year trends in nutrient concentrations. These results suggest that the current federal policy paradigm for improving water quality is not creating desired outcomes.
Collapse
Affiliation(s)
- Nathan Tomczyk
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA 30602 USA
| | - Laura Naslund
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA 30602 USA
| | - Carolyn Cummins
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA 30602 USA
| | - Emily V. Bell
- School of Public & International Affairs, University of Georgia, 415 Baldwin Hall, Athens, GA 30602 USA
| | - Phillip Bumpers
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA 30602 USA
| | - Amy D. Rosemond
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA 30602 USA
| |
Collapse
|
4
|
Quantifying Total Phosphorus and Heavy Metals in Residential Septage. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Septic systems are used for wastewater treatment in rural areas. Septic tanks promote stratification of wastewater into solid (sludge and scum) and liquid layers. Pollutant concentrations in the layers of residential septic tanks may be highly variable, and thus septage pumped from tanks with different layer thicknesses may also be variable. The goal of this study was to quantify the total phosphorus (TP) and heavy metal concentrations and masses of residential septage. The solid and liquid layer thicknesses were measured in 37 septic tanks. Samples were collected from each layer for pollutant concentration analysis. The median TP concentration (10.6 mg L−1) was greatest in the sludge layer, followed by the scum (5.3 mg L−1) and liquid (1.8 mg L−1) layers. Concentrations of heavy metals were highly variable for each layer type. The masses of the TP, cadmium, copper, lead, nickel, and zinc contained median (range) values of 19.4 g (0.9–1041 g), <0.01 g (<0.01–1.99 g), 1.3 g (0.1–520 g), 1.8 g (<0.01–44.2 g), 1.3 g (<0.01–4.3 g), and 13.8 g (0.3–788 g), respectively. Since septage is typically applied on land as a soil amendment for crop growth, it is important that representative composite samples are collected to prevent excess buildup of TP and metals, which may harm yields or environmental health.
Collapse
|
5
|
Assessment of the Efficiency, Environmental and Economic Effects of Compact Type On-Site Wastewater Treatment Plants—Results from Random Testing. SUSTAINABILITY 2021. [DOI: 10.3390/su13020982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study presents the results of random testing of selected on-site wastewater treatment plants (WWTPs) constructed in Poland in Masovia Voivodship in the years 2011–2016. The vast majority of tested on-site WWTPs were compact (container) type treatment plants, based on low rate activated sludge (AS), sequencing batch reactors (SBR), or a hybrid (activated sludge supported with biological film, AS + BF) method. Compact type plans are becoming more and more popular in single households in Poland, due to the option of co-financing. According to certificates provided by producers and distributors, container on-site wastewater treatment plants are efficient in BOD5 removal, with the expected removal rate being over 80%. The aim of this study was (1) to analyze BOD5 in effluents sampled from randomly selected on-site WWTPs, (2) to evaluate predicted and real environmental effects of the implementation of on-site WWTPs in selected communes within Masovia Voivodship, and (3) to calculate unit environmental and economic effects of container on-site WWTPs in three different technologies. Results of this study show that in most cases, there is a gap between the declared and the real BOD5 removal efficiency. There is also a difference between the performance of different container type technologies. The lowest real environmental effect was obtained for AS technology, and the highest for the hybrid one. The predicted environmental effect has only been almost achieved in the case of hybrid systems. Based on net present value (NPV) benefits, technologies can be set up as follows: AS > SBR > AS + BF, making the AS method the most effective technology from the point of view of the economy.
Collapse
|
6
|
Export of nutrients to the sea in a karstic basin in the west of Cuba. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03679-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Metson GS, MacDonald GK, Leach AM, Compton JE, Harrison JA, Galloway JN. The U.S. consumer phosphorus footprint: where do nitrogen and phosphorus diverge? ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2020; 15:1-15. [PMID: 35990174 PMCID: PMC9389546 DOI: 10.1088/1748-9326/aba781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Phosphorus (P) and nitrogen (N) are essential nutrients for food production but their excess use in agriculture can have major social costs, particularly related to water quality degradation. Nutrient footprint approaches estimate N and P release to the environment through food production and waste management and enable linking these emissions to particular consumption patterns. Following an established method for quantifying a consumer-oriented N footprint for the United States (U.S.), we calculate an analogous P footprint and assess the N:P ratio across different stages of food production and consumption. Circa 2012, the average consumer's P footprint was 4.4 kg P capita-1 yr-1 compared to 22.4 kg N capita-1 yr-1 for the food portion of the N footprint. Animal products have the largest contribution to both footprints, comprising >70% of the average per capita N and P footprints. The N:P ratio of environmental release based on virtual nutrient factors (kilograms N or P per kilogram of food consumed) varies considerably across food groups and stages. The overall N:P ratio of the footprints was lower (5.2 by mass) than for that of U.S. food consumption (8.6), reinforcing our finding that P is managed less efficiently than N in food production systems but more efficiently removed from wastewater. While strategies like reducing meat consumption will effectively reduce both N and P footprints by decreasing overall synthetic fertilizer nutrient demands, consideration of how food production and waste treatment differentially affect N and P releases to the environment can also inform eutrophication management.
Collapse
Affiliation(s)
- Geneviève S Metson
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
- National Research Council, National Academies of Science, Washington, DC, United States of America
- Pacific Ecological Systems Division, US Environmental Protection Agency, Corvallis, OR, United States of America
- School of the Environment, Washington State University, Vancouver, WA, United States of America
| | | | - Allison M Leach
- The Sustainability Institute, University of New Hampshire, Durham, NH, United States of America
| | - Jana E Compton
- Pacific Ecological Systems Division, US Environmental Protection Agency, Corvallis, OR, United States of America
| | - John A Harrison
- School of the Environment, Washington State University, Vancouver, WA, United States of America
| | - James N Galloway
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, United States of America
| |
Collapse
|
8
|
Robertson WD, Van Stempvoort DR, Schiff SL. Review of phosphorus attenuation in groundwater plumes from 24 septic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:640-652. [PMID: 31539972 DOI: 10.1016/j.scitotenv.2019.07.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/17/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
This study reviews phosphorus (P) concentrations in groundwater plumes from 24 on-site wastewater treatment systems (septic systems) in Ontario, Canada. Site investigations were undertaken over a 30-year period from 1988 to 2018 at locations throughout the province that encompass a variety of domestic wastewater types and geologic terrain. The review focuses on P behaviour in the drainfield sediments and in the proximal plume zones, within 10 m of the drainfields, where plume conditions were generally at steady state. At these sites, mean soluble reactive phosphorus (SRP) values in the septic tank effluent ranged from 1.8 to 13.8 mg/L and averaged 8.4 mg/L. Phosphorus removal in the drainfields averaged 90% at sites where sediments were non calcareous (13 sites) and 66% at sites where sediments were calcareous (11 sites). Removal considering both the drainfields and proximal plume zones, averaged 97% at the non-calcareous sites and 69% at the calcareous sites, independent of the site age or loading rate. At 17 of the 24 sites, mean SRP concentrations in the proximal groundwater plumes (within 10 m) declined to ≤1 mg/L, which is a common treatment level for P at sewage treatment plants. Zones of P accumulation were present in almost all of the drainfields, where sand grains exhibited distinct secondary coatings containing P, demonstrating that mineral precipitation was likely the dominant cause of the P retention observed at these sites. This review confirms the often robust capacity for phosphorus removal in properly functioning septic systems. At the majority of these sites (17/24), P retention meets or exceeds removal that would normally be achieved during conventional sewage treatment. This challenges the necessity of avoiding septic system use in favor of communal sewer systems, when limiting phosphorus loading to nearby water courses is a principal or major concern.
Collapse
|
9
|
Yates CA, Johnes PJ, Spencer RGM. Characterisation of treated effluent from four commonly employed wastewater treatment facilities: A UK case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:919-927. [PMID: 33395760 DOI: 10.1016/j.jenvman.2018.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 06/12/2023]
Abstract
Sewage treatment systems are a common feature across the landscape of the United Kingdom, serving an estimated 96% of the population and discharging approximately eleven billion litres of treated wastewater daily. While large treatment facilities are ubiquitous across the landscape, they are not the only method employed in domestic wastewater treatment. This study investigates whether differences in nutrient export (carbon, nitrogen and phosphorus) and organic matter composition (determined by optical indices, SUVA254, S350-400 and E2:E3) from treated effluent could be detected between four of the most common facilities employed in the treatment of wastewater across the UK. Set in the context of the River Wylye, a small headwater catchment, treatment facilities studied included; a septic tank system, small packet treatment works, and two large sewage treatment works, one of which employed phosphorus stripping for phosphorus removal. Inorganic N and P concentrations ranged between 7.51 and 42.4 mg N l-1 and 0.22 and 8.9 mg P l-1 respectively, with DOC concentrations ranging between 1.63 and 11.8 mg C l-1. Optical indices were comparable to those observed in catchments where organic matter is dominated by autochthonous production, suggesting the dominance of low molecular weight material when compared to values observed across temperate aquatic systems. Combining data from both the Environment Agency and Ordinance Survey we estimate that only 15% of domestic properties not connected to mains sewerage in the study catchment have an Environment Agency consent/exemption permit. This calculation suggests that the quantity of small point sources are significantly underestimated, undermining efforts under current legislation to improve stream ecosystem health.
Collapse
Affiliation(s)
- Christopher A Yates
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK.
| | - Penny J Johnes
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
| | - Robert G M Spencer
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|