1
|
Wang J, Zhu W, Liu H, Wang W, Yang T. α-FeOOH-Modified Sn/N-Codoped TiO 2 Bifunctional Composites for As(III) Removal through Photocatalytic Oxidation and Simultaneous Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15252-15262. [PMID: 39001853 DOI: 10.1021/acs.langmuir.4c01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Photocatalytic oxidation technology is one of the most efficient and green methods to convert highly toxic As(III) into lowly toxic As(V) for arsenic-polluted wastewater. However, the obtained As(V) may be reduced to As(III) again in the environment, causing secondary pollution. In order to resolve these issues, a bifunctional composite consisting of needle-like α-FeOOH-modified Sn/N-codoped TiO2 granules (SNT-FeOOH) has been synthesized. After modifying, the band gap of SNT-FeOOH narrowed from 2.94 eV (SNT) to 2.29 eV. When the composites were applied to As(III) removal, 10 mg of SNT-FeOOH could totally photocatalytically oxidize 40 mL of As(III) solution with a concentration of 10,000 μg/L within 15 min and synchronously achieve complete adsorption of the produced As(V), which is much more efficient than pure Sn/N-codoped TiO2 [21 min for As(III) photocatalytic oxidation and only 20.01% of total arsenic removal efficiency]. Based on the characterizations, α-FeOOH modification plays a significant role in the promoted performances of photocatalytic oxidation and adsorption of SNT-FeOOH, leading to arsenic removal. On one hand, the Fe-O-Ti interfacial chemical interactions formed between α-FeOOH and Sn/N-codoped TiO2 can further boost the separation rate of photogenerated carriers, hence increasing the photocatalytic oxidation efficiency. On the other hand, α-FeOOH surface hydroxyl groups adsorb the generated As(V) by forming Fe-O-As bonds. The SNT-FeOOH bifunctional composites, prepared in this paper, with dual performances of photocatalytic oxidation and adsorption provide a new strategy to achieve arsenic removal from wastewater.
Collapse
Affiliation(s)
- Juntao Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, P. R. China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Wenke Zhu
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hanyu Liu
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenlei Wang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ting Yang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
2
|
Bayuo J, Rwiza MJ, Choi JW, Sillanpää M, Mtei KM. Optimization of desorption parameters using response surface methodology for enhanced recovery of arsenic from spent reclaimable activated carbon: Eco-friendly and sorbent sustainability approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116550. [PMID: 38843746 DOI: 10.1016/j.ecoenv.2024.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
Desorption and adsorbent regeneration are imperative factors that are required to be taken into account when designing the adsorption system. From the environmental, economic, and practical points of view, regeneration is necessary for evaluating the efficiency and sustainability of synthesized adsorbents. However, no study has investigated the optimization of arsenic species desorption from spent adsorbents and their regeneration ability for reuse as well as safe disposal. This study aims to investigate the desorption ability of arsenic ions adsorbed on hybrid granular activated carbon and the optimization of the independent factors influencing the efficient recovery of arsenic species from the spent activated carbon using central composite design of the response surface methodology. The activated carbon before the sorption process and after the adsorption-desorption of arsenic ions have been characterized using SEM-EDX, FTIR, and TEM. The study found that all the investigated independent desorption variables greatly influence the retrievability of arsenic ions from the spent activated carbon. Using the desirability function for the optimization of the independent factors as a function of desorption efficiency, the optimum experimental conditions were solution pH of 2.00, eluent concentration of 0.10 M, and temperature of 26.63 ℃, which gave maximum arsenic ions recovery efficiency of 91 %. The validation of the quadratic model using laboratory confirmatory experiments gave an optimum arsenic ions desorption efficiency of 97 %. Therefore, the study reveals that the application of the central composite design of the response surface methodology led to the development of an accurate and valid quadratic model, which was utilized in the enhanced optimization of arsenic ions recovery from the spent reclaimable activated carbon. More so, the desorption isotherm and kinetic data of arsenic were well correlated with the Langmuir and the pseudo-second-order models, while the thermodynamics studies indicated that arsenic ions desorption process was feasible, endothermic, and spontaneous.
Collapse
Affiliation(s)
- Jonas Bayuo
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-daero 1447, Gangwon-do, South Korea; School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania; Department of Science Education, School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Postal Box 24, Navrongo, Upper East Region, Navrongo, Ghana.
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| | - Joon Weon Choi
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-daero 1447, Gangwon-do, South Korea
| | - Mika Sillanpää
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait 32093, Kuwait; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India; Division of Research & Development, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248007, India
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| |
Collapse
|
3
|
Zang S, Zhang Q, Hu B, Zhang Y, Pu JH, Lv M. Effective Technique and Mechanism for Simultaneous Adsorption of As(III/V) from Wastewater by Fe-ZIF-8@MXene. TOXICS 2024; 12:419. [PMID: 38922099 PMCID: PMC11209527 DOI: 10.3390/toxics12060419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
Arsenic (As) contamination of surface water has become a global concern, especially for the third world countries, and it is imperative to develop advanced materials and an effective treatment method to address the issue. In this paper, iron doped ZIF-8@MXene (Fe-ZIF-8@MXene) was prepared as a potential adsorbent to effectively and simultaneously remove As(III/V) from wastewater. To investigate this, Fe-ZIF-8@MXene was characterized before and after the removal of mixed As(III/V). The results of Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), specific surface area (BET) and point of zero charge (pHpzc) showed that Fe-ZIF-8@MXene was prepared successfully and kept a stable structure after As(III) and As(V) adsorption. The particle size of Fe-ZIF-8@MXene was in the range of 0.5 μm to 2.5 μm, where its BET was 531.7 m2/g. For both contaminants, adsorption was found to follow pseudo-second-order kinetics and was best-fitted by the Langmuir adsorption model with correlation coefficients (R2) of 0.998 and 0.997, for As(III) and As(V), respectively. The adsorbent was then applied to remove As from two actual water samples, giving maximum removal rates of 91.07% and 98.96% for As(III) and As(V), respectively. Finally, removal mechanisms for As(III/V) by Fe-ZIF-8@MXene were also explored. During the adsorption, multiple complexes were formed under the effect of its abundant surface functional groups involving multiple mechanisms, which included Van der Waals force, surface adsorption, chemical complexation and electrostatic interactions. In conclusion, this study demonstrated that Fe-ZIF-8@MXene was an advanced and reusable material for simultaneous removal of As(III/V) in wastewater.
Collapse
Affiliation(s)
- Shuyan Zang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.Z.)
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK
| | - Qing Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.Z.)
| | - Baoli Hu
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.Z.)
| | - Yaqian Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.Z.)
| | - Jaan H. Pu
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK
| | - Meiheng Lv
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.Z.)
| |
Collapse
|
4
|
Zhang S, Yeerkenbieke G, Shi S, Wang Z, Yi L, Lu X. Adsorption of Pyrene and Arsenite by Micro/Nano Carbon Black and Iron Oxide. TOXICS 2024; 12:251. [PMID: 38668474 PMCID: PMC11053581 DOI: 10.3390/toxics12040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and arsenic (As) are common pollutants co-existing in the environment, causing potential hazards to the ecosystem and human health. How their behaviors are affected by micro/nano particles in the environment are still not very clear. Through a series of static adsorption experiments, this study investigated the adsorption of pyrene and arsenite (As (III)) using micro/nano carbon black and iron oxide under different conditions. The objectives were to determine the kinetics and isotherms of the adsorption of pyrene and As (III) using micro/nano carbon black and iron oxide and evaluate the impact of co-existing conditions on the adsorption. The microstructure of micro/nano carbon black (C 94.03%) is spherical-like, with a diameter of 100-200 nm. The micro/nano iron oxide (hematite) has irregular rod-shaped structures, mostly about 1 µm long and 100-200 nm wide. The results show that the micro/nano black carbon easily adsorbed the pyrene, with a pseudo-second-order rate constant of 0.016 mg/(g·h) and an adsorption capacity of 283.23 μg/g at 24 h. The micro/nano iron oxide easily adsorbed As (III), with a pseudo-second-order rate constant of 0.814 mg/(g·h) and an adsorption capacity of 3.45 mg/g at 24 h. The mechanisms of adsorption were mainly chemical reactions. Micro/nano carbon black hardly adsorbed As (III), but its adsorption capability for pyrene was reduced by the presence of As (III), and this effect increased with an increase in the As (III) concentration. The adsorbed pyrene on the micro/nano black carbon could hardly be desorbed. On the other hand, the micro/nano iron oxide could hardly adsorb the pyrene, but its adsorption capability for As (III) was increased by the presence of pyrene, and this effect increased with an increase in the pyrene concentration. The results of this study provide guidance for the risk management and remediation of the environment when there is combined pollution of PAHs and As.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoxia Lu
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Sevak P, Pushkar B. Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119504. [PMID: 37956515 DOI: 10.1016/j.jenvman.2023.119504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Arsenic pollution and its allied impacts on health are widely reported and have gained global attention in the last few decades. Although the natural distribution of arsenic is limited, anthropogenic activities have increased its mobility to distant locations, thereby increasing the number of people affected by arsenic pollution. Arsenic has a complex biogeochemical cycle which has a significant role in pollution. Therefore, this review paper has comprehensively analysed the biogeochemical cycle of arsenic which can dictate the occurrence of arsenic pollution. Considering the toxicity and nature of arsenic, the present work has also analysed the current status of arsenic pollution around the world. It is noted that the south of Asia, West-central Africa, west of Europe and Latin America are major hot spots of arsenic pollution. Bibliometric analysis was performed by using scopus database with specific search for keywords such as arsenic pollution, health hazards to obtain the relevant data. Scopus database was searched for the period of 20 years from year 2003-2023 and total of 1839 articles were finally selected for further analysis using VOS viewer. Bibliometric analysis of arsenic pollution and its health hazards has revealed that arsenic pollution is primarily caused by anthropogenic sources and the key sources of arsenic exposure are drinking water, sea food and agricultural produces. Arsenic pollution was found to be associated with severe health hazards such as cancer and other health issues. Thus considering the severity of the issue, few sustainable remediation technologies such as adsorption using microbes, biological waste material, nanomaterial, constructed wetland, phytoremediation and microorganism bioremediation are proposed for treating arsenic pollution. These approaches are environmentally friendly and highly sustainable, thus making them suitable for the current scenario of environmental crisis.
Collapse
Affiliation(s)
- Pooja Sevak
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India
| | - Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India.
| |
Collapse
|
6
|
Liu H, Yu Z, Xiao M, Zhu W, Liu J, Wang L, Xu T, Wang W, Yang T. Synergistic photocatalytic oxidation and adsorption boost arsenic removal by in-situ carbon-doped TiO 2 and nitrogen deficiency C 3N 4 heterojunction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119218. [PMID: 37832294 DOI: 10.1016/j.jenvman.2023.119218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
The efficient removal of arsenic from wastewater is still a challenge. In this paper, a heterojunction consisting of in-situ carbon-doped TiO2 and nitrogen deficiency g-C3N4 (C/TiO2@ND-C3N4) has been constructed, which can completely oxidize As(III) (10,000 μg/L, 40 mL) to As(V) within 12 min under visible light and simultaneously adsorb total As (95.0%) with the pseudo-secondary kinetic equation, superior than in-situ carbon-doped TiO2 (75.0%) and nitrogen deficiency g-C3N4 (50.5%). The good photocatalytic oxidation and adsorption performances of C/TiO2@ND-C3N4 on As(III) removal can be attributed to the successful synthesis of heterojunction. On one hand, the building of C-O-Ti interfacial chemical bonds enable rapid electron transfer and improve the efficiency of photocatalytic oxidation. On the other hand, the decreased As(V) adsorption energy resulted from the synthesized heterojunction boost the adsorption capability of As(V), which was completed by the generation of O-As bonds with oxygen-containing functional groups on the surface of TiO2 and hydrogen bonds with high content pyrrole nitrogen derived from ND-C3N4, respectively. The results manifest that the preparation of bifunctional materials with both photocatalytic oxidation and adsorption properties provides a new strategy to achieve the removal of As.
Collapse
Affiliation(s)
- Hanyu Liu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhuo Yu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ming Xiao
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenke Zhu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Junlong Liu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lizhi Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tao Xu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenlei Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ting Yang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
7
|
Huang X, Yang G. Enhanced immobilization of Arsenic(III) and Auto-oxidation to Arsenic(V) by titanium oxide (TiO 2), due to Single-Atom vacancies and oxyanion formation. J Colloid Interface Sci 2023; 650:1327-1338. [PMID: 37478750 DOI: 10.1016/j.jcis.2023.07.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Pollution control of As(III), a naturally occurring carcinogen, has recently gained a global attention, while due to the dominance of neutral H3AsO3 over a wide pH range, As(III) immobilization by most minerals is not efficient as As(V) immobilization. TiO2 shows promise for controlling As(III) pollution, and herein, a comprehensive study about As(III) adsorption by TiO2 and oxyanion formation is conducted by means of DFT + D3 methods. Both anatase and rutile are effective for As(III) adsorption, while As(III) adsorption affinities differ significantly and are -1.48 and -3.79 eV for pristine surfaces, ascend to -3.85 and -5.08 eV for O vacancies, and further to -5.37 and -5.26 eV for Ti vacancies, respectively. The bidentate binuclear complexes dominate for pristine surfaces, and O vacancies prefer OAs insertion into TiO2 lattice, while for Ti vacancies, all As(III) centers are auto-oxidized to As(V). Ti-3d, O-2p or/and As-4p rather than other orbitals contribute significantly to As adsorption, and O and Ti vacancies promote adsorption through stronger orbital hybridization. The superior adsorption for Ti vacancies originates from As(V) formation instead of bonding interactions. The formation of As oxyanions, which may occur spontaneously at pristine surfaces and is greatly promoted by O and Ti vacancies, enhances As(III) adsorption pronouncedly and becomes a viable strategy for As(III) immobilization. H2AsO3- and HAsO32- dominate for pristine surfaces and O vacancies, and for Ti vacancies, H2AsO4- and HAsO42- dominate over anatase whereas AsO43- also makes an important contribution over rutile. Results rationalize experimental observations available, and provide significantly new insights about the migration, bioavailability and fate of As(III) over TiO2 surfaces that facilitate the exploration of scavengers for As and other pollutants.
Collapse
Affiliation(s)
- Xiaoxiao Huang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Gang Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Farsad A, Niimi K, Ersan MS, Gonzalez-Rodriguez JR, Hristovski KD, Westerhoff P. Mechanistic Study of Arsenate Adsorption onto Different Amorphous Grades of Titanium (Hydr)Oxides Impregnated into a Point-of-Use Activated Carbon Block. ACS ES&T ENGINEERING 2023; 3:989-1000. [PMID: 37546364 PMCID: PMC10399556 DOI: 10.1021/acsestengg.3c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Millions of households still rely on drinking water from private wells or municipal systems with arsenic levels approaching or exceeding regulatory limits. Arsenic is a potent carcinogen, and there is no safe level of it in drinking water. Point-of-use (POU) treatment systems are a promising option to mitigate arsenic exposure. However, the most commonly used POU technology, an activated carbon block filter, is ineffective at removing arsenic. Our study aimed to explore the potential of impregnating carbon blocks with amorphous titanium (hydr)oxide (THO) to improve arsenic removal without introducing titanium (Ti) into the treated water. Four synthesis methods achieved 8-16 wt.% Ti loading within the carbon block with 58-97% amorphous THO content. The THO-modified carbon block could adsorb both oxidation states of arsenic (arsenate and arsenite) in batch or column tests. Modified carbon block with higher Ti and amorphous content always led to better arsenate removal, achieving arsenic loadings up to 31 mg As/mg Ti after 70,000 bed volumes in continuous flow tests. Impregnating carbon block with amorphous THO consistently outperformed impregnation using crystalline TiO2. The best-performing system (TTIP-EtOH carbon block) was an amorphous THO derived using titanium isopropoxide, ethanol, and acetic acid via sol-gel technique, aged at 80° for 18 hours and dried overnight at 60°. Comparable pore size distribution and surface area of the impregnated carbon blocks suggested that chemical properties play a more crucial role than physical and textural properties in removing arsenate via amorphous Ti-impregnated carbon block. Freundlich isotherms indicated energetically favorable adsorption for amorphous chemically synthesized adsorbents. The mass transport coefficients for the amorphous TTIP-EtOH carbon block were fitted using a pore surface diffusion model, resulting in Dsurface = 3.1×10-12 cm2/s and Dpore = 3.2×10-6 cm2/s. Impregnating the carbon block with THO enabled effective arsenic removal from water without adversely affecting the pressure drop across the unit or the carbon block's ability to remove polar organic chemical pollutants efficiently.
Collapse
Affiliation(s)
- Alireza Farsad
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| | - Ken Niimi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| | - Mahmut S Ersan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| | - Jose Ricardo Gonzalez-Rodriguez
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
- Environmental Protection Research Center, School of Chemistry, Instituto Tecnologico de Costa Rica, Cartago, Costa Rica
| | | | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| |
Collapse
|
9
|
Ying Z, Zhang T, Li H, Liu X. Adsorptive removal of aflatoxin B1 from contaminated peanut oil via magnetic porous biochar from soybean dreg. Food Chem 2023; 409:135321. [PMID: 36586250 DOI: 10.1016/j.foodchem.2022.135321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
The contamination of mycotoxin in edible oil has always been a major threat to human health. In this study, magnetic soybean dreg-based biochar SDB-6-K-9@Fe3O4 was prepared via co-precipitation and used to remove aflatoxin B1 (AFB1) from contaminated oil. The adsorbent characterization results revealed that the Fe3O4 was successfully loaded to the SDB-6-K-9. The 0.45SDB-6-K-9@Fe3O4 had paramagnetic properties with a saturation magnetization of 45.15 emu/g, which could be quickly separated from the peanut oil using an external magnet. The maximum adsorption capacity of peanut oil contaminated with 200 ng/mL AFB1 by 50 mg 0.45SDB-6-K-9@Fe3O4 for 2 h reached 0.1354 mg/g, while the removal process minimally affected the quality of the oil. The adsorption behavior results followed a pseudo-second-order kinetic and fitted well with the Freundlich model. The excellent adsorption removal efficiency and facile magnetic separation of the adsorbents provide a simple and efficient method for removing contaminants from the oil.
Collapse
Affiliation(s)
- Zhiwei Ying
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tianyu Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - He Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinqi Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
10
|
Penke YK, Kar KK. A review on multi-synergistic transition metal oxide systems towards arsenic treatment: Near molecular analysis of surface-complexation (synchrotron studies/modeling tools). Adv Colloid Interface Sci 2023; 314:102859. [PMID: 36934514 DOI: 10.1016/j.cis.2023.102859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/25/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
The science and interface chemistry between the arsenic (As) anions and the different adsorbent systems have been gaining interest in recent years in environmental remediation applications. Metal-oxides and the corresponding hybrid systems have shown promising performance as novel adsorbents in various treatment technologies. The abundance, surface chemistry, high surface area (active-centres), various synthesis and functionalization methodologies, and good recyclability make these metal oxide-based nanomaterials as potential remediating agents for As oxyanions. This work critically reviews eight different platforms focused on the arsenic contamination issue, where the first classification describes the origin of arsenic contamination and presents geographical and demo-graphical considerations. The following section briefs the state-of-the-art remediation techniques for arsenic treatment with a comparative evaluation. An emphasized discussion has been provided regarding the adsorption and classification of various metal oxide adsorbents. In the next classification, various multi-synergism abilities like Redox activity, Surface functional groups, Surface area/morphology, Heterogeneous catalysis, Reactive oxygen species, Photo-catalytic/electro-catalytic reactions, and Electrosorption are detailed. The classification of various characterization tools for accessing the arsenic remediation qualitatively and quantitatively are given in the fifth chapter. The first-of-its-kind dedicated analysis has been given on the surface complexation aspects of the arsenic speciation onto various metal adsorbent systems using synchrotron results, surface-complexation modeling, and molecular simulation (e.g., DFT) in the sixth chapter. The current sensing applications of these novel nano-material systems for arsenic determination using colorimetric and electrochemical-based analytical tools and a note about the economic parameters, i.e., regeneration aspects of various adsorbent systems/the sustainable applications of the treated sludge materials, are provided in the final sections. This work makes a critical analysis of 'Environmental Nanotechnology' towards 'Arsenic Treatment'.
Collapse
Affiliation(s)
- Yaswanth K Penke
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India.
| | - Kamal K Kar
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India.
| |
Collapse
|
11
|
Boruah H, Tyagi N, Gupta SK, Chabukdhara M, Malik T. Understanding the adsorption of iron oxide nanomaterials in magnetite and bimetallic form for the removal of arsenic from water. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11. [DOI: 10.3389/fenvs.2023.1104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Arsenic decontamination is a major worldwide concern as prolonged exposure to arsenic (>10 µg L-1) through drinking water causes serious health hazards in human beings. The selection of significant, cost-effective, and affordable processes for arsenic removal is the need of the hour. For the last decades, iron-oxide nanomaterials (either in the magnetite or bimetallic form) based adsorptive process gained attention owing to their high arsenic removal efficiency and high regenerative capacity as well as low yield of harmful by-products. In the current state-of-the-art, a comprehensive literature review was conducted focused on the applicability of iron-based nanomaterials for arsenic removal by considering three main factors: (a) compilation of arsenic removal efficiency, (b) identifying factors that are majorly affecting the process of arsenic adsorption and needs further investigation, and (c) regeneration capacity of adsorbents without affecting the removal process. The results revealed that magnetite and bimetallic nanomaterials are more effective for removing Arsenic (III) and Arsenic (V). Further, magnetite-based nanomaterials could be used up to five to six reuse cycles, whereas this value varied from three to six reuse cycles for bimetallic ones. However, most of the literature was based on laboratory findings using decided protocols and sophisticated instruments. It cannot be replicated under natural aquatic settings in the occurrence of organic contents, fluctuating pH and temperature, and interfering compounds. The primary rationale behind this study is to provide a comparative picture of arsenic removal through different iron-oxide nanomaterials (last twelve yearsof published literature) and insights into future research directions.
Collapse
|
12
|
Ahmaruzzaman M. Recent developments of magnetic nanoadsorbents for remediation of arsenic from aqueous stream. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:1058-1072. [PMID: 36482735 DOI: 10.1080/10934529.2022.2151268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
One of the emerging environmental concerns is the high levels of arsenic ions found in groundwater and other water sources. Decontaminating water that contains arsenic is crucial for environmental and health reasons. Nano-adsorbents have gained much interest recently for the adsorptive removal of arsenic species from wastewater. On the other hand, for their prospective use in natural water treatment, current nano-adsorbents must be separated from treated fluids. Researchers studied nanocomposite iron oxide-based adsorbents to overcome these problems and to design effective sorbents for removing arsenic. This study provides a summary of current developments in the field of magnetic nanoadsorbents for the removal of various arsenic compounds from wastewater. Adsorption of arsenic from groundwater has been found to be very promising for magnetic nanoadsorbents. In order to eliminate arsenic from the aqueous phase, magnetic nanocomposite adsorbents may offer practical and affordable water purification solutions.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, Assam, India
| |
Collapse
|
13
|
Villafañe G, Bazán V, Brandaleze E, López A, Pacheco P, Maratta A. Solid phase extraction of arsenic on modified MWCNT/Fe3O4 magnetic hybrid nanoparticles from copper ores samples with ETAAS determination. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Madima N, Kefeni KK, Mishra SB, Mishra AK, Kuvarega AT. Fabrication of magnetic recoverable Fe3O4/TiO2 heterostructure for photocatalytic degradation of rhodamine B dye. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Ahmaruzzaman M. Magnetic nanocomposite adsorbents for abatement of arsenic species from water and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82681-82708. [PMID: 36219282 DOI: 10.1007/s11356-022-23357-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The presence of high concentrations of arsenic species in drinking water and other water bodies has become one of the most critical environmental concerns. Therefore, decontamination of arsenic-containing water is essential for improved health and environmental concern. In recent years, nano-adsorbents have been widely used for the adsorptive removal of arsenic from water. Separating existing nano-adsorbents from treated waters, on the other hand, is a critical issue for their potential applications in natural water treatment. To address these issues and to effectively remove arsenic from water, researchers looked at iron oxide-based magnetic nanocomposite adsorbents. The magnetic nanoadsorbents have the benefit of surface functionalization, making it easier to target a specific pollutant for adsorption, and magnetic separation. In addition, magnetic nanoparticles have a large surface area, high chemical inertness, superparamagnetic, high magnetic susceptibility, small particle size, and large specific surface area, and are especially easily separated in a magnetic field. Magnetic nano-adsorbents have been discovered to have a lot of potential for eliminating arsenic from water. The recent advances in magnetic nano-absorbents for the cleanup of arsenic species from water are summarized in this paper. Future perspectives and directions were also discussed in this article. This will help budding researchers for the further advancement of magnetic nanocomposites for the treatment of water and wastewater contaminated with arsenic.
Collapse
Affiliation(s)
- Mohammed Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar-788010, Assam, India.
| |
Collapse
|
16
|
Shan H, Liu Y, Zeng C, Peng S, Zhan H. On As(III) Adsorption Characteristics of Innovative Magnetite Graphene Oxide Chitosan Microsphere. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207156. [PMID: 36295223 PMCID: PMC9605594 DOI: 10.3390/ma15207156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 05/04/2023]
Abstract
A magnetite graphene oxide chitosan (MGOCS) composite microsphere was specifically prepared to efficiently adsorb As(III) from aqueous solutions. The characterization analysis of BET, XRD, VSM, TG, FTIR, XPS, and SEM-EDS was used to identify the characteristics and adsorption mechanism. Batch experiments were carried out to determine the effects of the operational parameters and to evaluate the adsorption kinetic and equilibrium isotherm. The results show that the MGOCS composite microsphere with a particle size of about 1.5 mm can be prepared by a straightforward method of dropping FeCl2, graphene oxide (GO), and chitosan (CS) mixtures into NaOH solutions and then drying the mixed solutions at 45 °C. The produced MGOCS had a strong thermal stability with a mass loss of <30% below 620 °C. The specific surface area and saturation magnetization of the produced MGOCS was 66.85 m2/g and 24.35 emu/g, respectively. The As(III) adsorption capacity (Qe) and removal efficiency (Re) was only 0.25 mg/g and 5.81% for GOCS, respectively. After 0.08 mol of Fe3O4 modification, more than 53% of As(III) was efficiently removed by the formed MGOCS from aqueous solutions over a wide pH range of 5−10, and this was almost unaffected by temperature. The coexisting ion of PO43− decreased Qe from 3.81 mg/g to 1.32 mg/g, but Mn2+ increased Qe from 3.50 mg/g to 4.19 mg/g. The As(III) adsorption fitted the best to the pseudo-second-order kinetic model, and the maximum Qe was 20.72 mg/g as fitted by the Sips model. After four times regeneration, the Re value of As(III) slightly decreased from 76.2% to 73.8%, and no secondary pollution of Fe happened. Chemisorption is the major mechanism for As(III) adsorption, and As(III) was adsorbed on the surface and interior of the MGOCS, while the adsorbed As(III) was partially oxidized to As(V) accompanied by the reduction of Fe(III) to Fe(II). The produced As(V) was further adsorbed through ligand exchange (by forming Fe−O−As complexes) and electrostatic attraction, enhancing the As(III) removal. As an easily prepared and environmental-friendly composite, MGOCS not only greatly adsorbs As(III) but also effectively removes Cr(VI) and As(V) (Re > 60%) and other metals, showing a great advantage in the treatment of heavy metal-contaminated water.
Collapse
Affiliation(s)
- Huimei Shan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yunquan Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Chunya Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Sanxi Peng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
- Correspondence: (S.P.); (H.Z.); Tel.: +1-(979)-862-7961 (H.Z.); Fax: +1-(979)-845-6162 (H.Z.)
| | - Hongbin Zhan
- Department of Geology & Geophysics, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (S.P.); (H.Z.); Tel.: +1-(979)-862-7961 (H.Z.); Fax: +1-(979)-845-6162 (H.Z.)
| |
Collapse
|
17
|
Bullen JC, Heiba HF, Kafizas A, Weiss DJ. Parasitic Light Absorption, Rate Laws and Heterojunctions in the Photocatalytic Oxidation of Arsenic(III) Using Composite TiO 2 /Fe 2 O 3. Chemistry 2022; 28:e202104181. [PMID: 35114042 PMCID: PMC9306794 DOI: 10.1002/chem.202104181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Indexed: 11/08/2022]
Abstract
Composite photocatalyst-adsorbents such as TiO2 /Fe2 O3 are promising materials for the one-step treatment of arsenite contaminated water. However, no previous study has investigated how coupling TiO2 with Fe2 O3 influences the photocatalytic oxidation of arsenic(III). Herein, we develop new hybrid experiment/modelling approaches to study light absorption, charge carrier behaviour and changes in the rate law of the TiO2 /Fe2 O3 system, using UV-Vis spectroscopy, transient absorption spectroscopy (TAS), and kinetic analysis. Whilst coupling TiO2 with Fe2 O3 improves total arsenic removal by adsorption, oxidation rates significantly decrease (up to a factor of 60), primarily due to the parasitic absorption of light by Fe2 O3 (88 % of photons at 368 nm) and secondly due to changes in the rate law from disguised zero-order kinetics to first-order kinetics. Charge transfer across this TiO2 -Fe2 O3 heterojunction is not observed. Our study demonstrates the first application of a multi-adsorbate surface complexation model (SCM) towards describing As(III) oxidation kinetics which, unlike Langmuir-Hinshelwood kinetics, includes the competitive adsorption of As(V). We further highlight the importance of parasitic light absorption and catalyst fouling when designing heterogeneous photocatalysts for As(III) remediation.
Collapse
Affiliation(s)
- Jay C. Bullen
- Department of Earth Science and EngineeringFaculty of Engineering Imperial College LondonLondonSW7 2BXUK
- Department of ChemistryWhite City Campus Imperial College LondonLondonW12 OBZUK
- London Centre for NanotechnologyLondonSW7 2AZUK
| | - Hany F. Heiba
- Department of Earth Science and EngineeringFaculty of Engineering Imperial College LondonLondonSW7 2BXUK
- Department of ChemistryWhite City Campus Imperial College LondonLondonW12 OBZUK
- London Centre for NanotechnologyLondonSW7 2AZUK
- Marine Chemistry DepartmentEnvironmental Division National Institute of Oceanography and FisheriesNIOF)Egypt
| | - Andreas Kafizas
- Department of ChemistryWhite City Campus Imperial College LondonLondonW12 OBZUK
- The Grantham InstituteFaculty of Natural Sciences Imperial College LondonLondonSW7 2AZUK
| | - Dominik J. Weiss
- Department of Earth Science and EngineeringFaculty of Engineering Imperial College LondonLondonSW7 2BXUK
- Civil and Environmental Engineering, E-QuadPrinceton UniversityPrincetonUSA
| |
Collapse
|
18
|
Heiba HF, Bullen JC, Kafizas A, Petit C, Skinner SJ, Weiss D. The determination of oxidation rates and quantum yields during the photocatalytic oxidation of As(III) over TiO2. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Microscopic investigation into remediation of cadmium and arsenite Co-contamination in aqueous solution by Fe-Mn-incorporated titanosilicate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Saleh S, Mohammadnejad S, Khorgooei H, Otadi M. Photooxidation/adsorption of arsenic (III) in aqueous solution over bentonite/ chitosan/TiO 2 heterostructured catalyst. CHEMOSPHERE 2021; 280:130583. [PMID: 33957471 DOI: 10.1016/j.chemosphere.2021.130583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Arsenic contamination of the environment is a serious health hazard due to its toxicity and carcinogenic effects thus demanding developed and robust removal methodologies. In this study, bentonite/chitosan/titania (BT/CS-TiO2) was developed to boost photo-oxidation/adsorption efficiency while providing a low-cost and potential heterostructured platform for arsenic removal from aqueous media. Under UV irradiation, BT/CS-TiO2 heterostructured exhibited the desired capability (97%) of boosting oxidize toxic AsIII to minor toxic AsV. Results confirmed that •OH radicals available at TiO2 sites under UV light played a critical role in the proposed photo-oxidation process of AsIII. BT/CS exhibited a high adsorption capacity (160 mg g-1) for AsV removal due to its electrostatic interaction and surface complexation. Additionally, BT/CS-TiO2 heterostructured showed satisfactory recyclability with no considerable interferences in the presence of coexisting anions due to the suitability of the valence band position of TiO2 for the oxidation of AsIII as well as the presence of CS into BT layers. Thereby, the findings revealed that impregnation of TiO2 in BT/CS is a promising approach for arsenic removal.
Collapse
Affiliation(s)
- Shahin Saleh
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad university, Iran.
| | - Sepideh Mohammadnejad
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad university, Iran
| | - Hossein Khorgooei
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad university, Iran
| | - Maryam Otadi
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad university, Iran.
| |
Collapse
|
21
|
Deng M, Chi M, Wei M, Zhu A, Zhong L, Zhang Q, Liu Q. A facile route of mesoporous TiO2 shell for enhanced arsenic removal. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Ramos-Guivar JA, Flores-Cano DA, Caetano Passamani E. Differentiating Nanomaghemite and Nanomagnetite and Discussing Their Importance in Arsenic and Lead Removal from Contaminated Effluents: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2310. [PMID: 34578626 PMCID: PMC8471304 DOI: 10.3390/nano11092310] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Arsenic and lead heavy metals are polluting agents still present in water bodies, including surface (lake, river) and underground waters; consequently, the development of new adsorbents is necessary to uptake these metals with high efficiency, quick and clean removal procedures. Magnetic nanoparticles, prepared with iron-oxides, are excellent candidates to achieve this goal due to their ecofriendly features, high catalytic response, specific surface area, and pulling magnetic response that favors an easy removal. In particular, nanomagnetite and maghemite are often found as the core and primary materials regarding magnetic nanoadsorbents. However, these phases show interesting distinct physical properties (especially in their surface magnetic properties) but are not often studied regarding correlations between the surface properties and adsorption applications, for instance. Thus, in this review, we summarize the main characteristics of the co-precipitation and thermal decomposition methods used to prepare the nano-iron-oxides, being the co-precipitation method most promising for scaling up processes. We specifically highlight the main differences between both nano-oxide species based on conventional techniques, such as X-ray diffraction, zero and in-field Mössbauer spectroscopy, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism, the latter two techniques performed with synchrotron light. Therefore, we classify the most recent magnetic nanoadsorbents found in the literature for arsenic and lead removal, discussing in detail their advantages and limitations based on various physicochemical parameters, such as temperature, competitive and coexisting ion effects, i.e., considering the simultaneous adsorption removal (heavy metal-heavy metal competition and heavy metal-organic removal), initial concentration, magnetic adsorbent dose, adsorption mechanism based on pH and zeta potential, and real water adsorption experiments. We also discuss the regeneration/recycling properties, after-adsorption physicochemical properties, and the cost evaluation of these magnetic nanoadsorbents, which are important issues, but less discussed in the literature.
Collapse
Affiliation(s)
- Juan A. Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Perú;
| | - Diego A. Flores-Cano
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Perú;
| | | |
Collapse
|
23
|
Huo JB, Yu G. Mesoporous cerium oxide-anchored magnetic polyhedrons derived from MIL-100(Fe) for enhanced removal of arsenite from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125709. [PMID: 34088192 DOI: 10.1016/j.jhazmat.2021.125709] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Efficient elimination of As(III) from drinking water and wastewater has been a challenge because of its neutral molecular form. To address this problem, a novel nanocomposite, mesoporous cerium oxide-anchored magnetic polyhedrons derived from MIL-100(Fe) was fabricated via a strategy combining impregnation and calcination. The resultant products (denoted as Fe2O3/CeO2-t) exhibited a unique octahedral nanostructure decorated by mesoporous cerium oxide. Surface modification of CeO2 enhanced As(III) removal in comparison to unmodified Fe2O3. Particularly, Fe2O3/CeO2-4 h can reduce As(III) concentration from 180 to 10 µg/L within 20 min, which was almost 9 times faster than unmodified Fe2O3. The adsorption behavior conformed to the pseudo-second-order kinetic model (R2 = 0.9908) and the Freundlich isotherm model (R2 = 0.9943). The maximum adsorption capacity of As(III) by Fe2O3/CeO2-4 h was 68.25 mg/g, higher than those reported for similar adsorbents. Its enhanced removal mechanism can be attributed mainly to the mesoporous characteristics and oxidization ability of surface ceria. The composite can be separated from water by external magnets and easily regenerated. This study may offer a clue to the design of metal-organic framework-based composites as an alternative adsorbent for arsenite cleanup.
Collapse
Affiliation(s)
- Jiang-Bo Huo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Guoce Yu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
Türkmen D, Özkaya Türkmen M, Akgönüllü S, Denizli A. Development of ion imprinted based magnetic nanoparticles for selective removal of arsenic (III) and arsenic (V) from wastewater. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1956972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Deniz Türkmen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | | | - Semra Akgönüllü
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
25
|
Huo JB, Yu G, Wang J. Magnetic zeolitic imidazolate frameworks composite as an efficient adsorbent for arsenic removal from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125298. [PMID: 33951874 DOI: 10.1016/j.jhazmat.2021.125298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, magnetic zeolitic imidazolate frameworks (ZIF-8) was prepared by a one-step method, where its evolution involved the coprecipitation reactions concomitant with the self-assembly reactions. Structural characterizations indicated that magnetic ZIF-8 showed irregular polyhedral morphology with a large specific surface area (696.5 m2/g) and saturation magnetization (4.31 emu/g). The as-prepared magnetic ZIF-8 enhanced the adsorption performance of As(III) and As(V), compared with bare Fe3O4. The pseudo second-order kinetic model (R2 = 0.9627 and 0.9893 for As(III) and As(V), respectively) and the Langmuir model (R2 = 0.9441 for As(III) and 0.9851 for As(V)) can fit the adsorption process well, confirming the nature of single-layer homogeneous chemisorption. The adsorption capacity was 30.87 and 17.51 mg/g, and their corresponding values of PC were 2.664 and 1.286 L/g, for As(III) and As(V), respectively. Solution pH showed an adverse effect on As(V) adsorption whereas no obvious effect on As(III). The ionic strength and coexisting ions had not obvious influence on adsorption of As(III) and As(V). The adsorption mechanism was explored and discussed based on the detailed spectroscopy analysis. This adsorbent can be recovered magnetically after use, which is promising for the practical application.
Collapse
Affiliation(s)
- Jiang-Bo Huo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Guoce Yu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Abstract
Recently, we have witnessed a booming development of composites and multi-dopant metal oxides to be employed as novel photocatalysts. Yet the practical application of photocatalysis for environmental purposes is still elusive. Concerns about the unknown fate and toxicity of nanoparticles, unsatisfactory performance in real conditions, mass transfer limitations and durability issues have so far discouraged investments in full-scale applications of photocatalysis. Herein, we provide a critical overview of the main challenges that are limiting large-scale application of photocatalysis in air and water/wastewater purification. We then discuss the main approaches reported in the literature to tackle these shortcomings, such as the design of photocatalytic reactors that retain the photocatalyst, the study of degradation of micropollutants in different water matrices, and the development of gas-phase reactors with optimized contact time and irradiation. Furthermore, we provide a critical analysis of research–practice gaps such as treatment of real water and air samples, degradation of pollutants with actual environmental concentrations, photocatalyst deactivation, and cost and environmental life-cycle assessment.
Collapse
|
27
|
Ma S, Zong W, Han X. Magnetic-responsive Pickering emulsion and its catalytic application at the water–oil interface. NEW J CHEM 2021. [DOI: 10.1039/d0nj05875k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic diagram of interfacial catalysis reactions by MRGO–Pd Pickering emulsion.
Collapse
Affiliation(s)
- Shenghua Ma
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Wei Zong
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| |
Collapse
|
28
|
Liu X, Wang Y, Zhang TC, Xiang G, Wang X, Yuan S. One-Pot Synthesis of a Magnetic TiO2/PTh/γ-Fe2O3 Heterojunction Nanocomposite for Removing Trace Arsenite via Simultaneous Photocatalytic Oxidation and Adsorption. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04262] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xuemei Liu
- Low-Carbon Technology & Chemical Reaction Engineering Laboratory, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Wang
- Low-Carbon Technology & Chemical Reaction Engineering Laboratory, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tian C. Zhang
- Civil and Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, Nebraska 68182-0178, United States
| | - Gang Xiang
- College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xinlong Wang
- Low-Carbon Technology & Chemical Reaction Engineering Laboratory, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shaojun Yuan
- Low-Carbon Technology & Chemical Reaction Engineering Laboratory, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
29
|
A novel method for facile preparation of recoverable Fe3O4@TiO2 core-shell nanospheres and their advanced photocatalytic application. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138073] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Patiño-Ruiz D, Rehmann L, Mehrvar M, Quiñones-Bolaños E, Herrera A. Synthesis of FeO@SiO 2-DNA core-shell engineered nanostructures for rapid adsorption of heavy metals in aqueous solutions. RSC Adv 2020; 10:39284-39294. [PMID: 35518424 PMCID: PMC9057351 DOI: 10.1039/d0ra06743a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Creating novel and innovative nanostructures is a challenge, aiming to discover nanomaterials with promising properties for environmental remediation. In this study, the physicochemical and adsorption properties of a heterogeneous nanostructure are evaluated for the rapid removal of heavy metal ions from aqueous solutions. Core–shell nanostructures are prepared using iron oxide cores and silica dioxide shells. The core is synthesized via the co-precipitation method and modified in situ with citric acid to grow a carboxyl layer. The shell was hydrolyzed/condensed and then functionalized with amine groups for ds-DNA condensation via electrostatic interaction. The characterization techniques revealed functional FeO@SiO2–DNA nanostructures with good crystallinity and superparamagnetic response (31.5 emu g−1). The predominant superparamagnetic nature is attributed to the citric acid coating. This improves the dispersion and stability of the magnetic cores through the reduction of the dipolar–dipolar interaction and the enhancement of the spin coordination. The rapid adsorption mechanism of FeO@SiO2–DNA was evaluated through the removal of Pb(ii), As(iii), and Hg(ii). A rapid adsorption rate is observed in the first 15 min, attributed to a heterogeneous chemisorption mechanism based on electrostatic interactions. FeO@SiO2–DNA shows higher adsorption efficiency of 69% for Pb(ii) removal compared to As(iii) (51%) and Hg(ii) (41%). The selectivity towards Pb(ii) is attributed to the similar acid nature to ds-DNA, where the ionic strength interaction provides good affinity and stability. The facile synthesis and rapid adsorption suggest a promising nanostructure for the remediation of water sources contaminated with heavy metal ions and can be extended to other complex molecules. Facile synthesis of well-dispersed and magnetic FeO@SiO2–DNA nanostructures with electrostatic active sites for interaction and rapid adsorption of heavy metals.![]()
Collapse
Affiliation(s)
- David Patiño-Ruiz
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena Cartagena 130010 Colombia
| | - Lars Rehmann
- Department of Chemical and Biochemical Engineering, University of Western Ontario London N6A 3K7 Canada
| | - Mehrab Mehrvar
- Department of Chemical Engineering, Ryerson University Toronto M5B 2K3 Canada
| | - Edgar Quiñones-Bolaños
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena Cartagena 130010 Colombia.,Civil Engineering Program, Environmental Modelling Research Group, Universidad de Cartagena Cartagena 130010 Colombia
| | - Adriana Herrera
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena Cartagena 130010 Colombia.,Chemical Engineering Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena Cartagena 130010 Colombia
| |
Collapse
|
31
|
Kouhestani H, Ebrahimi P. Extraction of carboxin and bensulfuron-methyl using cysteine-functionalized chitosan-coated magnetic nanoparticles and response surface methodology. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1828923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Pouneh Ebrahimi
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| |
Collapse
|
32
|
Ranjan M, Singh PK, Srivastav AL. A review of bismuth-based sorptive materials for the removal of major contaminants from drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17492-17504. [PMID: 31172431 DOI: 10.1007/s11356-019-05359-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/02/2019] [Indexed: 05/24/2023]
Abstract
In recent years, bismuth has gained attention of many researchers because of its sorptive properties. Sorptive properties of bismuth compounds are used for removal of ionic contaminants from aqueous solution. In this paper, an attempt is made to review the recent developments in the area of contaminant removal from aqueous solutions using bismuth-based media. List of various bismuth-based adsorbents are collected from published literature and their adsorption capacities are also compared. The methods of characterization of some of the synthesized bismuth-based materials have also been discussed. Hydrous bismuth oxides (HBOs) have sorptive potential for nitrate and fluoride removal from aqueous solution with maximum capacity of 0.508-0.512 mg/g and 0.60-1.93 mg/g respectively. Thus, it can be beneficially used for treatment of drinking water treatment, particularly in small scale household applications.
Collapse
Affiliation(s)
- Manish Ranjan
- Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| | - Prabhat Kumar Singh
- Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, Solan, 174103, India
| |
Collapse
|
33
|
Dutta S, Manna K, Srivastava SK, Gupta AK, Yadav MK. Hollow Polyaniline Microsphere/Fe 3O 4 Nanocomposite as an Effective Adsorbent for Removal of Arsenic from Water. Sci Rep 2020; 10:4982. [PMID: 32188897 PMCID: PMC7080834 DOI: 10.1038/s41598-020-61763-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 12/20/2019] [Indexed: 11/10/2022] Open
Abstract
Polyaniline hollow microsphere (PNHM)/Fe3O4 magnetic nanocomposites have been synthesized by a novel strategy and characterized. Subsequently, PNHM/Fe3O4-40 (Fe3O4 content: 40 wt.%) was used as an adsorbent for the removal of arsenic (As) from the contaminated water. Our investigations showed 98–99% removal of As(III) and As(V) in the presence of PNHM/Fe3O4-40 following pseudo-second-order kinetics (R2 > 0.97) and equilibrium isotherm data fitting well with Freundlich isotherm (R2 > 0.98). The maximum adsorption capacity of As(III) and As(V) correspond to 28.27 and 83.08 mg g−1, respectively. A probable adsorption mechanism based on X-ray photoelectron spectroscopy analysis was also proposed involving monodentate-mononuclear/bidentate-binuclear As-Fe complex formation via legend exchange. In contrast to NO3− and SO42− ions, the presence of PO43− and CO32− co-ions in contaminated water showed decrease in the adsorption capacity of As(III) due to the competitive adsorption. The regeneration and reusability studies of spent PNHM/Fe3O4-40 adsorbent showed ~83% of As(III) removal in the third adsorption cycle. PNHM/Fe3O4-40 was also found to be very effective in the removal of arsenic (<10 μg L−1) from naturally arsenic-contaminated groundwater sample.
Collapse
Affiliation(s)
- Soumi Dutta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Kunal Manna
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Suneel Kumar Srivastava
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India. .,School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Manoj Kumar Yadav
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
34
|
Liu T, Zhang Z, Wang Z, Wang ZL, Bush R. Highly efficient and rapid removal of arsenic(iii) from aqueous solutions by nanoscale zero-valent iron supported on a zirconium 1,4-dicarboxybenzene metal-organic framework (UiO-66 MOF). RSC Adv 2019; 9:39475-39487. [PMID: 35540636 PMCID: PMC9076076 DOI: 10.1039/c9ra08595e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
A zirconium 1,4-dicarboxybenzene metal-organic framework (UiO-66 MOF) was successfully used as a template to enhance the distribution and activity of nanoscale zero-valent iron (NZVI). MOF-NZVI showed good anti-interference ability to co-existing ions (Ca2+, Mn2+, Cu2+, H2PO4 - and SO4 2-) and organic acids (oxalic acid and citric acid). SEM and TEM analyses indicated that the MOF as a support efficiently prevent NZVI from aggregation for quick and effective removal of As(iii). Through the non-linear least-squares (NLLS) adjustment, As(iii) removal by MOF-NZVI could be well fitted by pseudo first and second order reaction kinetics, as well as the Freundlich isotherm. FTIR, XRD and XPS results verified that NZVI and iron oxyhydroxides (Fe3O4, γ-Fe2O3, γ-FeOOH and α-FeOOH) might be responsible for the effective removal of As(iii) and its oxidized product As(v) with an adsorption capacity of 360.6 mg As per g NZVI through chemical oxidation and physical adsorption. This work indicates that MOF-NZVI with good reusability and high efficiency is promising for application in As(iii)-polluted wastewater treatment.
Collapse
Affiliation(s)
- Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University Tianjin 300387 China +86 22 23766256 +86 22 23766256
- International Center for Balanced Land Use (ICBLU), The University of Newcastle Callaghan NSW 2308 Australia
| | - Zhengchao Zhang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University Tianjin 300387 China +86 22 23766256 +86 22 23766256
| | - Zhaohui Wang
- International Center for Balanced Land Use (ICBLU), The University of Newcastle Callaghan NSW 2308 Australia
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University Shanghai 200241 China
- Institute of Eco-Chongming (IEC) Shanghai 200062 China
| | - Zhong-Liang Wang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University Tianjin 300387 China +86 22 23766256 +86 22 23766256
| | - Richard Bush
- International Center for Balanced Land Use (ICBLU), The University of Newcastle Callaghan NSW 2308 Australia
| |
Collapse
|
35
|
Hossain SM, Park MJ, Park HJ, Tijing L, Kim JH, Shon HK. Preparation and characterization of TiO 2 generated from synthetic wastewater using TiCl 4 based coagulation/flocculation aided with Ca(OH) 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109521. [PMID: 31521035 DOI: 10.1016/j.jenvman.2019.109521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 08/13/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
This study focused on the preparation of undoped and Ca-doped titania from flocculation generated sludge. Initially, TiCl4 was utilised to perform coagulation and flocculation in synthetic wastewater and an optimised dose of coagulant was determined by evaluating the turbidity, dissolved organic carbon (DOC) and zeta potential of the treated water. Later, using Ca(OH)2 as a coagulant aid, the effects on effluent pH, turbidity and DOC removal were investigated. Both Ca-doped and undoped anatase TiO2 were prepared from the flocculated sludge for morphological and photocatalytic evaluation. During the standalone use of TiCl4, maximum turbidity and DOC removal were found at 11.63 and 14.54 mg Ti/L, respectively. At the corresponding coagulant dose, rapid deprotonation of water caused the pH of the effluent to reach below 3.77 mg Ti/L. Whereas, when using Ca(OH)2 as a coagulant aid, a neutral pH (7.26) was attained at a simultaneous dosing of 32.40 mg Ca/L and 14.54 mg Ti/L. When aided with Ca(OH)2, the turbidity removal was further increased by 54.28% and the DOC removal was somewhat similar to the standalone use of TiCl4. TiO2 was prepared by incinerating the collected sludge at 600 °C for 2 h. Both XRD and SEM analysis were conducted to observe the morphology of the prepared titania. The XRD pattern of the TiO2 showed only an anatase phase along with the presence of a high atomic proportion of Ca (4.14%). Consequently, a high amount of Ca atoms inhibited the level of TiO2 phase and no obvious presence of CaO was observed. The prepared Ca-doped TiO2 at the optimised dose of Ca(OH)2 was found to be inferior to the undoped TiO2 during the photodegradation of acetaldehyde. However, a reduced dose of Ca(OH)2 (<15 mg Ca/L) exhibited a substantial increase in photoactivity under UV irradiance.
Collapse
Affiliation(s)
- Sayed Mukit Hossain
- School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology, Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Myoung Jun Park
- School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology, Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Hee Ju Park
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Leonard Tijing
- School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology, Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | - Jong-Ho Kim
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea.
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology, Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
36
|
Zhou Q, Wang Y, Xiao J, Zhan Y. Preparation of magnetic core-shell Fe 3O 4@polyaniline composite material and its application in adsorption and removal of tetrabromobisphenol A and decabromodiphenyl ether. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109471. [PMID: 31377520 DOI: 10.1016/j.ecoenv.2019.109471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Present study described a magnetic adsorption and removal method with prepared magnetic core-shell Fe3O4@polyaniline microspheres for the removal of two typical BFRs, tetrabromobisphenol-A (TBBPA) and decabromodiphenyl ether (BDE-209) from water samples. Magnetic core-shell Fe3O4@polyaniline microspheres were prepared by a hydrothermal and two step polymerization method with cheap iron salts and aniline, which were characterized with transmission electron microscopic (TEM) and scanning electron microscopy (SEM). The results showed that the Fe3O4@polyaniline microspheres earned a clear thickness shell of polyaniline (about 50 nm) and a saturation magnetization of 40.4 emu g-1. The Magnetic core-shell Fe3O4@polyaniline exhibited excellent adsorption capability and removal rate to TBBPA and BDE 209. The adsorption of TBBPA and BDE 209 all followed pseudo-second order kinetics and agreed well to the Freundlich adsorption isotherms model. The negative Gibbs free energy change (ΔG0) and positive standard enthalpy change (ΔH0) for TBBPA and BDE-209 suggested that the adsorption was spontaneous and endothermic in nature. These results demonstrated that Fe3O4@PANI was a good adsorbent and would have a good application prospect in the removal of pollutants from environmental water.
Collapse
Affiliation(s)
- Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Yuqin Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (Beijing), Beijing 102249, China; College of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Junping Xiao
- College of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yali Zhan
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (Beijing), Beijing 102249, China.
| |
Collapse
|
37
|
Tamayo R, Espinoza-González R, Gracia F, Rodrigues-Filho UP, Flores M, Sacari E. As(III) Removal from Aqueous Solution by Calcium Titanate Nanoparticles Prepared by the Sol Gel Method. NANOMATERIALS 2019; 9:nano9050733. [PMID: 31086000 PMCID: PMC6566603 DOI: 10.3390/nano9050733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/04/2022]
Abstract
Arsenic (As) contamination of water is a serious problem in developing countries. In water streams, arsenic can be as As(V) and As(III), the latter being the most toxic species. In this work, an innovative adsorbent based on CaTiO3 nanoparticles (CTO) was prepared by the sol-gel technique for the removal of As(III) from aqueous solution. X-ray diffraction of the CTO nanoparticles powders confirmed the CTO phase. Transmission electron microscopy observations indicated an average particle size of 27 nm, while energy dispersive X-ray spectroscopy analysis showed the presence of Ca, Ti, and O in the expected stoichiometric amounts. The surface specific area measured by Brunauer, Emmett, and Teller (BET) isotherm was 43.9 m2/g, whereas the isoelectric point determined by Zeta Potential measurements was at pH 3.5. Batch adsorption experiments were used to study the effect of pH on the equilibrium adsorption of As(III), using an arsenite solution with 15 mg/L as initial concentration. The highest removal was achieved at pH 3, reaching an efficiency of up to 73%, determined by X-ray fluorescence from the residual As(III) in the solution. Time dependent adsorption experiments at different pHs exhibited a pseudo-second order kinetics with an equilibrium adsorption capacity of 11.12 mg/g at pH 3. Moreover, CTO nanoparticles were regenerated and evaluated for four cycles, decreasing their arsenic removal efficiency by 10% without affecting their chemical structure. X-ray photoelectron spectroscopy analysis of the CTO surface after removal experiments, showed that arsenic was present as As(III) and partially oxidized to As(V).
Collapse
Affiliation(s)
- Rocío Tamayo
- LabMAM, Depto. de Ingeniería Química Biotecnología y Materiales, FCFM, Universidad de Chile, Av. Beauchef 851, Santiago 8370456, Chile.
| | - Rodrigo Espinoza-González
- LabMAM, Depto. de Ingeniería Química Biotecnología y Materiales, FCFM, Universidad de Chile, Av. Beauchef 851, Santiago 8370456, Chile.
| | - Francisco Gracia
- LabMAM, Depto. de Ingeniería Química Biotecnología y Materiales, FCFM, Universidad de Chile, Av. Beauchef 851, Santiago 8370456, Chile.
| | - Ubirajara Pereira Rodrigues-Filho
- Grupo de Química de Materiais Híbridos e Hinorgânicos, Instituto de Química de Sao Carlos, Universidade de São Paulo, 13563-120 Sa͂o Carlos, SP, Brazil.
| | - Marcos Flores
- Laboratorio de Superficies, Depto. de Física, FCFM, Universidad de Chile, Av. Blanco Encalada 2008, Santiago 8370449, Chile.
| | - Elisban Sacari
- Laboratorio de Nanomateriales, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores s/n, Tacna 23003, Peru.
| |
Collapse
|