1
|
Rizwan M, Tanveer H, Ali MH, Sanaullah M, Wakeel A. Role of reactive nitrogen species in changing climate and future concerns of environmental sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51147-51163. [PMID: 39138725 DOI: 10.1007/s11356-024-34647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
The nitrogen (N) cycle is an intricate biogeochemical process that encompasses the conversion of several chemical forms of N. Given its role in food production, the need for N for life on Earth is obvious. However, the release of reactive nitrogen (Nr) species throughout different biogeochemical processes contributes to atmospheric pollution. Several human activities generate many species, including ammonia, nitrous oxide (N2O), nitric oxide, and nitrate. The primary reasons for this change are the use of nitrogen-based fertilizers, industrial activities, and the burning of fossil fuels. N2O poses a significant threat to environmental sustainability on our planet, with its global warming potential approximately 298 times greater than that of CO2. It has direct or indirect impacts on the environment, agroecosystem, and human life on earth. Solar, hydroelectric, geothermal, and wind turbines must be used to reduce Nr emissions. In addition, enterprises should install catalytic converters to minimize nitrogen gas emissions. To reduce Nr emissions, strategic interventions like fertilizer balancing are needed. This work will serve as a comprehensive guide for researchers, academics, and policymakers. Additionally, it will also assist social workers in emphasizing the Nr issue to the public in order to raise awareness within worldwide society.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Hurain Tanveer
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Hayder Ali
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Wakeel
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
2
|
Miao J, Wang X, Liu G, Bai S, Daigger GT, Kang J, Wang M, Ren N. Smoothing the Phosphorus Resource Stress under the Socioeconomic Development in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6998-7009. [PMID: 38602777 DOI: 10.1021/acs.est.3c08301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Phosphorus (P) is the key in maintaining food security and ecosystem functions. Population growth and economic development have increased the demand for phosphate rocks. China has gradually developed from zero phosphate mining to the world's leading P miner, fertilizer, and agricultural producer since 1949. China released policies, such as designating phosphate rock as a strategic resource, promoting eco-agricultural policies, and encouraging the use of solid wastes produced in mining and the phosphorus chemical industry as construction materials. However, methodological and data gaps remain in the mapping of the long-term effects of policies on P resource efficiency. Here, P resource efficiency can be represented by the potential of the P cycle to concentrate or dilute P as assessed by substance flow analysis (SFA) complemented by statistical entropy analysis (SEA). P-flow quantification over the past 70 years in China revealed that both resource utilization and waste generation peaked around 2015, with 20 and 11 Mt of mined and wasted P, respectively. Additionally, rapidly increasing aquaculture wastewater has exacerbated pollution. The resource efficiency of the Chinese P cycle showed a U-shaped change with an overall improvement of 22.7%, except for a temporary trough in 1975. The driving force behind the efficiency decline was the roaring phosphate fertilizer industry, as confirmed by the sharp increase in P flows for both resource utilization and waste generation from the mid-1960s to 1975. The positive driving forces behind the 30.7% efficiency increase from 1975 to 2018 were the implementation of the resource conservation policy, downstream pollution control, and, especially, the circular agro-food system strategy. However, not all current management practices improve the P resource efficiency. Mixing P industry waste with construction materials and the development of aquaculture to complement offshore fisheries erode P resource efficiency by 2.12% and 9.19%, respectively. With the promotion of a zero-waste society in China, effective P-cycle management is expected.
Collapse
Affiliation(s)
- Jingyu Miao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiuheng Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Gang Liu
- College of Urban and Environmental Sciences, Peking University, Beijing 100091, PR China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Glen T Daigger
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109-2092 United States
| | - Jinhao Kang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Mengyue Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
3
|
Wang J, Qi Z, Bennett EM. Managing mineral phosphorus application with soil residual phosphorus reuse in Canada. GLOBAL CHANGE BIOLOGY 2024; 30:e17001. [PMID: 37947299 DOI: 10.1111/gcb.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
With limited phosphorus (P) supplies, increasing P demand, and issues with P runoff and pollution, developing an ability to reuse the large amounts of residual P stored in agricultural soils is increasingly important. In this study, we investigated the potential for residual soil P to maintain crop yields while reducing P applications and losses in Canada. Using a P cycling model coupled with a soil P dynamics model, we analyzed soil P dynamics over 110 years across Canada's provinces. We found that using soil residual P may reduce mineral P demand as large as 132 Gg P year-1 (29%) in Canada, with the highest potential for reducing P applications in the Atlantic provinces, Quebec, Ontario, and British Columbia. Using residual soil P would result in a 21% increase in Canada's cropland P use efficiency. We expected that the Atlantic provinces and Quebec would have the greatest runoff P loss reduction with use of residual soil P, with the average P loss rate decreasing from 4.24 and 1.69 kg ha-1 to 3.45 and 1.38 kg ha-1 , respectively. Ontario, Manitoba, and British Columbia would experience relatively lower reductions in P loss through use of residual soil P, with the average runoff P loss rate decreasing from 0.44, 0.36, and 4.33 kg ha-1 to 0.19, 0.26, and 4.14 kg ha-1 , respectively. Our study highlights the importance of considering residual soil P as a valuable resource and its potential for reducing P pollution.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Zhiming Qi
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Elena M Bennett
- Bieler School of Environment and Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
4
|
Liu W, Qin T, Wu M, Chen Z, Zhang Y, Abakumov E, Chebykina E, Wang W, Wu D, Han C, Xie X, Cheng J, Hua X, Chi S, Xu J. Analyzing the phosphorus flow characteristics in the largest freshwater lake (Poyang Lake) watershed of China from 1950 to 2020 through a bottom-up approach of watershed-scale phosphorus substance flow model. WATER RESEARCH 2023; 245:120546. [PMID: 37688855 DOI: 10.1016/j.watres.2023.120546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
Understanding the historical patterns of phosphorus (P) cycling is essential for sustainable P management and eutrophication mitigation in watersheds. Currently, there is a lack of long-term watershed-scale models that analyze the flow of P substances and quantify the socioeconomic patterns of P flow. This study adopted a watershed perspective and incorporated crucial economic and social subsystems related to P production, consumption, and emissions throughout the entire life cycle. Based on this approach, a bottom-up watershed P flow analysis model was developed to quantify the P cycle for the first time in the Poyang Lake watershed from 1950 to 2020 and to explore the driving factors that influence its strength by analyzing multi-year P flow results. In general, the P cycle in the Poyang Lake watershed was no longer a naturally dominated cycle but significantly influenced by human activities during the flow dynamics between 1950 and 2015. Agricultural intensification and expansion of large-scale livestock farming continue to enhance the P flow in the study area. Fertilizer P inputs from cultivation account for approximately 60% of the total inputs to farming systems, but phosphate fertilizer utilization continues to decline. Feed P inputs have continued to increase since 2007. The expansion of large-scale farming and the demand for urbanization are the main factors leading to changes in feed P input patterns. The P utilization rate for livestock farming (PUEa) is progressively higher than international levels, with PUEa increasing from 0.64% (1950) to 9.7% (2020). Additionally, per capita food P consumption in the watershed increased from 0.67 kg to 0.80 kg between 1950 and 2020. The anthropogenic P emissions have increased from 1.67 × 104 t (1950) to 8.73 × 104 t (2020), with an average annual growth rate of 2.41%. Watershed-wide P pollution emissions have increased by more than five-fold. Population growth and agricultural development are important drivers of structural changes in P flows in the study area, and they induce changes in social conditions, including agricultural production, dietary structure, and consumption levels, further dominating the cyclic patterns of P use, discharge, and recycling. This study provides a broader and applicable P flow model to measure the characteristics of the P cycle throughout the watershed social system as well as provides methodological support and policy insights for large lakes in rapidly developing areas or countries to easily present P flow structures and sustainably manage P resources.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Tian Qin
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Mengting Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Zhiqin Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Yalan Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Evgeny Abakumov
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Ekaterina Chebykina
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Wenjuan Wang
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China; School of Materials and Chemical Engineering, Pingxiang University, Pingxiang, Jiangxi 337000, China
| | - Chao Han
- Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China.
| | - Jiancheng Cheng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Xinlong Hua
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Sunlin Chi
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Jinying Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Xu Y, Zhang L, Chen J, Liu T, Li N, Xu J, Yin W, Li D, Zhang Y, Zhou X. Phosphorus recovery from sewage sludge ash (SSA): An integrated technical, environmental and economic assessment of wet-chemical and thermochemical methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118691. [PMID: 37536239 DOI: 10.1016/j.jenvman.2023.118691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Incineration is a promising disposal method for sewage sludge (SS), enriching more than 90% of phosphorus (P) in the influent into the powdered product, sewage sludge ash (SSA), which is convenient for further P recovery. Due to insufficient bioavailable P and enriched heavy metals (HMs) in SSA, it is limited to be used directly as fertilizer. Hence, this paper provides an overview of P transformation in SS incineration, characterization of SSA components, and wet-chemical and thermochemical processes for P recovery with a comprehensive technical, economic, and environmental assessment. P extraction and purification is an important technical step to achieve P recovery from SSA, where the key to all technologies is how to achieve efficient separation of P and HMs at a low economic and environmental cost. It can be clear seen from the review that the economics of P recovery from SSA are often weak due to many factors. For example, the cost of wet-chemical methods is approximately 5∼6 €/kg P, while the cost of recovering P by thermochemical methods is about 2∼3 €/kg P, which is slightly higher than the current P fertilizer (1 €/kg P). So, for now, legislation is significant for promoting P recovery from SSA. In this regard, the relevant experience in Europe is worth learning from countries that have not yet carried out P recovery from SSA, and to develop appropriate policies and legislation according to their own national conditions.
Collapse
Affiliation(s)
- Yao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenjun Yin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Liu X, Li Z, Sheng H, Cooney R, Yuan Z. The underestimated importance of fertilizer in aquacultural phosphorus budget: Case of Chinese mitten crab. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158523. [PMID: 36063924 DOI: 10.1016/j.scitotenv.2022.158523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
China's reliance on aquaculture has intensified to satisfy the growing human demand for high-quality animal protein, making it the only country whose aquaculture production has greatly exceeded that of capture fishery for a long time. Previous studies have shown that phosphorus (P) is a limiting nutrient for freshwater eutrophication; therefore, the quantification of P flows in freshwater aquaculture is of great importance for improving aquaculture efficiency and reducing environmental pollution. In this study, life cycle assessment (LCA) and substance flow analysis (SFA) are combined to develop a life cycle P flow model for Chinese mitten crab (Eriocheir sinensis) culture and calculate the P inputs, outputs and net change in stock. The results show a relatively low P use efficiency (4 %) in Chinese mitten crab. Among all life-cycle stages, the maximum P input occurs during adult crab cultivation, when feed is continuously added to maintain appropriate nutrition levels and increase body weight. In addition, fertilizer is often neglected in the existing accounts but accounts for 24 % of the total P inputs. On the output side, approximately 86 % of the P accumulates in sediment, indicating the potential of sediment recycling as a nutrient source in agriculture. This study provides an updated quantitative method for describing nutrient flows within freshwater aquaculture systems and will contribute to decision-making in pollution control of intensive freshwater aquaculture activities.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 211200, China
| | - Zeru Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hu Sheng
- Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 211200, China
| | - Ronan Cooney
- Ryan Institute, School of Engineering, National University of Ireland, Galway, H91 HX31 Galway, Ireland
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Sureshkumar S, Park JH, Kim IH. A preliminary evaluation on mixed probiotics as an antimicrobial spraying agent in growing pig barn. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1035-1045. [PMID: 36812037 PMCID: PMC9890338 DOI: 10.5187/jast.2022.e69] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/07/2022]
Abstract
The purpose of this study is to examine whether spraying an anti-microbial agent into the slurry pit will reduce the noxious odor substances from piggery barns. For this, a total of 200 crossbred ([Landrace × Yorkshire] × Duroc) growing pigs with an initial average body weight (BW) of 23.58 ± 1.47 kg were selected and housed in two different rooms, i.e. control (CON) and treatment (TRT). Each room has 100 pigs (60 gilts and 40 borrows). For a period of 42 days, all pigs were fed with corn-soybean meal-based basal diet. Later the noxious odor substances were measured by the following methods. First, fecal samples were randomly collected and stored in sealed and unsealed containers, and sprayed with the non-anti-microbial agent (NAMA) (saline water) and multi-bacterial spraying (MBS) agent (200 :1, mixing ratio-fecal sample : probiotic), Second, the slurry pit of CON and TRT rooms were directly sprayed with NAMA and MBS, respectively. The fecal sample that was stored in sealed and un-sealed containers and sprayed with MBS significantly reduced NH3 and CO2 concentration at the end of day 7. However, at the end of day 42, the fecal sample showed a lower H2S, methyl mercaptans, acetic acid, and CO2 concentration compared to the unsealed container. Moreover, at the end of days 7, 14, 21, 28, 35, and 42 compared to the CON room and TRT room slurry pit emits lower concentrations of NH3, acetic acid, H2S, and methyl mercaptans, and CO2 into the atmosphere. Based on the current findings, we infer that spraying anti-microbial agents on pig dung would be one of the better approaches to suppress the odor emission from the barn in the future.
Collapse
Affiliation(s)
| | - Jae Hong Park
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea,Corresponding author: In Ho Kim,
Department of Animal Resource and Science, Dankook University, Cheonan 31116,
Korea. Tel: +82-41-550-3652, E-mail:
| |
Collapse
|
8
|
Guo J, Song C, Liu Y, Wu X, Dong W, Zhu H, Xiang Z, Qin C. Characteristics of gut microbiota in representative mice strains: Implications for biological research. Animal Model Exp Med 2022; 5:337-349. [PMID: 35892142 PMCID: PMC9434578 DOI: 10.1002/ame2.12257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background Experimental animals are used to study physiological phenomena, pathological mechanisms, and disease prevention. The gut microbiome is known as a potential confounding factor for inconsistent data from preclinical studies. Although many gut microbiome studies have been conducted in recent decades, few have focused on gut microbiota fluctuation among representative mouse strains. Methods A range of frequently used mouse strains were selected from 34 isolation packages representing disease‐related animal (DRA), immunity defect animal (IDA), or gene‐editing animal (GEA) from the BALB/c and C57BL/6J backgrounds together with normal mice, and their microbial genomic DNA were isolated from mouse feces to sequence for the exploration of gut microbiota. Results Mouse background strain, classification, introduced source, introduced year, and reproduction type significantly affected the gut microbiota structure (p < 0.001 for all parameters), with background strain contributing the greatest influence (R2 = 0.237). In normal groups, distinct gut microbiota types existed in different mouse strains. Sixty‐four core operational taxonomic units were obtained from normal mice, and 12 belonged to Lactobacillus. Interestingly, the gut microbiota in C57BL/6J was more stable than that in BALB/c mice. Furthermore, the gut microbiota in the IDA, GEA, and DRA groups significantly differed from that in normal groups (p < 0.001 for all). Compared with the normal group, there was a significantly higher Chao1 and Shannon index (p < 0.001 for all) in the IDA, GEA, and DRA groups. Markedly changed classes occurred with Firmicutes and Bacteroidetes. The abundances of Helicobacter, Blautia, Enterobacter, Bacillus, Clostridioides, Paenibacillus, and Clostridiales all significantly decreased in the IDA, GEA, and DRA groups, whereas those of Saccharimonas, Rikenella, and Odoribacter all significantly increased.
Collapse
Affiliation(s)
- Jianguo Guo
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chenchen Song
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yunbo Liu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xuying Wu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Hua Zhu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhiguang Xiang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Analysis of the Spatial Distribution Characteristics of Livestock and Poultry Farming Pollution and Assessment of the Environmental Pollution Load in Anhui Province. SUSTAINABILITY 2022. [DOI: 10.3390/su14074165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anhui Province is located in the eastern China, in the middle and lower reaches of the Yangtze River and Huaihe River, and contains three major basins, i.e., the Yangtze River, Huaihe River, and Xin’an River basins. Based on the statistical data of livestock and poultry quantity and farmland area in Anhui Province in 2019, ArcGIS was used to analyze the spatial distribution characteristics of the livestock and poultry excreta (LPE) pollutants in Anhui Province in order to explore the potential pollution risk posed by livestock and poultry farming to the farmland and the water environment in Anhui Province. The equivalent pollution load method was adopted to compare and assess the release of LPE pollutants in various cities and to analyze the causes. Through the calculation of the farmland carrying capacity load and early warning value of LPE and the water load of livestock and poultry pollutant release based on the equivalent pollution index method, a comprehensive assessment of the potential pollution risk posed by livestock and poultry farming on farmland and the water environment in Anhui Province was carried out. In this study, the spatial distribution of the livestock and poultry pollution in Anhui Province was analyzed, the effect of the pollution load of the livestock and poultry on the cultivated land and water environment was evaluated, and suggestions for environmental protection measures are provided. The results of this study revealed that the total pig equivalent of the livestock and poultry farming in Anhui Province was 55,068,400 and the LPE output was 47,778,600 t in 2019. The LPE pollutant output was 1,707,700 t, and the total release was 510,400 t. The release of pollutant chemical oxygen demand (COD) accounted for 71.67% of the total release. The average farmland load of the pig manure equivalent was 8.09 t/hm2 in the province. The average pollutant diffusion concentration of in the water was 31.63 mg/L. The average equivalent pollution index of LPE was 5.23, indicating a mild pollution impact on the water environment. Overall, the spatial distribution of the LPE pollutant output and pig manure equivalent farmland load in Anhui Province increased from south to north. Fuyang and Suzhou cities had a high risk of water environment pollution and should be the key regions for livestock and poultry pollution prevention and control measures. The optimization of the layout of livestock and poultry farming areas, smoothing the cycles of crop and livestock farming, and the vigorous promotion of the resource utilization of the LPE are proposed.
Collapse
|
10
|
Liang X, Zhao H, He Y, Zhu L, Zou Y, Ye C. Spatiotemporal characteristics of agricultural nitrogen and phosphorus emissions to water and its source identification: A case in Bamen Bay,China. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 245:103936. [PMID: 34953199 DOI: 10.1016/j.jconhyd.2021.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/21/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
The spatiotemporal characteristics and sources identification of agricultural nitrogen (N) and phosphorus (P) emissions to the gulf are rarely reported in tropical regions of China, mainly due to the lack of local reliable data and quantitative tools for spatiotemporal changes. In this study, we constructed a high-resolution NUFER (NUtrient Flow in food chains, Environment and Resources use) model based on geology, meteorology, land use data, statistical data, and field investigation to quantify the spatiotemporal characteristics and sources of N and P emissions. Bamen Bay (BMB), a bay with a mangrove national wetland Park in the Hainan Island, China, was chosen as a case study. The results showed that agricultural N emission to water in 2018 increased fivefold compared to 1990. Leaching was the main method of agricultural N emission and was mainly distributed in farms in the west and north. The contribution of N emission from crop system to water increased 20.3% in 28 years. Poultry and fruits have contributed the most to N output, and the trend is continuing. P emission to water increased sevenfold compared 1990. The contribution of P emission from animal system to water increased from 86.8% in 1990 to 90.1% in 2018 due to low removal rate of livestock manure. P emission was mainly via direct discharge of manure, mainly distributed in livestock breeding sites near the bay. Poultry has consistently contributed the most to P output in 28 years, accounting for 49.1% in 2018. Fertilizers and fodder were the largest sources of N and P. The average N and P loss rates of BMB were 5.32 t km2 yr-1 and 0.26 t km2 yr-1. The future agricultural transformation is essential, and it is necessary to reduce the application of N fertilizer and increase the removal rate of livestock manure. These results can provide reference for other typical agricultural pollution bays in exploring the spatiotemporal characteristics of N and P emissions to water and the identification of agricultural sources.
Collapse
Affiliation(s)
- Xu Liang
- College of ecology and environment, Hainan university, Haikou 570228, China
| | - Hongwei Zhao
- College of ecology and environment, Hainan university, Haikou 570228, China
| | - Yanhu He
- Institute of environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lirong Zhu
- School of Tourism,Hainan University,Haikou 570228, China
| | - Yi Zou
- College of ecology and environment, Hainan university, Haikou 570228, China
| | - Changqing Ye
- College of ecology and environment, Hainan university, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province,Haikou 570228, China.
| |
Collapse
|
11
|
Feng Y, Zhao D, Qiu S, He Q, Luo Y, Zhang K, Shen S, Wang F. Adsorption of Phosphate in Aqueous Phase by Biochar Prepared from Sheep Manure and Modified by Oyster Shells. ACS OMEGA 2021; 6:33046-33056. [PMID: 34901656 PMCID: PMC8655947 DOI: 10.1021/acsomega.1c05191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Sheep manure and oyster shells as C and Ca sources, respectively, were used to obtain Ca-enriched biochar materials with a high dephosphorization efficiency. This approach is helpful for the utilization of livestock manure and shell solid waste as well as for creating highly adsorbent materials. The results show that as the Ca content in biochar was increased, the material's phosphate adsorption capacity increased. The maximum adsorption efficiency reached 94%. The highest adsorption capacity (calculated using Langmuir fitting) of the material containing 1:1 biochar/oyster shell weight ratio reached 146.3 mg P/g. With the increase of the pH value of phosphate solution, the adsorption capacity of the sample gradually increased to 89.5-93.3 mg P/g. The adsorption occurred mainly by complexation. The results of this work provide insights into livestock manure and shell solid waste utilization, which yields a material with useful adsorption properties that can be applied for the removal of phosphate and other inorganics from water.
Collapse
Affiliation(s)
- Yiyang Feng
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
- Dali
Agro-Environmental Science Station, Ministry
of Agriculture and Rural Affairs, Dali 671004, China
| | - Di Zhao
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
- Dali
Agro-Environmental Science Station, Ministry
of Agriculture and Rural Affairs, Dali 671004, China
| | - Shangkai Qiu
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
- Dali
Agro-Environmental Science Station, Ministry
of Agriculture and Rural Affairs, Dali 671004, China
| | - Qiuping He
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
- Dali
Agro-Environmental Science Station, Ministry
of Agriculture and Rural Affairs, Dali 671004, China
| | - Yuan Luo
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
- Dali
Agro-Environmental Science Station, Ministry
of Agriculture and Rural Affairs, Dali 671004, China
| | - Keqiang Zhang
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
- Dali
Agro-Environmental Science Station, Ministry
of Agriculture and Rural Affairs, Dali 671004, China
| | - Shizhou Shen
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
- Dali
Agro-Environmental Science Station, Ministry
of Agriculture and Rural Affairs, Dali 671004, China
| | - Feng Wang
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
- Dali
Agro-Environmental Science Station, Ministry
of Agriculture and Rural Affairs, Dali 671004, China
| |
Collapse
|
12
|
Zhou J, Jiao X, Ma L, de Vries W, Zhang F, Shen J. Model-based analysis of phosphorus flows in the food chain at county level in China and options for reducing the losses towards green development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117768. [PMID: 34265556 DOI: 10.1016/j.envpol.2021.117768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Insight in the phosphorus (P) flows and P balances in the food chain is largely unknown at county scale in China, being the most appropriate spatial unit for nutrient management advice. Here, we examined changes in P flows in the food chain in a typical agricultural county (Quzhou) during 1980-2017, using substance flow analyses. Our results show that external P inputs to the county by feed import and fertilizer were 7 times greater in 2017 than in 1980, resulting in a 7-fold increase in P losses to the environment in the last 3 decades, with the biggest source being animal production. Phosphorus use efficiency decreased from 51% to 30% in crop production (PUEc) and from 32% to 11% in the whole food chain (PUEf), but increased from 4% to 7% in animal production (PUEa). A strong reduction in P inputs and thus increase in PUE can be achieved by balanced P fertilization, which is appropriate for Quzhou considering a current average adequate soil P status. Fertilizer P use can be reduced from 7276 tons yr-1 to 1765 tons yr-1 to equal P removal by crops. This change would increase P use efficiency for crops from 30% to 86% but it has a negligible effect on P losses to landfills and water bodies. Increasing the recycling of manure P from the current 43%-95% would reduce fertilizer P use by 17% and reduce P losses by 47%. A combination of reduced fertilizer P use and increased recycling of manure P would save fertilizer P by 93%, reduce P accumulation by 100% and P loss by 49%. The results indicate that increasing manure-recycling and decreasing fertilizer-application are key to achieving sustainable P use in the food chain, which can be achieved through coupling crop-livestock systems and crop-based nutrient management.
Collapse
Affiliation(s)
- Jichen Zhou
- College of Resources and Environmental Sciences, Centre for Resources, Environment and Food Security, Key Lab of Plant-Soil, Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Xiaoqiang Jiao
- College of Resources and Environmental Sciences, Centre for Resources, Environment and Food Security, Key Lab of Plant-Soil, Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Wim de Vries
- Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, Centre for Resources, Environment and Food Security, Key Lab of Plant-Soil, Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Jianbo Shen
- College of Resources and Environmental Sciences, Centre for Resources, Environment and Food Security, Key Lab of Plant-Soil, Interactions, MOE, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Sustainable Agri-Food Systems: Environment, Economy, Society, and Policy. SUSTAINABILITY 2021. [DOI: 10.3390/su13116260] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agri-food systems (AFS) have been central in the debate on sustainable development. Despite this growing interest in AFS, comprehensive analyses of the scholarly literature are hard to find. Therefore, the present systematic review delineated the contours of this growing research strand and analyzed how it relates to sustainability. A search performed on the Web of Science in January 2020 yielded 1389 documents, and 1289 were selected and underwent bibliometric and topical analyses. The topical analysis was informed by the SAFA (Sustainability Assessment of Food and Agriculture systems) approach of FAO and structured along four dimensions viz. environment, economy, society and culture, and policy and governance. The review shows an increasing interest in AFS with an exponential increase in publications number. However, the study field is north-biased and dominated by researchers and organizations from developed countries. Moreover, the analysis suggests that while environmental aspects are sufficiently addressed, social, economic, and political ones are generally overlooked. The paper ends by providing directions for future research and listing some topics to be integrated into a comprehensive, multidisciplinary agenda addressing the multifaceted (un)sustainability of AFS. It makes the case for adopting a holistic, 4-P (planet, people, profit, policy) approach in agri-food system studies.
Collapse
|
14
|
Mao Y, Zhang H, Tang W, Zhao J, Wang Z, Fan A. Net anthropogenic nitrogen and phosphorus inputs in Pearl River Delta region (2008-2016). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111952. [PMID: 33461089 DOI: 10.1016/j.jenvman.2021.111952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Excess inputs of nitrogen (N) and phosphorus (P) are the main contributors of aquatic environmental deterioration. Due to the agricultural and industrial activities in the rapidly urbanized basin, the anthropogenic N and P cycle are significantly different from other regions. In this study, we took the Pearl River Delta as an example and introduced the budget list of N and P in the five survey years, including the net anthropogenic N inputs (NANI) and net anthropogenic P inputs (NAPI). The results revealed that the intensities of NANI and NAPI in this area increased from 2008 to 2010 and then decreased after 2010. The peak values were 21001 kg N km-2yr-1 and 4515 kg P km-2yr-1 for the intensities of NNAI and NAPI, respectively, while the lowest values decreased to 19186 kg N km-2yr-1 and 4103 kg P km-2yr-1 in 2016. The most important contribution of NANI and NAPI sources in this area were net N and P inputs for human food and animal feed with an average contribution of 61.41% and 76.83%, which indicated that large amounts of N and P were introduced into the environment through the food system. This study expanded the knowledge on regional environmental management from human dietary consumption, human life consumption, animal consumption and fertilizer consumption. Its reuse will be put into practice by understanding the driving factors of N and P inputs in each region of the basin, combining the urbanization characteristics.
Collapse
Affiliation(s)
- Yupeng Mao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; University of Chinese Academy of Science, Beijing, 100049, PR China
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Science, Beijing, 100049, PR China.
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Science, Beijing, 100049, PR China.
| | - Jianwei Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhipeng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Science, Beijing, 100049, PR China
| | - Aoxiang Fan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Science, Beijing, 100049, PR China; College of the Environment, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
15
|
Gao C, Zhang M, Song K, Wei Y, Zhang S. Spatiotemporal analysis of anthropogenic phosphorus fluxes in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137588. [PMID: 32169636 DOI: 10.1016/j.scitotenv.2020.137588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Anthropogenic phosphorus supports food systems while have caused water pollution and posed challenges to the ecosystems. The increasing socioeconomic interactions between regions and systems have added more complexities to manage the sustainability of effective phosphorus use that requires joint analyses of multiple regions or multiple systems of phosphorus flow. This study builds a framework to systematically model the phosphorus fluxes in China based on material flow analysis. This model consists of phosphorus industrial system, agricultural planting system, rural residential system, urban residential system, large-scale livestock breeding system and household livestock breeding system. This study further explored the temporal and spatial characteristics of phosphorus fluxes in terms of phosphorus utilization efficiency and water load during 1995-2015. The results showed that the total amount of phosphorus input in China had increased nearly 1.78 times during 1995-2015, of which about 85% is used for fertilizer production. The phosphorus utilization rates of urban residential and large-scale livestock breeding systems remained low with a declining trend, dropping to 5%. The phosphorus water load peaked and declined during the study period. Among them, the phosphorus water load in large-scale and household livestock breeding systems accounted for more than 60% of the total. In spatial dimension, Southwest China is the region with the largest input of phosphorus, about 375.33 × 104 t, while Northeast China is the region with the largest phosphorus water load, about 28.06 × 104 t.
Collapse
Affiliation(s)
- Chengkang Gao
- SEP Key Laboratory of Eco-Industry, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| | - Menghui Zhang
- SEP Key Laboratory of Eco-Industry, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.
| | - Kaihui Song
- Department of Geographical Sciences, University of Maryland, College Park 20742, MD, USA
| | - Youxuan Wei
- ACRE Coking & Refractory Engineering Consulting Corporation, MCC, Dalian, Liaoning 116000, China
| | - Shuaibing Zhang
- SEP Key Laboratory of Eco-Industry, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| |
Collapse
|