1
|
Merouani EFO, Ferdowsi M, Buelna G, Jones JP, Benyoussef EH, Malhautier L, Heitz M. Exploring the potential of biofiltration for mitigating harmful gaseous emissions from small or old landfills: a review. Biodegradation 2024; 35:469-491. [PMID: 38748305 DOI: 10.1007/s10532-024-10082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/13/2024] [Indexed: 07/14/2024]
Abstract
Landfills are widely employed as the primary means of solid waste disposal. However, this practice generates landfill gas (LFG) which contains methane (CH4), a potent greenhouse gas, as well as various volatile organic compounds and volatile inorganic compounds. These emissions from landfills contribute to approximately 25% of the total atmospheric CH4, indicating the imperative need to valorize or treat LFG prior to its release into the atmosphere. This review first aims to outline landfills, waste disposal and valorization, conventional gas treatment techniques commonly employed for LFG treatment, such as flares and thermal oxidation. Furthermore, it explores biotechnological approaches as more technically and economically feasible alternatives for mitigating LFG emissions, especially in the case of small and aged landfills where CH4 concentrations are often below 3% v/v. Finally, this review highlights biofilters as the most suitable biotechnological solution for LFG treatment and discusses several advantages and challenges associated with their implementation in the landfill environment.
Collapse
Affiliation(s)
- El Farouk Omar Merouani
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Milad Ferdowsi
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Gerardo Buelna
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - J Peter Jones
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - El-Hadi Benyoussef
- Laboratoire de Valorisation des Énergies Fossiles, École Nationale Polytechnique, 10 Avenue Hassan Badi El Harrach, BP182, 16200, Algiers, Algeria
| | - Luc Malhautier
- Laboratoire des Sciences des Risques, IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Michèle Heitz
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
2
|
Chen X, Duan Z, He F, Wang H, Wu Z. Ag/AgBr-oxygen enriched g-C 3N 4 for efficient photocatalytic degradation of trimethylamine. RSC Adv 2024; 14:14068-14079. [PMID: 38686283 PMCID: PMC11057413 DOI: 10.1039/d4ra02395a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
In this study, Ag/AgBr-O-gCN samples with ternary Z-type heterojunctions were prepared by in situ photoreduction using water as the reducing agent for generating Ag/AgBr active species and oxygen doping. The experimental results indicated that Ag/AgBr-O-gCN degraded trimethylamine by nearly 100% in half an hour and maintained 90% of its original activity after five cycles. The kinetic constant of Ag/AgBr-O-gCN was excellent at 0.0928 min-1, 3.8 times that of gCN, 2.3 times that of Ag/AgBr-gCN, and 1.9 times that of O-gCN. Unlike Ag/AgBr-gCN photoreduced by methanol, gCN was used as an electron donor in the aqueous solution during the photoreduction process, and oxidation sites between the gCN skeleton and Ag/AgBr were formed for constructing the heterojunction system. The Z-type heterojunction system was established by introducing a suitable size of Ag nanoparticles as the recombination center to keep indirect contact between gCN and AgBr. This effectively reduced the electron-hole recombination rate and caused activity enhancement. This study offers a novel idea for the construction of a ternary heterojunction.
Collapse
Affiliation(s)
- Xinru Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University Hangzhou 310058 P.R. China
| | - Zeyu Duan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University Hangzhou 310058 P.R. China
| | - Feiyang He
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University Hangzhou 310058 P.R. China
| | - Haiqiang Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University Hangzhou 310058 P.R. China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control Hangzhou 310058 P. R. China
| | - Zhongbiao Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University Hangzhou 310058 P.R. China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control Hangzhou 310058 P. R. China
| |
Collapse
|
3
|
Ravikumar T, Thirumalaisamy L, Madanagurusamy S, Kalainathan S. Manganese doped two-dimensional zinc ferrite thin films as chemiresistive trimethylamine gas sensors. Phys Chem Chem Phys 2023; 25:32216-32233. [PMID: 37987656 DOI: 10.1039/d3cp03867j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Trimethylamine (TMA) is highly toxic and can have lethal effects on living organisms. Detecting the presence of TMA in air is very important because, if the TMA level exceeds the OSHA (Occupational Safety and Health Administration) limit, it may harm the environment and endanger human life. Doping is an appropriate flexible way to change the electrical structures of metal oxide semiconductors (MOSs) and improve their ability to detect toxic gases. In this work, Mn-doped zinc ferrite thin film nanorods with agglomerated morphology were fabricated by a spray pyrolysis technique. For the first time, a comprehensive investigation was done on the gas sensing capabilities of Mn-doped ZnFe2O4 thin films. The findings showed that ZFM1 had the best gas sensing characteristics, with high sensitivity (S = 6.24), good selectivity, and quick recovery, towards 10 ppm TMA at ambient temperature. The alternate Mn-ZF sites are responsible for the rapid recovery because they can significantly increase the concentration of oxygen vacancies in the ZF crystal. 0.1 Mn doped ZnFe2O4 (ZFM1) thin film exhibits greatly enhanced gas sensing properties towards TMA, because of its high surface-to-volume ratio and rough surface with a small nanorod structure. The sensor's response to 10 ppm TMA was measured 13 weeks later for stability testing. The stability test results show that the coated ZFM1 film works well as a TMA gas sensor. This work shows that ZF thin films are effective in detecting TMA in the atmosphere.
Collapse
Affiliation(s)
- Thangavel Ravikumar
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, India.
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - Logu Thirumalaisamy
- Dept. Of Physics, G. T. N. Arts College (Affiliated to Madurai Kamaraj University), Dindigul, India
| | - Sridharan Madanagurusamy
- Functional Nanomaterials & Devices Lab, Centre for Nanotechnology & Advanced Biomaterials and School of Electrical & Electronics Engineering, SASTRA Deemed to be University, Thanjavur, India
| | | |
Collapse
|
4
|
Tian H, Liu J, Zhang Y, Yue P. A novel integrated industrial-scale biological reactor for odor control in a sewage sludge composting facility: Performance, pollutant transformation, and bioaerosol emission mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:9-19. [PMID: 37185067 DOI: 10.1016/j.wasman.2023.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
In order to remove multiple pollutants in the sewage sludge (SS) composting facility, a novel integrated industrial-scale biological reactor based on biological trickling filtration and fungal biological filtration (BTF-FBF) was developed. This study examined bioaerosol emission, odour removal, pollutant transformation mechanism, and project investment. At an inlet flow rate of 7200 m3/h, the average removal efficiencies of hydrogen sulfide (H2S), ammonia (NH3), and volatile organic compounds (VOCs) during the steady stage were 97.2 %, 98.9 %, and 92.2 %. The BTF-FBF separates microbial phases (bacteria and fungi) of different modules. BTF removed most hydrophilic compounds, while FBF removed hydrophobic ones. Moreover, the reactor could effectively remove pathogens or opportunistic pathogens bioaerosols, such as Escherichia coli (61.9%), Salmonella sp. (85%), and Aspergillus fumigatus (82.1%). The pollutant transformation mechanism of BTF-FBF was proposed. BTF-FBF annualized costs were 324,783 CNY/year at 15 years. In conclusion, BTF-FBF provides new insights into composting facility bioaerosol, odour, and pathogen emission control.
Collapse
Affiliation(s)
- Hongyu Tian
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| | - Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China.
| | - Peng Yue
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| |
Collapse
|
5
|
Hsieh CC, Tsai JS, Chang JR. Effects of Moisture on NH 3 Capture Using Activated Carbon and Acidic Porous Polymer Modified by Impregnation with H 3PO 4: Sorbent Material Characterized by Synchrotron XRPD and FT-IR. MATERIALS 2022; 15:ma15030784. [PMID: 35160732 PMCID: PMC8836875 DOI: 10.3390/ma15030784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
The performances of reactive adsorbents, H3PO4/C (activated carbon) and H3PO4/A (Amberlyst 35), in removing NH3 from a waste-gas stream were investigated using a breakthrough column. Accelerated aging tests investigated the effects of the water content on the performance of the adsorbents. Results of breakthrough tests show that the adsorption capacity greatly decreased with the drying time of H3PO4/C preparation. Synchrotron XRPD indicated increased amorphous phosphorus species formation with drying time. Nitrogen adsorption-desorption isotherms results further suggested that the evaporation of water accommodated in macropores decreases adsorption capacity besides the formation of the amorphous species. Introducing water moisture to the NH3 stream increases the adsorption capacity concomitant with the conversion of some NH4H2PO4 to (NH4)2HPO4. Due to the larger pore of cylindrical type and more hydrophilic for acidic porous polymer support, as opposed to slit-type for the activated carbon, the adsorption capacity of H3PO4/A is about 3.4 times that of H3PO4/C. XRPD results suggested that NH3 reacts with aqueous H3PO4 to form NH4H2PO4, and no significant macropore-water evaporation was observed when acidic porous polymer support was used, as evidenced by N2 isotherms characterizing used H3PO4/A.
Collapse
Affiliation(s)
- Chu-Chin Hsieh
- Department of Safety, Health and Environmental Engineering, National Yunlin University Science and Technology, Douliu 640301, Taiwan;
| | - Jyong-Sian Tsai
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621301, Taiwan;
| | - Jen-Ray Chang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621301, Taiwan;
- Correspondence:
| |
Collapse
|
6
|
Morral E, Gabriel D, Dorado AD, Gamisans X. A review of biotechnologies for the abatement of ammonia emissions. CHEMOSPHERE 2021; 273:128606. [PMID: 33139050 DOI: 10.1016/j.chemosphere.2020.128606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/20/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Ammonia emissions are found in a wide range of facilities such as wastewater treatment plants, composting plants, pig houses, as well as the fertilizer, food and metallurgy industries. Effective management of these emissions is important for minimizing the detrimental effects they can have on health and the environment. Physical-chemical (thermal oxidation, absorption, catalytic oxidation, etc.) treatments are the most common techniques for the abatement of ammonia emissions. However, the requirement for more eco-friendly techniques has increased interest in biological alternatives. Accordingly, several bio-based process configurations (biofilters, biotrickling filters and bioscrubbers) have been reported for ammonia abatement in a wide spectrum of conditions. Due to ammonia is a highly soluble compound, bioscrubber seems to be the best option for ammonia abatement. However, this technology is still not widely studied. The proper managements of the ammonia bio-oxidation sub-products is a key parameter for the correct operation of the process. The aim of this review is to critically examine the biotechnologies currently used for the treatment of ammonia gas emissions highlighting the pros and cons of each technology. The key parameters for each configuration used in both full-scale and lab-scale bioreactors are analyzed and summarized according to previous publications.
Collapse
Affiliation(s)
- Eloi Morral
- Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Bases de Manresa, 61-73, 08240, Manresa, Spain.
| | - David Gabriel
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, 08193, Bellaterra, Spain
| | - Antonio D Dorado
- Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Bases de Manresa, 61-73, 08240, Manresa, Spain
| | - Xavier Gamisans
- Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Bases de Manresa, 61-73, 08240, Manresa, Spain
| |
Collapse
|
7
|
Kim ES, Ha JH, Choi J. Biological fixed-film systems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:491-501. [PMID: 32866339 DOI: 10.1002/wer.1445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The technical papers published in 2019 regarding wastewater treatment and microbial films were classified into two categories: biofilm and biofilm reactors. The biofilm category includes biofilm formation, biofilm consortia, bacterial signals, biofouling, extracellular polymeric substances, and biofilm membrane bioreactors. The biofilm reactors category provides recent information on rotating biological contactors, fluidized-bed biofilm reactors, integrated fixed-film activated sludge, moving-bed biofilm reactors, packed-bed biofilm reactors, sequencing biofilm batch reactors, and trickling filters.
Collapse
Affiliation(s)
- Eun-Sik Kim
- Department of Environmental System Engineering, Chonnam National University, Yeosu, Korea
| | - Jae-Hoon Ha
- Department of Environmental Engineering, Korea National University of Transportation, Chungju, Korea
| | - Jeongdong Choi
- Department of Environmental Engineering, Korea National University of Transportation, Chungju, Korea
| |
Collapse
|
8
|
Polyurethane Foams for Domestic Sewage Treatment. MATERIALS 2021; 14:ma14040933. [PMID: 33669295 PMCID: PMC7920064 DOI: 10.3390/ma14040933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
The aim of the study was to assess the possibility of using polyurethane foams (PUF) as a filling of a foam-sand filter to directly treat domestic sewage with increased content of ammonium nitrogen and low organic carbon to nitrogen ratio (C/N). The study compared performance of two types of flexible foams: new, cylinder-shaped material (Novel Foams, NF) and waste, scrap foams (Waste Foams, WF). The foams serving as a filling of two segments of a foam-sand filter were assessed for their hydrophobic and physical properties and were tested for their cell structure, i.e., cell diameter, cell size distribution, porosity, and specific surface area. The study accounted also for selected application-related properties, such as hydrophobicity, water absorption, apparent density, dimensional stability, amount of adsorbed biomass, and the possibility of regeneration. Cell morphology was compared in reference foams, foams after 14 months of the filter operation, and regenerated foams. The experimental outcomes indicated WF as an innovative type of biomass carrier for treating domestic sewage with low C/N ratio. SEM images showed that immobilization of microorganisms in NF and WF matrices involved the formation of multi-cellular structures attached to the inner surface of the polyurethane and attachment of single bacterial cells to the foam surface. The amount of adsorbed biomass confirmed that the foam-sand filter made up of two upper layers of waste foams (with diameters and pore content of 0.50-1.53 mm and 53.0-63.5% respectively) provided highly favorable conditions for the development of active microorganisms.
Collapse
|
9
|
Wu H, Yang M, Tsui TH, Yin Z, Yin C. Comparative evaluation on the utilization of applied electrical potential in a conductive granule packed biotrickling filter for continuous abatement of xylene: Performance, limitation, and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111145. [PMID: 32801108 DOI: 10.1016/j.jenvman.2020.111145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the use of electrically conductive granules as packing material in biotrickling filter (BTF) systems as to provide insights on the specific microbial abundance and functions during the treatment of xylene-containing waste gas. In addition, the effect of applied potential on attached biofilm on conductive granules during xylene degradation was briefly investigated. During stable operation period, the conductive granules packed BTF achieved reactor performance of no less than 80% with a maximum EC of 137.7 g/m3 h. Under applied potential of 1V, the BTF system showed deterioration of xylene removal by ranging from 21 to 76%, which also affected the distribution and relative abundance of the major microorganisms such as Xanthobacter, Acidovorax, Rhodococcus, Hydrogenophaga, Arthrobacter, Brevundimonas, Pseudoxanthomonas, Devosia, Shinella, Sphingobium, Dokdonella, Pseudomonas and Bosea. The acclimation of applied potential led to the enrichment of autotrophic bacteria and strains, which are correlated to improved nitrogen cycling. In general, applying electrical potential is feasible to shape the microbiological structure of biofilms to selectively adjust their biochemical functions.
Collapse
Affiliation(s)
- Hao Wu
- Department of Chemistry, Yanbian University, Yanji, 133002, China; Department of Environmental Engineering, Yanshan University, Qinhuangdao, 066000, China
| | - Mengxin Yang
- Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - To-Hung Tsui
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhenxing Yin
- Department of Chemistry, Yanbian University, Yanji, 133002, China.
| | - Chengri Yin
- Department of Chemistry, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
10
|
Marlina, Iqhrammullah M, Saleha S, Fathurrahmi, Maulina FP, Idroes R. Polyurethane film prepared from ball-milled algal polyol particle and activated carbon filler for NH 3-N removal. Heliyon 2020; 6:e04590. [PMID: 32904302 PMCID: PMC7452532 DOI: 10.1016/j.heliyon.2020.e04590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 01/28/2023] Open
Abstract
This research offers a novel approach of free chemical preparation to obtain algae-based biopolyol through a ball milling method. The algae-based polyurethane (AlgPU) film was obtained from a casting solution made of ball-milled algal polyol particle and methylene diphenyl diisocyanate (MDI). The characteristics of the material had been investigated using Fourier Transform Infrared, Scanning Electron Microscopy – Electron Dispersive Spectroscopy, Differential Scanning Calorimetry, and Tensile Strength Analysis. The surface area was determined by Brunauer–Emmett–Teller (BET) isotherm, meanwhile the total pore volume was by Barrett-Joyner-Halenda (BJH) isotherm, based on the adsorption-desorption of N2. The addition of activated carbon contributed in the increase of functional group and surface area, which were important for the NH3–N removal. As a result, the adsorption capacity increased greatly after the addition of activated carbon (from 187.84 to 393.43 μg/g). The results also suggested AlgPU as a good matrix for immobilizing activated carbon filler. The adsorption shows a better fit with Langmuir isotherm model, with R2 = 0.97487 and root-mean-square error (RMSE) = 33.91952, compared to Freundlich isotherm model (R2 = 0.96477 and RMSE = 44.05388). This means the NH3–N adsorption followed the assumption of homogenous and monolayer adsorption, in which the maximum adsorption was found to be 797.95 μg/g. This research suggests the potential of newly developed material for NH3–N removal.
Collapse
Affiliation(s)
- Marlina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Muhammad Iqhrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Sitti Saleha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Fathurrahmi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Fandini Putri Maulina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia.,Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| |
Collapse
|
11
|
Vikrant K, Kim KH, Dong F, Giannakoudakis DA. Photocatalytic Platforms for Removal of Ammonia from Gaseous and Aqueous Matrixes: Status and Challenges. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02163] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | | |
Collapse
|
12
|
Yang N, Wang C, Han MF. Gel-encapsulated microorganisms used as a strategy to rapidly recover biofilters after starvation interruption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110237. [PMID: 32148307 DOI: 10.1016/j.jenvman.2020.110237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/01/2019] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Biosystems used for volatile organic compound (VOC) control have slow re-acclimation after extended starvation. In this study, a gel-encapsuled microorganism biofilter (GEBF) for the treatment of VOCs was used for rapid recovery after starvation interruption. Another conventional perlite biofilter (BF) was used as a control. Results showed that GEBF and BF needed 3 and 6 days for fully recovery after short-term (6 days) starvation. For long-term (20 days) starvation, GEBF fully recovered the removal performance after 9 days, whereas BF recovered only 70% within the same period. Flow cytometry analysis indicated that GEBF presented better viability state of microbial population than that in BF under starvation. The average metabolic activity of microorganisms in GEBF remained a relatively high during and after starvation (0.0049 h-1). However, the average metabolic activity of microorganisms in BF decreased from 0.0042 h-1 before starvation to 0.0033 h-1 under starvation. Changes in the microbial community structure in GEBF and BF were investigated and compared by high-throughput sequencing and principal component analysis. Notably, the microbial community structure in the two biofilters showed different behavior. All these results demonstrated that the gel encapsulation of microorganisms is a promising strategy to resist starvation in biofiltration technologies.
Collapse
Affiliation(s)
- Nanyang Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, China.
| | - Meng-Fei Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, China.
| |
Collapse
|
13
|
Pascual C, Akmirza I, Pérez R, Arnaiz E, Muñoz R, Lebrero R. Trimethylamine abatement in algal-bacterial photobioreactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9028-9037. [PMID: 31919828 DOI: 10.1007/s11356-019-07369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Trimethylamine (TMA) is an odorous volatile organic compound emitted by industries. Algal-based biotechnologies have been proven as a feasible alternative for wastewater treatment, although their application to abate polluted air emissions is still scarce. This work comparatively assessed the removal of TMA in a conventional bacterial bubble column bioreactor (BC) and a novel algal-bacterial bubble column photobioreactor (PBC). The PBC exhibited a superior TMA abatement performance compared to the conventional BC. In this sense, the BC reached a removal efficiency (RE) and an elimination capacity (EC) of 78% and 12.1 g TMA m-3 h-1, respectively, while the PBC achieved a RE of 97% and a EC of 16.0 g TMA m-3·h-1 at an empty bed residence time (EBRT) of 2 min and a TMA concentration ~500 mg m-3. The outstanding performance of the PBC allowed to reduce the operating EBRT to 1.5 and 1 min while maintaining high REs of 98 and 94% and ECs of 21.2 and 28.1 g m-3·h-1, respectively. Moreover, the PBC improved the quality of the gas and liquid effluents discharged, showing a net CO2 consumption and decreasing by ~ 30% the total nitrogen concentration in the liquid effluent via biomass assimilation. A high specialization of the bacterial community was observed in the PBC, Mumia and Aquamicrobium sp. being the most abundant genus within the main phyla identified. GraphicalAbstract.
Collapse
Affiliation(s)
- Celia Pascual
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Ilker Akmirza
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
- Department of Environmental Engineering, Gebze Technical University, 41400, Kocaeli, Turkey
| | - Rebeca Pérez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Esther Arnaiz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain.
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
| |
Collapse
|
14
|
Vohra M. Treatment of Gaseous Ammonia Emissions Using Date Palm Pits Based Granular Activated Carbon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051519. [PMID: 32120871 PMCID: PMC7084576 DOI: 10.3390/ijerph17051519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022]
Abstract
The present work investigated the application of granular activated carbon (GAC) derived from date palm pits (DPP) agricultural waste for treating gaseous ammonia. Respective findings indicate increased breakthrough time (run time at which 5% of influent ammonia is exiting with the effluent gas) with a decrease in influent ammonia and increase in GAC bed depth. At a gas flow rate of 1.1 L/min and GAC column length of 8 cm, the following breakthrough trend was noted: 1295 min (2.5 ppmv) > 712 min (5 ppmv) > 532 min (7.5 ppmv). A qualitatively similar trend was also noted for the exhaustion time results (run time at which 95% of influent ammonia is exiting with the effluent gas). The Fourier Transform Infrared Spectroscopy (FTIR) findings for the produced GAC indicated some salient functional groups at the produced GAC surface including O–H, C–H, C–O, and S=O groups. Ammonia adsorption was suggested to result from its interaction with the respective surface functional groups via different mechanisms. Comparison with a commercial GAC showed the date palm pits based GAC to be having slightly higher breakthrough and exhaustion capacity.
Collapse
Affiliation(s)
- Muhammad Vohra
- Environmental Engineering Program, Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
15
|
Yousefinejad A, Zamir SM, Nosrati M. Fungal elimination of toluene vapor in one- and two-liquid phase biotrickling filters: Effects of inlet concentration, operating temperature, and peroxidase enzyme activity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109554. [PMID: 31541847 DOI: 10.1016/j.jenvman.2019.109554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
In this study, performance of biotrickling filters (BTFs) inoculated with fungus Phanerochaete chrysosporium at 30 °C and 40 °C in the absence and presence of silicone oil (10% v/v) was investigated. Removal of toluene was carried out at empty bed residence time (EBRT) of 1 min and at inlet concentrations of 0.5-4.4 g m-3 and 0.5-24.7 g m-3 for one-liquid phase (OLP-BTF) and two-liquid phase BTF (TLP-BTF), respectively. In general, at 40 °C, removal efficiencies (REs) > 80% were obtained in OLP-BTF for the inlet toluene concentrations < 2.5 g m-3, and REs > 70% were obtained for concentrations < 18 g m-3 in TLP-BTF. Based on the balanced equation for biodegradation, fungal respiration produced more CO2 in OLP-BTF (1.38 mol CO2/mole toluene) in comparison to TLP-BTF (0.67 mol CO2/mole toluene). In other words, the presence of oil enhanced microbial growth due to the increase of hydrophobic substrate bioavailability. The activity of extracellular ligninolytic manganese peroxidase (MnP) enzyme produced by the fungal culture was detected in the range of 27.6-71.6 U L-1 (μmol min-1 L-1) at 40 °C in TLP-BTF, while no enzymatic activity was detected in OLP-BTF.
Collapse
Affiliation(s)
- Ali Yousefinejad
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University (TMU), PO Box: 14115-143, Iran
| | - Seyed Morteza Zamir
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University (TMU), PO Box: 14115-143, Iran.
| | - Mohsen Nosrati
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University (TMU), PO Box: 14115-143, Iran
| |
Collapse
|
16
|
Vikrant K, Roy K, Kim KH, Bhattacharya SS. Insights into the storage stability of ammonia in polyester aluminum bags. ENVIRONMENTAL RESEARCH 2019; 177:108596. [PMID: 31349176 DOI: 10.1016/j.envres.2019.108596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
A list of gaseous odorants such as ammonia (and hydrogen sulfide) are generally collected using rigid containers or flexible bags for quantitative analysis. The aim of this investigation was to assess the stability of polyester aluminum bags used for gaseous ammonia sampling and storage. To this end, ammonia standards were prepared at two concentration levels of low (7.8 ppm) and high concentrations (39 ppm) and stored in the polyester ammonia bags for durations of 0, 1, 2, 4, and 6 days. These samples were then analyzed at each interval by an impinger-based indophenol method utilizing a spectrophotometer. At each pre-set period, three different mass loadings of ammonia samples were collected from the storage bag to obtain response factors (RF) for comparison between different elapsed times set for the storage. Subsequently, the relative recovery values for each interval were computed by dividing the RF for each sampling day by that of the 0th day. The relative recovery values for low and high concentration standards decreased with increasing storage time as 82.9% (day 1) to 36% (day 6) and 89.9% (day 1) to 59.7% (day 6), respectively. As such, the potentially superior recovery of ammonia from polyester aluminum bags was demonstrated (e.g., relative to other storage options introduced previously) to support its practical merit as storage media.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Kangkan Roy
- Department of Chemical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Satya Sundar Bhattacharya
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, 784028, India.
| |
Collapse
|
17
|
Raj I, Bansiwal A, Vaidya AN. Kinetic evaluation for rapid degradation of dimethylamine enriched with Agromyces and Ochrobactrum sp. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:322-329. [PMID: 31158684 DOI: 10.1016/j.jenvman.2019.05.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
Dimethylamine (DMA) possesses an obnoxious odor which has resulted in public concern during the past several decades. A rare bacterial species proficient to degrade DMA, designated IR-26, was isolated from Indian Oil Corporation Limited (IOCL) and identified as Agromyces and Ochrobactrum sp., which has presented a rapid degradation when compared to other bacterial species which were capable to degrade DMA. The removal efficiency of 100% has been calculated in different concentration of DMA. The kinetic study reveals the maximum reduction rate of DMA was 0.11 per hour and the maximum growth rate of biomass was 0.013 per hour respectively. The saturation constant of DMA was around 1.96 mg/L which shows a high affinity of DMA. The importance of these analyses is offered and conversed in this paper.
Collapse
Affiliation(s)
- Ishan Raj
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, India; Academy of Scientific and Innovative Research, CSIR-NEERI, Nagpur, 440020 Maharashtra, India.
| | - Amit Bansiwal
- Environmental Material Division, CSIR-NEERI, Nagpur, India
| | - A N Vaidya
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India
| |
Collapse
|
18
|
Kasperczyk D, Urbaniec K, Barbusinski K, Rene ER, Colmenares-Quintero RF. Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 236:413-419. [PMID: 30763765 DOI: 10.1016/j.jenvman.2019.01.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 05/20/2023]
Abstract
A compact trickle-bed bioreactor (CTBB) was tested for the removal of volatile organic compounds (VOCs) and hydrogen sulphide (H2S) present in the exhaust air of a wastewater treatment plant. At gas-flow rates varying between 2.0 and 30.0 m3/h and for specific pollutant loads up to 20 g/(m3·h), removal efficiencies for H2S and VOC were >95%. The CTBB was designed for a maximum H2S concentration of ∼200 ppm and removal efficiencies >97% were noticed. VOC concentrations were in the range of 25-240 ppmv and the removal efficiency was in the range of 85-99%. Possible consequences of an excessive pollutant overload and the time required for regenerating the microbial activity and reviving stable process conditions in the CTBB were also investigated. An increase in the H2S concentration from 400 to 600 ppmv for a few hours caused bioreactor poisoning; however, when original H2S concentrations were restored, stable CTBB operation was ascertained within 3 h.
Collapse
Affiliation(s)
| | - Krzysztof Urbaniec
- Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Plock, Poland
| | - Krzysztof Barbusinski
- Institute of Water and Wastewater Engineering, Silesian University of Technology, Gliwice, Poland
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, Westvest 7, 2601 DA Delft, the Netherlands
| | | |
Collapse
|