1
|
Barbusiński K, Szeląg B, Parzentna-Gabor A, Kasperczyk D, Rene ER. Application of a generalized hybrid machine learning model for the prediction of H 2S and VOCs removal in a compact trickle bed bioreactor (CTBB). CHEMOSPHERE 2024; 360:142181. [PMID: 38685329 DOI: 10.1016/j.chemosphere.2024.142181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
This study presents a generalized hybrid model for predicting H2S and VOCs removal efficiency using a machine learning model: K-NN (K - nearest neighbors) and RF (random forest). The approach adopted in this study enabled the (i) identification of odor removal efficiency (K) using a classification model, and (ii) prediction of K <100%, based on inlet concentration, time of day, pH and retention time. Global sensitivity analysis (GSA) was used to test the relationships between the inputs and outputs of the K-NN model. The results from classification model simulation showed high goodness of fit for the classification models to predict the removal of H2S and VOCs (SPEC = 0.94-0.99, SENS = 0.96-0.99). It was shown that the hybrid K-NN model applied for the "Klimzowiec" WWTP, including the pilot plant, can also be applied to the "Urbanowice" WWTP. The hybrid machine learning model enables the development of a universal system for monitoring the removal of H2S and VOCs from WWTP facilities.
Collapse
Affiliation(s)
- Krzysztof Barbusiński
- Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100, Gliwice, Poland
| | - Bartosz Szeląg
- Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland.
| | | | | | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P.O. Box 3015, 2601DA Delft, Netherlands
| |
Collapse
|
2
|
Zha X, Li F, Feng B, Zhang X, He R. Adsorption Mechanism and Regeneration Performance of Calcined Zeolites for Hydrogen Sulfide and Its Application. ACS OMEGA 2024; 9:19493-19503. [PMID: 38708253 PMCID: PMC11064163 DOI: 10.1021/acsomega.4c00987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Hydrogen sulfide (H2S) is a very toxic, acidic, and odorous gas. In this study, a calcined zeolite was used to investigate the adsorption performance of H2S. Among particle size, calcination temperature and time calcination temperature and time had significant effects on the adsorption capacity of H2S on the zeolite. The optimal calcination conditions for the zeolite were 332 °C, 1.8 h, and 10-20 mm size, and the maximum adsorption capacity of H2S was approximately 6219 mg kg-1. Calcination could broaden the channels, remove the adsorbed gases and impurities on the surface of zeolites, and increase the average pore size and point of zero net charge. As the zeolite adsorbed to saturation, it could be regenerated at the temperatures between 200 and 350 °C for 0.5 h. Compared with the natural zeolite, the adsorption capacities of dimethyl disulfide, dimethyl sulfide, toluene, CH3SH, CS2, CO2, and H2S were significantly higher on the calcined zeolite, while the adsorption capacity of CH4 was lower on the calcined zeolite. A gas treatment system by a temperature swing adsorption-regeneration process on honeycomb rotors with calcined zeolites was proposed. These findings are helpful for developing techniques for removing gas pollutants such as volatile sulfur compounds and volatile organic compounds to purify biogas and to limited toxic concentrations in the working environment.
Collapse
Affiliation(s)
- Xianghao Zha
- Xinjiang
Biomass Solid Waste Resources Technology and Engineering Center, College
of Chemistry and Environmental Science, Kashi University, Kashi 844000, China
| | - Feixing Li
- Xinjiang
Biomass Solid Waste Resources Technology and Engineering Center, College
of Chemistry and Environmental Science, Kashi University, Kashi 844000, China
| | - Bo Feng
- Xinjiang
Biomass Solid Waste Resources Technology and Engineering Center, College
of Chemistry and Environmental Science, Kashi University, Kashi 844000, China
| | - Xin Zhang
- Xinjiang
Biomass Solid Waste Resources Technology and Engineering Center, College
of Chemistry and Environmental Science, Kashi University, Kashi 844000, China
- Zhejiang
Provincial Key Laboratory of Solid Waste Treatment and Recycling,
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ruo He
- Xinjiang
Biomass Solid Waste Resources Technology and Engineering Center, College
of Chemistry and Environmental Science, Kashi University, Kashi 844000, China
- Zhejiang
Provincial Key Laboratory of Solid Waste Treatment and Recycling,
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|
3
|
Liu J, Han Y, Dou X, Liang W. Effect of toluene on m-xylene removal in a biotrickling filter: Performance, biofilm characteristics, and microbial analysis. ENVIRONMENTAL RESEARCH 2024; 245:117978. [PMID: 38142726 DOI: 10.1016/j.envres.2023.117978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Hydrophobic volatile organic compounds (VOCs) pose a challenge to the removal efficiency in biotrickling filters (BTFs). The addition of relatively hydrophilic substances presents a promising approach for enhancing the elimination of hydrophobic VOCs. In this study, toluene was introduced into the BTF system alongside m-xylene, and their mixing ratios were changed to explore the interactions and mechanisms under different conditions. The result showed that the most pronounced synergistic interaction occurred when the mixing concentration ratio of m-xylene and toluene was 2:1. The removal efficiency (RE) of m-xylene increased from 88% to 97%, and the elimination capacity (EC) of m-xylene changed from 64 to 72 g m-3 h-1. Under this condition, there was a notable increase in biomass, extracellular polymeric substance (EPS) content, and relative hydrophobicity. Microbial diversity was enhanced observably with Berkeleyces and Mycobacterium potentially playing a positive role in co-degradation. Meanwhile, microbial metabolic function prediction indicated a significant enhancement in metabolic functions. Therefore, the introduction of relatively hydrophilic VOCs represents an effective strategy for enhancing the removal of hydrophobic VOCs in the BTFs.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
| | - Yueyang Han
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| | - Xiaona Dou
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| | - Wenjun Liang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
4
|
Sakhaei A, Zamir SM, Rene ER, Veiga MC, Kennes C. Neural network-based performance assessment of one- and two-liquid phase biotrickling filters for the removal of a waste-gas mixture containing methanol, α-pinene, and hydrogen sulfide. ENVIRONMENTAL RESEARCH 2023; 237:116978. [PMID: 37633629 DOI: 10.1016/j.envres.2023.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The performance of one- and two-liquid phase biotrickling filters (OLP/TLP-BTFs) treating a mixture of gas-phase methanol (M), α-pinene (P), and hydrogen sulfide (H) was assessed using artificial neural network (ANN) modeling. The best ANN models with the topologies 3-9-3 and 3-10-3 demonstrated an exceptional capacity for predicting the performance of O/TLP-BTFs, with R2 > 99%. The analysis of causal index (CI) values for the model of OLP-BTF revealed a negative impact of M on P removal (CI = -2.367), a positive influence of P and H on M removal (CI = +7.536 and CI = +3.931) and a negative effect of H on P removal (CI = -1.640). The addition of silicone oil in TLP-BTF reduced the negative impact of M and H on P degradation (CI = -1.261 and CI = -1.310, respectively) compared to the OLP-BTF. These findings suggested that silicone oil had the potential to improve P availability to the biofilm by increasing the concentration gradient of P between the air/gas and aqueous phases. Multi-objective particle swarm optimization (MOPSO) suggested an optimum operational condition, i.e. inlet M, P, and H concentrations of 1.0, 1.1, and 0.3 g m-3, respectively, with elimination capacities (ECs) of 172.1, 26.5, and 0.025 g m-3 h-1 for OLP-BTF. Likewise, one of the optimum operational conditions for TLP-BTF is achievable at inlet concentrations of 4.9, 1.7, and 0.8 g m-3, leading to the optimum ECs of 299.7, 52.9, and 0.072 g m-3 h-1 for M, P, and H, respectively. These results provide important insights into the treatment of complex waste gas mixtures, addressing the interactions between the pollutant removal characteristics in OLP/TLP-BTFs and providing novel approaches in the field of biological waste gas treatment.
Collapse
Affiliation(s)
- Amirmohammad Sakhaei
- Biochemical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-114, Iran
| | - Seyed Morteza Zamir
- Biochemical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-114, Iran.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX, Delft, the Netherlands
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E - 15008, A Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E - 15008, A Coruña, Spain
| |
Collapse
|
5
|
Zamir SM, Rene ER, Veiga MC, Kennes C. Comparative assessment of the performance of one- and two-liquid phase biotrickling filters for the simultaneous abatement of gaseous mixture of methanol, α-pinene, and hydrogen sulfide. CHEMOSPHERE 2023; 341:140022. [PMID: 37657695 DOI: 10.1016/j.chemosphere.2023.140022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
A gaseous mixture of methanol (M), α-pinene (P), and hydrogen sulfide (H) was treated in one/two-liquid phase biotrickling filters (OLP/TLP-BTFs) at varying inlet concentrations and at an empty bed residence time (EBRT) of 57 s. The performance of TLP-BTF [BTF (A)] improved significantly in terms of M and P removal due to the presence of silicone oil at 5% v/v. The maximum elimination capacities (ECs) of M, P, and H in BTF (A) were obtained as 309, 73, and 56 g m-3 h-1, respectively. While, the maximum ECs achieved in the BTF operated without silicone oil [BTF (B)] were 172, 28, and 21 g m-3 h-1 for M, P, and H removal, respectively. Increasing the inlet concentration of H from 32 to 337 ppm inhibited P removal in both the BTFs. The presence of silicone oil enhanced gas-liquid mass transfer, prevented the BTF from experiencing substrate inhibition effects and allowed reaching high ECs for M and P. The experiments showed promising results for the long-term operation of removal of M, P, and H mixture in a one-stage TLP-BTF with the decreasing negative effects of M and H on P degradation.
Collapse
Affiliation(s)
- Seyed Morteza Zamir
- Biochemical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P.O. Box 3015, 2611 AX, Delft, the Netherlands
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E - 15008, A Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E - 15008, A Coruña, Spain.
| |
Collapse
|
6
|
Parzentna-Gabor A, Kasperczyk D, Barbusiński K, Rene ER, Urbaniec K. Odor and volatile organic compounds biotreatment using compact trickle bed bioreactors (CTBB) in a wastewater treatment plant. BIORESOURCE TECHNOLOGY 2023; 376:128876. [PMID: 36921640 DOI: 10.1016/j.biortech.2023.128876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The main aim of this study was to optimize and maximize the impacts of odor and volatile organic compounds (VOCs) biodegradation in a wastewater treatment plant utilizing a pilot-scale compact trickle bed bioreactor (CTBB). A CTBB was built and tested for its long-term performance during which gases were supplied from the tank containing semi-liquid fats, oils, and fat waste. The concentrations of pollutants ranged from 0 to 140.75 mg/m3 H2S, 0 to 2500 mg/m3 VOCs, and 0 to 21.5 mg/m3 NH3. The CTBB was tested at different gas flow rates and at two pH values for the liquid phase: pH = 7.0 and 5.0. In the liquid phase, the pollutant removal efficiency was higher at pH = 7.0 than at pH = 5.0. Overall, the removal efficiency was between 81.5 % and 99.5 % for the VOCs and 87.5 % and 98.9 % for H2S, while NH3 removals were >99 %.
Collapse
Affiliation(s)
- Anita Parzentna-Gabor
- Ekoinwentyka Ltd., Szyb Walenty 26, 41-700 Ruda Śląska, Poland; Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | | | - Krzysztof Barbusiński
- Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Krzysztof Urbaniec
- Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Łukasiewicza 17, 09-400 Płock, Poland
| |
Collapse
|
7
|
Wang Y, Wan S, Yu W, Yuan D, Sun L. Newly isolated Enterobacter cloacae sp. HN01 and Klebsiella pneumoniae sp. HN02 collaborate with self-secreted biosurfactant to improve solubility and bioavailability for the biodegradation of hydrophobic and toxic gaseous para-xylene. CHEMOSPHERE 2022; 304:135328. [PMID: 35700810 DOI: 10.1016/j.chemosphere.2022.135328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The gas-liquid mass transfer rate of hydrophobic volatile organic compounds (VOCs) is the limiting step in a biological treatment system. The present study aimed to utilize self-producing biosurfactants to enhance the bioavailability of hydrophobic gaseous VOCs. Two novel gram-negative rod-shaped bacteria, Enterobacter cloacae strain HN01 and Klebsiella pneumoniae strain HN02 were successfully isolated from sewage sludge by using blood agar and methylene blue agar plates. The two strains can use para-xylene (PX), a hydrophobic VOC model, as the only carbon source for biosurfactant production. Both strains can produce glycolipid biosurfactants, as confirmed by the emulsification index, Nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Results indicated that PX can be completely decomposed at an initial concentration of 15.50 mg L-1, pH value of 7.0, and temperature of 30 °C within 36 h. The Yano model is suitable for the prediction of the growth kinetics of strains over the entire PX concentration range. Gas chromatography/mass spectrometry analysis indicated that PX was converted into four and four intermediates in the presence of the strains HN01 and HN02, respectively, and the possible mechanisms were proposed. The results can be used in purifying industrial hydrophobic gaseous VOCs and improving the bioavailability of VOCs with self-produced biosurfactants.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Shungang Wan
- School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China; Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Haikou, 570228, China
| | - Weili Yu
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Dan Yuan
- School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Lei Sun
- School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China; Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Haikou, 570228, China.
| |
Collapse
|
8
|
Yao X, Shi Y, Wang K, Wang C, He L, Li C, Yao Z. Highly efficient degradation of hydrogen sulfide, styrene, and m-xylene in a bio-trickling filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152130. [PMID: 34863757 DOI: 10.1016/j.scitotenv.2021.152130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Controlling the release of malodorous gas discharged from wastewater treatment plants (WWTPs) has become an urgent environmental problem in recent years. In this study, a bio-trickling filter (BTF) inoculated with microorganisms acclimated to activated sludge in a WWTP was used as the degradation equipment. A continuous degradation experiment with hydrogen sulfide, styrene, and m-xylene in the BTF lasted for 84 days (12 weeks). The degradation capacities of the BTF for hydrogen sulfide, styrene, and m-xylene were evaluated, and the synergy and inhibition among the substrates during biodegradation are discussed. The results indicated that the degradation efficiencies of the BTF were as high as 99.2% for hydrogen sulfide, 94.6% for styrene, and 100.0% for m-xylene. When the empty bed residence time was 30 s, the maximum elimination capacities (EC) achieved for hydrogen sulfide was 38 g m-3 h-1, for styrene was 200 g m-3 h-1, and for m-xylene was 75 g m-3 h-1. Furthermore, the microbial species and quantity of microorganisms in the middle and top of the BTF were much higher than those at the bottom of the BTF. A variety of microorganisms in the BTF can efficiently degrade the typical and highly toxic malodorous gases released from WWTPs. This study can help increase the understanding of the degradation of a mixture of sulfur-containing substances and aromatic hydrocarbons in BTF degradation and promote the development of technologies for the reduction of a complex mixture of malodorous gas emissions from organic wastewater treatment.
Collapse
Affiliation(s)
- Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Shi
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ke Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Li He
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Changming Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
9
|
External Wetting Efficiency in a Three-Phase Fixed Bed Loaded with Porous and Non-Porous Packings. Processes (Basel) 2022. [DOI: 10.3390/pr10010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Films and rivulets are the two basic forms of dynamic liquid in a three-phase fixed bed (trickle bed), which determines the wetting efficiency of the catalyst. This paper is devoted to the conflicting wetting performance observed between non-porous glass beads and less wettable porous alumina, and a parallel zone model is applied to resolve the complex liquid flow texture. It shows in both cases of glass beads and aluminium pellets, the pressure drop, film flow and rivulet flow fractions all display pronounced multiplicities along with the liquid flow rates in increasing and decreasing branches, although the rivulet flow fraction is reduced to 0 in the liquid decreasing branch started from pulsing flow in both cases. Different from the glass beads, there is almost no wetting efficiency difference for the alumina pellets with respect to liquid flow rate increasing or decreasing, which is in agreement with the dynamic liquid holdup measurements. The liquid is significantly more uniformly distributed over the crosssection in the Al2O3 bed since rivulet flow is much reduced than in the case of glass beads.
Collapse
|
10
|
Full-Scale Odor Abatement Technologies in Wastewater Treatment Plants (WWTPs): A Review. WATER 2021. [DOI: 10.3390/w13243503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The release of air pollutants from the operation of wastewater treatment plants (WWTPs) is often a cause of odor annoyance for the people living in the surrounding area. Odors have been indeed recently classified as atmospheric pollutants and are the main cause of complaints to local authorities. In this context, the implementation of effective treatment solutions is of key importance for urban water cycle management. This work presents a critical review of the state of the art of odor treatment technologies (OTTs) applied in full-scale WWTPs to address this issue. An overview of these technologies is given by discussing their strengths and weaknesses. A sensitivity analysis is presented, by considering land requirements, operational parameters and efficiencies, based on data of full-scale applications. The investment and operating costs have been reviewed with reference to the different OTTs. Biofilters and biotrickling filters represent the two most applied technologies for odor abatement at full-scale plants, due to lower costs and high removal efficiencies. An analysis of the odors emitted by the different wastewater treatment units is reported, with the aim of identifying the principal odor sources. Innovative and sustainable technologies are also presented and discussed, evaluating their potential for full-scale applicability.
Collapse
|
11
|
Lee SH, Kurade MB, Jeon BH, Kim J, Zheng Y, Salama ES. Water condition in biotrickling filtration for the efficient removal of gaseous contaminants. Crit Rev Biotechnol 2021; 41:1279-1296. [PMID: 34107840 DOI: 10.1080/07388551.2021.1917506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biofiltration (BF) facilitates the removal of organic and inorganic compounds through microbial reactions. Water is one of the most important elements in biotrickling filters that provides moisture and nutrients to microbial biofilms. The maintenance of proper trickle watering is very critical in biotrickling filtration because the flow rate of the trickling water significantly influences contaminant removal, and its optimal control is associated with various physicochemical and biological mechanisms. The lack of water leads to the drying of the media, creating several issues, including the restricted absorption of hydrophilic contaminants and the inhibition of microbial activities, which ultimately deteriorates the overall contaminant removal efficiency (RE). Conversely, an excess of water limits the mass transfer of oxygen or hydrophobic gases. In-depth analysis is required to elucidate the role of trickle water in the overall performance of biotrickling filters. The processes involved in the treatment of various polluted gases under specific water conditions have been summarized in this study. Recent microscopic studies on biofilms were reviewed to explain the process by which water stress influences the biological mechanisms involved in the treatment of hydrophobic contaminated gases. In order to maintain an effective mass transfer, hydrodynamic and biofilm conditions, a coherent understanding of water stress and the development of extracellular polymeric substances (EPS) in biofilms is necessary. Future studies on the realistic local distribution of hydrodynamic patterns (trickle flow, water film thickness, and wet efficiency), integrated with biofilm distributions, should be conducted with respect to EPS development.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Department of Environmental Science, Keimyung Unviersity, Daegu, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Jungeun Kim
- Department of Environmental Science, Keimyung Unviersity, Daegu, South Korea
| | - Yuanzhang Zheng
- Department of Molecular Biology, School of Medicine Biochemistry, Indiana University, Indianapolis, IN, USA
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
12
|
Almomani F, Rene ER, Veiga MC, Bhosale RR, Kennes C. Treatment of waste gas contaminated with dichloromethane using photocatalytic oxidation, biodegradation and their combinations. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:123735. [PMID: 33158652 DOI: 10.1016/j.jhazmat.2020.123735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
The treatment of waste gas (WG) containing dichloromethane (DCM) using advanced oxidation processes (AOPs) [UV and UV-TiO2], biological treatment (BT), and their combination (AOPs-BT) was tested. AOP tests were performed in an annular photo-reactor (APHR), while BT was conducted in a continuous stirred tank bioreactor (CSTBR). The effects of gas flow rate (Qgas), inlet DCM concentration ([DCM]i), residence time (τ), photocatalyst loading (PH-CL) and % relative humidity (% RH) on the AOPs performance and the removal of DCM (%DCMr) were studied and optimized. The UV process exhibited %DCMr ≤ 12.5 % for tests conducted at a [DCM]i ≤ 0.45 g/m3, Qgas of 0.12 m3/h and τ of 27.6 s, respectively, and < 4 % when the [DCM]i ≥ 4.2 g/m3. The UV-TiO2 achieved a %DCMr ≥ 71 ± 1.5 % at Qgas of 0.06 m3/h, [DCM]i of 0.45 g/m3, τ of 55.2 s, PH-CL of 10 g/m2, and %RH of 50, respectively. The BT process removed ∼97.6 % of DCM with an elimination capacity (EC) of 234.0 g/m3·h. Besides, the high %DCMr of ∼98.5 % in the UV-BT and 99.7 % in the UV-TiO2-BT processes confirms AOPs-BT as a promising technology for the treatment of recalcitrant compounds present in WG.
Collapse
Affiliation(s)
- Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Eldon R Rene
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of La Coruña (UDC), E-15008, La Coruña, Spain; IHE Delft Institute for Water Education, Department of Water Supply, Sanitation and Environmental Engineering, P. O. Box 3015, 2601 DA, Delft, the Netherlands
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of La Coruña (UDC), E-15008, La Coruña, Spain
| | - Rahul R Bhosale
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of La Coruña (UDC), E-15008, La Coruña, Spain
| |
Collapse
|
13
|
Abstract
This study reviews the available and most commonly used methods of gas deodorization. Comparing various methods of odor removal, undoubtedly biological methods of pollution degradation have an advantage over others—chemical and physical. This advantage is manifestedmainly in ecological and economic terms. The possibility of using biological methods to remove H2S and NH3, as the most common emitted by the municipal sector companies, was analyzed in terms of their removal efficiency. The method of bio-purification of air in biotrickling filters is more advantageous than the others, due to the high effectiveness of VOCs and odors degradation, lack of secondary pollutants, and economic aspects—it is a method competitive to the commonly used air purification method in biofilters.
Collapse
|
14
|
Mikulčić H, Baleta J, Wang X, Duić N, Dewil R. Green development challenges within the environmental management framework. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111477. [PMID: 33254843 DOI: 10.1016/j.jenvman.2020.111477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
Green development of energy, water and environment systems is essential as these three systems represent the basic life needs of humankind. Therefore, environmental problems arising from each of these three systems need to be carefully addressed to preserve the energy, water and environment resources for future generations. This paper discusses some of the latest developments in three main areas of sustainability themes, namely energy, water and environment, that emerged from the 14th Sustainable Development of Energy, Water and Environment Systems (SDEWES) Conference held in 2019. As such, it acts as an editorial paper for the virtual special issue of the Journal of Environmental Management, dedicated to the SDEWES 2019 conference.
Collapse
Affiliation(s)
- Hrvoje Mikulčić
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China; University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10000, Zagreb, Croatia.
| | - Jakov Baleta
- University of Zagreb, Faculty of Metallurgy, Aleja Narodnih Heroja 3, 44000, Sisak, Croatia.
| | - Xuebin Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Neven Duić
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10000, Zagreb, Croatia.
| | - Raf Dewil
- Department of Chemical Engineering (CIT), KU Leuven, Jan De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium.
| |
Collapse
|
15
|
Liu J, Kang X, Liu X, Yue P, Sun J, Lu C. Simultaneous removal of bioaerosols, odors and volatile organic compounds from a wastewater treatment plant by a full-scale integrated reactor. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2020; 144:2-14. [PMID: 32834560 PMCID: PMC7341965 DOI: 10.1016/j.psep.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 05/03/2023]
Abstract
Biological control of odors and bioaerosols in wastewater treatment plants (WWTPs) have gained more attention in recent years. The simultaneous removal of odors, volatile organic compounds (VOCs) and bioaerosols in each unit of a full-scale integrated-reactor (FIR) in a sludge dewatering room was investigated. The average removal efficiencies (REs) of odors, VOCs and bioaerosols were recorded as 98.5 %, 94.7 % and 86.4 %, respectively, at an inlet flow rate of 5760 m3/h. The RE of each unit decreased, and the activated carbon adsorption zone (AZ) played a more important role as the inlet flow rate increased. The REs of hydrophilic compounds were higher than those of hydrophobic compounds. For bioaerosols, roughly 35 % of airborne heterotrophic bacteria (HB) was removed in the low-pH zone (LPZ) while over 30 % of total fungi (TF) was removed in the neutral-pH zone (NPZ). Most bioaerosols removed by the biofilter (BF) had a particle size larger than 4.7 μm while bioaerosols with small particle size were apt to be adsorbed by AZ. The microbial community in the BF changed significantly at different units. Health risks were found to be associated with H2S rather than with bioaerosols at the FIR outlet.
Collapse
Affiliation(s)
- Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xinyue Kang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xueli Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Peng Yue
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jianbin Sun
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chen Lu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
16
|
Zhou X, Moghaddam TB, Chen M, Wu S, Adhikari S. Biochar removes volatile organic compounds generated from asphalt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141096. [PMID: 32717607 DOI: 10.1016/j.scitotenv.2020.141096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Volatile organic compounds (VOCs) emission not only cause the environmental pollution, but also severely threaten human health as they are known to be toxic and carcinogenic. This study investigates the effects of biochar on removing the VOCs emission from asphalt. The biochar was obtained from the pyrolyzed productions of pig manure, waste wood and straw biomasses. Molecular model for the adsorption of the VOCs was developed and used to measure the adsorption energy and heat. The VOCs removal model was built and used to determine the VOCs removal mechanism in the asphalt. The results showed that biochar could remove alkanes, polycyclic aromatic hydrocarbons (PAHs) and sulphide compounds because of its intrinsic carbon negativity and porosity. Furthermore, source of the biochar was an influential factor on the adsorption of the VOCs compounds. Based on the results, waste wood-based biochar had the best adsorption performance which could be related to the amorphous carbon, graphite and its porous structure. Also, it shows that biochar has the great potential to be used as VOCs inhibitors.
Collapse
Affiliation(s)
- Xinxing Zhou
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China; Key Laboratory of Highway Construction and Maintenance Technology in Loess Region, Shanxi Transportation Technology Research & Development Co., Ltd, Taiyuan 030032, China.
| | - Taher Baghaee Moghaddam
- Centre for Pavement and Transportation Technology, Department of Civil and Environmental Engineering, University of Waterloo, Waterloo N2L 3G1, Canada.
| | - Meizhu Chen
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China.
| | - Shaopeng Wu
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China.
| | - Sanjeev Adhikari
- Kennesaw State University, 1100 South Marietta Parkway, Marietta, GA 30060, USA.
| |
Collapse
|
17
|
Mikulčić H, Wang X, Duić N, Dewil R. Environmental problems arising from the sustainable development of energy, water and environment system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:109666. [PMID: 32072943 DOI: 10.1016/j.jenvman.2019.109666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Integration of energy, water and environment systems is essential in the multidisciplinary concept of sustainable development, as they represent the basic life needs of mankind. Therefore, problems arising from the sustainable development concept need to be carefully addressed to preserve the energy, water and environment resources for future generations. This article discusses some of the latest developments in three main areas of sustainability themes, namely energy, water and environment, that emerged from three Sustainable Development of Energy, Water and Environment Systems (SDEWES) conferences held in 2018. As such, it acts as an editorial paper for the virtual special issue of the Journal of Environmental Management, dedicated to the SDEWES2018 conferences.
Collapse
Affiliation(s)
- Hrvoje Mikulčić
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China; University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10000, Zagreb, Croatia.
| | - Xuebin Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Neven Duić
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10000, Zagreb, Croatia.
| | - Raf Dewil
- Department of Chemical Engineering (CIT), KU Leuven, Jan De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium.
| |
Collapse
|
18
|
Baskaran D, Rajamanickam R, Pakshirajan K. Experimental studies and neural network modeling of the removal of trichloroethylene vapor in a biofilter. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109385. [PMID: 31521920 DOI: 10.1016/j.jenvman.2019.109385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, bamboo carrier based lab scale compost biofilter was evaluated to treat synthetic waste air containing trichloroethylene (TCE) under continuous operation mode. The effect of inlet TCE concentration and gas flow rate and its removal was investigated. Maximum TCE removal efficiency was found to be 89% under optimum conditions of inlet 0.986 g/m3 TCE concentration corresponding to a loading rate of 43 g/m3 h and 0.042 m3/h gas flow rate at empty bed residence time (EBRT) of 2 min. For the first time, Artificial Neural Network (ANN) was applied to predict the performance of the compost biofilter in terms of TCE removal. The ANN model used a three layer feed forward based Levenberg-Marquardt algorithm, and its topology consisted of 3-25-1 as the optimum number for the three layers (input, hidden and output). An excellent match between the experimental and ANN predicted the value of TCE removal was obtained with a coefficient of determination (R2) value greater than 0.99 during the model training, validation, testing and overall. Furthermore, statistical analysis of the ANN model performance mediated its prediction accuracy of the bioreactor to treat TCE contaminated systems.
Collapse
Affiliation(s)
- Divya Baskaran
- Department of Chemical Engineering, Annamalai University, Cuddalore, 608002, Tamil Nadu, India
| | - Ravi Rajamanickam
- Department of Chemical Engineering, Annamalai University, Cuddalore, 608002, Tamil Nadu, India.
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
19
|
Sinharoy A, Baskaran D, Pakshirajan K. A novel carbon monoxide fed moving bed biofilm reactor for sulfate rich wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109402. [PMID: 31450202 DOI: 10.1016/j.jenvman.2019.109402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, a moving bed biofilm reactor was used for biodesulfuruization using CO as the sole carbon substrate. The effect of hydraulic retention time (HRT), sulfate loading rate and CO loading rate on sulfate and CO removal was examined. At 72, 48 and 24 h HRT, the sulfate removal was 93.5%, 91.9% and 80.1%, respectively. An increase in the sulfate loading reduced the sulfate reduction efficiency, which, however, was improved by increasing the CO flow rate into the MBBR. Best results in terms of sulfate reduction (>80%) were obtained for low inlet sulfate and high CO loading conditions. The CO utilization was very high at 85% throughout the study, except during the last phase of the continuous bioreactor operation it was around 70%. An artificial neural network based model was successfully developed and optimized to accurately predict the bioreactor performance in terms of both sulfate reduction and CO utilization. Overall, this study showed an excellent potential of the moving bed biofilm bioreactor for efficient sulfate reduction even under high loading conditions.
Collapse
Affiliation(s)
- Arindam Sinharoy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Divya Baskaran
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
20
|
Akrami Z, Norouzi S, Bagherzadeh M. Immobilization of modified zeolite on polyethylene surface: characterization and its application toward phosphate removal and microalgae growth. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1214-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|