1
|
Zhao L, Zhang J, Guo Z, Hu Z, Wu H. Recycling various wastes as substrates in constructed wetlands: A review on enhancing contaminants removal and potential risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177749. [PMID: 39608263 DOI: 10.1016/j.scitotenv.2024.177749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Under the perspectives of circular economy, coupling waste management and environmental engineering to foster sustainable pollution control solutions has gained particular attention. Particularly in constructed wetlands (CWs) as a nature-based solution, recycling various wastes as substrates for enhancing the removal of various pollutants have become a recent hotspot in recent years. In this review, physicochemical properties, enhanced removal performance and mechanism of various pollutants, and potential risks of waste-derived substrates including industrial and municipal wastes, agricultural by-products, and waste synthetic substrates were summarized comprehensively. It is indicated that agricultural by-products have the best chemical oxygen demand (COD) and total nitrogen (TN) removal with the average removal efficiency of 91.23 % and 83.68 %, while industrial and municipal wastes have the best total phosphorus (TP) removal efficiency (86.70 %). The main impacts and risks of waste-derived substrates included: the secondary pollution, toxic to plants and microorganisms, and potential clogging. This review could provide theoretical basis for the future exploration and application of recycling waste as substrates in CWs.
Collapse
Affiliation(s)
- Lingyan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
2
|
Yang P, Li J, Hou R, Yuan R, Chen Y, Liu W, Yu G, Wang W, Zhou B, Chen Z, Chen H. Mitigating N 2O emissions in land treatment systems: Mechanisms, influences, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175638. [PMID: 39168319 DOI: 10.1016/j.scitotenv.2024.175638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Land treatment systems (LTS) are widely used in decentralized domestic wastewater treatment due to low energy requirements and effective treatment outcomes. However, LTS operations are also a significant source of N2O emissions, a potent greenhouse gas threatening the ozone layer and posing risks to human health. Despite the importance of understanding and controlling N2O emissions, existing literature lacks comprehensive analyses of the mechanisms driving N2O generation and effective control strategies within LTS. This study addresses this gap by reviewing current research and identifying key factors influencing N2O emissions in LTS. This review reveals that in addition to traditional nitrification and denitrification processes, co-denitrification and complete ammonia oxidation are crucial for microbial nitrogen removal in LTS. Plant selection is primarily based on their nitrogen absorption capacity while using materials such as biochar and iron can provide carbon sources or electrons to support microbial activities. Optimizing operational parameters is essential for reducing N2O emissions and enhancing nitrogen removal efficiency in LTS. Specifically, the carbon-to‑nitrogen ratio should be maintained between 5 and 12, and the hydraulic loading rate should be kept within 0.08-0.2 m3/(m2·d). Dissolved oxygen and oxidation-reduction potential should be adjusted to meet the aerobic or anaerobic conditions the microorganisms require. Additionally, maintaining a pH range of 6.5-7.5 by adding alkaline substances is crucial for sustaining nitrous oxide reductase activity. The operating temperature should be maintained between 20 and 30 °C to support optimal microbial activity. This review further explores the relationship between environmental factors and microbial enzyme activity, community structure changes, and functional gene expression related to N2O production. Future research directions are proposed to refine N2O flux control strategies. By consolidating current knowledge and identifying research gaps, this review advances LTS management strategies that improve wastewater treatment efficiency while mitigating the environmental and health impacts of N2O emissions.
Collapse
Affiliation(s)
- Peng Yang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Junhong Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongrong Hou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuefang Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Weiqing Liu
- Beijing Institute of Geology for Mineral Resources, Yuanlin East Road, Mi Yun, Beijing 101500, China
| | - Guoqing Yu
- Beijing Geo-Exploration and Water Environment Engineering Institute Co., Ltd., Tiancun Road, Beijing 100142, China
| | - Weiqiang Wang
- Beijing Geo-Exploration and Water Environment Engineering Institute Co., Ltd., Tiancun Road, Beijing 100142, China
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic.
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Zhang Y, Dong Y, Qin L, Yue X, Zhou A, Wu H. Distinct roles of biochar and pyrite substrates in enhancing nutrient and heavy metals removal in intermittent-aerated constructed wetlands: Performances and mechanism. ENVIRONMENTAL RESEARCH 2024; 258:119393. [PMID: 38857856 DOI: 10.1016/j.envres.2024.119393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Constructed wetlands have been widely employed as a cost-effective and environmentally friendly alternative for treating primary and secondary sewage effluents. In this study, biochar and pyrite were utilized as electron donor substrates in intermittent-aerated vertical flow constructed wetlands to strengthen the nutrient and heavy metals removal simultaneously, and the response of nutrient reduction and microbial community to heavy metals stress was also explored. The results indicated that biochar addition exhibited a better nitrogen removal, while pyrite addition greatly promoted the phosphorus removal. Moreover, the high removal efficiencies of Cu2+, Pb2+ and Cd2+ (above 90%) except for Zn2+ were obtained in each system. However, the exposure of heavy metals decreased phosphorus removal while had little effect on nitrogen removal. The influent load and intermittent aeration implementation led to a significant shift in microbial community structures, but microbial biodiversity and abundance decreased under the exposure of heavy metals. Particularly, Thiobacillus and Ferritrophicum, associated with sulfur autotrophic denitrification and iron autotrophic denitrification, were more abundant in pyrite-based wetland systems.
Collapse
Affiliation(s)
- Yan Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yu Dong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Langlang Qin
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
4
|
Jiang BN, Zhang YY, Zhang ZY, Yang YL, Song HL. Tree-structured parzen estimator optimized-automated machine learning assisted by meta-analysis for predicting biochar-driven N 2O mitigation effect in constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120335. [PMID: 38368804 DOI: 10.1016/j.jenvman.2024.120335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Biochar is a carbon-neutral tool for combating climate change. Artificial intelligence applications to estimate the biochar mitigation effect on greenhouse gases (GHGs) can assist scientists in making more informed solutions. However, there is also evidence indicating that biochar promotes, rather than reduces, N2O emissions. Thus, the effect of biochar on N2O remains uncertain in constructed wetlands (CWs), and there is not a characterization metric for this effect, which increases the difficulty and inaccuracy of biochar-driven alleviation effect projections. Here, we provide new insight by utilizing machine learning-based, tree-structured Parzen Estimator (TPE) optimization assisted by a meta-analysis to estimate the potency of biochar-driven N2O mitigation. We first synthesized datasets that contained 80 studies on global biochar-amended CWs. The mitigation effect size was then calculated and further introduced as a new metric. TPE optimization was then applied to automatically tune the hyperparameters of the built extreme gradient boosting (XGBoost) and random forest (RF), and the optimum TPE-XGBoost obtained adequately achieved a satisfactory prediction accuracy for N2O flux (R2 = 91.90%, RPD = 3.57) and the effect size (R2 = 92.61%, RPD = 3.59). Results indicated that a high influent chemical oxygen demand/total nitrogen (COD/TN) ratio and the COD removal efficiency interpreted by the Shapley value significantly enhanced the effect size contribution. COD/TN ratio made the most and the second greatest positive contributions among 22 input variables to N2O flux and to the effect size that were up to 18% and 14%, respectively. By combining with a structural equation model analysis, NH4+-N removal rate had significant negative direct effects on the N2O flux. This study implied that the application of granulated biochar derived from C-rich feedstocks would maximize the net climate benefit of N2O mitigation driven by biochar for future biochar-based CWs.
Collapse
Affiliation(s)
- Bi-Ni Jiang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing, 210014, China
| | - Ying-Ying Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing, 210014, China
| | - Zhi-Yong Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing, 210014, China.
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|
5
|
Qi Y, Zhong Y, Luo L, He J, Feng B, Wei Q, Zhang K, Ren H. Subsurface constructed wetlands with modified biochar added for advanced treatment of tailwater: Performance and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167533. [PMID: 37793458 DOI: 10.1016/j.scitotenv.2023.167533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The limitations of conventional substrates in treating wastewater treatment plant tailwater are evident in subsurface flow constructed wetlands, and the emergence of biochar presents a solution to this problem. The objective of this study was to assess and prioritize the efficacy of various modified reed biochar in removing pollutants when used as fillers in wetland systems. To achieve this, we established multiple simulation systems of vertical groundwater flow wetlands, each filled with different modified reed biochar. The reed biochar was prepared and modified using Pingluo reed poles from Ningxia. We monitored the quality of the effluent water and the diversity of the microbial community in order to evaluate the pollutant removal performance of the modified biochar under different hydraulic retention times in a laboratory setting. The findings indicated that a hydraulic retention time of 24-48 h was found to be optimal for each wetland system. Furthermore, the composite modified biochar system with KMnO4 and ZnCl2 exhibited higher levels of dissolved oxygen and lower conductivity, resulting in superior pollutant removal performance. Specifically, the system achieved removal rates of 89.94 % for COD, 85.88 % for TP, 91.05 % for TN, and 92.76 % for NH3-N. Additionally, the 16S rRNA high-throughput sequencing analysis revealed that the system displayed high Chao1, Shannon, and Simpson indices of 6548.75, 10.1965, and 0.9944, respectively. The predominant bacterial phyla observed in the wetland system were Proteobacteria, Bacteroidetes, Chloroflexi, Patescibacteria, Firmicutes, and Actinobacteria. Additionally, the denitrifying bacterial class, Rhodobacteriaceae, was found to have the highest content ratio in this system. This finding serves as confirmation that the KMnO4 and ZnCl2 composite modified biochar can significantly enhance water purification performance. Consequently, this study offers valuable insights for wastewater treatment plants seeking to implement vertical submersible artificial wetland tailwater improvement projects.
Collapse
Affiliation(s)
- Yarong Qi
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Yanxia Zhong
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China.
| | - Lingling Luo
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China
| | - Jing He
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China
| | - Bo Feng
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Qiqi Wei
- School of the Environment & Ecology XiaMen University, XiaMen 361005, People's Republic of China
| | - Koukou Zhang
- School of Geography and Planning, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Huiqin Ren
- School of Geography and Planning, Ningxia University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
6
|
Silva LDC, Bernardelli JKB, Souza ADO, Lafay CBB, Nagalli A, Passig FH, Kreutz C, Carvalho KQD. Biodegradation and sorption of nutrients and endocrine disruptors in a novel concrete-based substrate in vertical-flow constructed wetlands. CHEMOSPHERE 2024; 346:140531. [PMID: 37918529 DOI: 10.1016/j.chemosphere.2023.140531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Removing phosphorus and endocrine-disruptors (EDC) is still challenging for low-cost sewage treatment systems. This study investigated the efficiency of three vertical-flow constructed wetlands (VFCW) vegetated with Eichhornia crassipes onto red clay (CW-RC), autoclaved aerated concrete (CW-AC), and composite from the chemical activation of autoclaved aerated concrete with white cement (CW-AAC) in the removal of organic matter, nutrients, and estrone, 17β-estradiol, and 17α-ethinylestradiol. The novelty aspect of this study is related to selecting these clay and cementitious-based materials in removing endocrine disruptors and nutrients in VFCW. The subsurface VFCW were operated in sequencing-batch mode (cycles of 48-48-72 h), treating synthetic wastewater for 308 days. The operation consisted of Stages I and II, different by adding EDC in Stage II. The presence of EDC increased the competition for dissolved oxygen (DO) and reduced the active sites available for adsorption, diminishing the removal efficiencies of TKN and TAN and total phosphorus in the systems. CW-RC showed a significant increase in COD removal from 65% to 91%, while CW-AC and CW-AAC maintained stable COD removal (84%-82% and 78%-81%, respectively). Overall, the substrates proved effective in removing EDC, with CW-AC and CW-AAC achieving >60% of removal. Bacteria Candidatus Brocadia and Candidatus Jettenia, responsible for carrying out the Anammox process, were identified in assessing the microbial community structure. According to the mass balance analysis, adsorption is the main mechanism for removing TP in CW-AC and CW-AAC, while other losses were predominant in CW-RC. Conversely, for TN removal, the adsorption is more representative in CW-RC, and the different metabolic routes of microorganisms, biofilm assimilation, and partial ammonia volatilization in CW-AC and CW-AAC. The results suggest that the composite AAC is the most suitable material for enhancing the simultaneous removal of organic matter, nutrients, and EDC in VFCW under the evaluated operational conditions.
Collapse
Affiliation(s)
- Lucas de Carvalho Silva
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Jossy Karla Brasil Bernardelli
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Adelania de Oliveira Souza
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cíntia Boeira Batista Lafay
- Federal University of Technology - Paraná (UTFPR), Chemistry Academic Department. Via do Conhecimento, s/n - Km 01, Fraron, 85503-390. Pato Branco, Paraná, Brazil.
| | - André Nagalli
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cristiane Kreutz
- Federal University of Technology - Paraná (UTFPR), Environmental Academic Department, Rosalina Maria dos Santos St., 1233, 87301-899, Campo Mourão, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| |
Collapse
|
7
|
Shi B, Cheng X, Zhu D, Jiang S, Chen H, Zhou Z, Xie J, Jiang Y, Liu C, Guo H. Impact analysis of hydraulic loading rate and antibiotics on hybrid constructed wetland systems: Insight into the response to decontamination performance and environmental-associated microbiota. CHEMOSPHERE 2024; 347:140678. [PMID: 37951391 DOI: 10.1016/j.chemosphere.2023.140678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Hybrid constructed wetlands (HCWs) are a promising solution for water ecology and environmental treatment, not only for conventional types of water pollution but also for antibiotics. Among the critical parameters for wetlands, the hydraulic loading rate (HLR) is especially important given the challenges of antibiotics treatment and frequent extreme rainfall. To investigate the removal performance of different HLRs on nutrients and antibiotics, as well as the response of antibiotics to nutrient removal, and the impact of HLRs on microbial communities, new HCWs with vertical flow constructed wetlands (VFCWs) and floating constructed wetlands (FCWs) in series were built. The results of the study showed that: (1) HCWs are highly effective in removing chemical oxygen demand (COD), NH4+-N, NO2--N, and total phosphorus (TP) at low HLR (L_HLR), with removal efficiencies as high as 97.8%, 99.6%, 100%, and 80.5%. However, high HLR (H_HLR) reduced their removal efficiencies; (2) The average removal efficiency of fluoroquinolones (FQs) under different HLRs was consistently high, at 99.9%, while the average removal efficiency of macrolides (MLs) was 96.3% (L_HLR) and 88.4% (H_HLR). The removal efficiency of sulfonamides (SAs) was susceptible to HLRs, and the removal of antibiotics occurred mainly in the rhizosphere zone of wetland; (3) High concentrations of antibiotics in HCWs were found to inhibit and poison plant growth and to reduce the removal efficiency of TP by 12%. However, they had a minor effect on the removal efficiency of carbon and nitrogen nutrients; (4) H_HLR altered the diversity and abundance of microbial communities in different compartments of the wetland and also reduced the relative abundance of Bacillus, Hydrogenophaga, Nakamurella, Denitratisoma and Acidovorax genera, which are involved in denitrification and phosphorus removal processes. This alteration in microbial communities was one of the main reasons for the reduced performance of nitrogen and phosphorus removal.
Collapse
Affiliation(s)
- Baoshan Shi
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510640, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510640, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510640, China.
| | - Shenqiong Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Hongzhan Chen
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, 510030, China
| | - Zhihong Zhou
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, 510030, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yuheng Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Chunsheng Liu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Heyi Guo
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
8
|
Zhang J, Yan Q, Bai G, Guo D, Chi Y, Li B, Yang L, Ren Y. Inducing root redundant development to release oxygen: An efficient natural oxygenation approach for subsurface flow constructed wetland. ENVIRONMENTAL RESEARCH 2023; 239:117377. [PMID: 37832770 DOI: 10.1016/j.envres.2023.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Dissolved oxygen (DO) is a limiting factor affecting the purification efficiency of subsurface flow (SSF) constructed wetlands (CWs). To clarify the causes of oxygen environments and the response characteristics of plant oxygen release (POR) in SSF CWs, this study set three oxygen source treatments by limiting atmospheric reaeration (AR) and influent oxygen (IO) and compared the differences in plant physiological metabolism, DO distribution characteristics, and the purification effect of the SSF CWs at different depths. The results showed that limiting exogenous oxygen stimulated root redundancy of the wetland plants. The root volume and proportion of fibrous roots of the wetland plants increased significantly (p < 0.05). When only the POR existed, the root zone DO increased significantly to 2.05-4.37 mg/L (p < 0.05), and was positively correlated with the TN and TP removal rates (p < 0.05). Additionally, in the presence of POR only, the average removal rates of TN and TP in the top layer were 86.5% and 76.9%, respectively. The proportion of fibrous roots, root zone DO, and root-shoot ratio were key factors promoting the purification effect of the SSF CWs under limited exogenous oxygen sources. Enhancing POR by inducing root redundancy enhanced nitrification (hao, pmoABC-amoABC), plant absorption, and assimilation-related functional genes (nrtABC, nifKDH), and enriched nitrogen and phosphorus removal bacteria, such as Flavobacterium and Zoogloea. This consequently improved pollutant removal efficiency. Inducing root redundancy to strengthen POR produced an aerobic environment in the SSF CWs. This ensures the efficient and stable operation of the SSF CW and is an effective approach for natural oxygenation.
Collapse
Affiliation(s)
- Jingying Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiuhui Yan
- Xi'an High-tech Zone CITY CORE Development & Construction Co., Ltd, Xi'an, 710117, China
| | - Ge Bai
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Dun Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yanbin Chi
- School of Metallurgical and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bin Li
- Xi'an Botanical Garden of Shaanxi Province, Botanical Institute of Shaanxi Province, Xi'an, 710061, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
9
|
Li C, Feng L, Lian J, Yu X, Fan C, Hu Z, Wu H. Enhancement of organics and nutrient removal and microbial mechanism in vertical flow constructed wetland under a static magnetic field. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117192. [PMID: 36621318 DOI: 10.1016/j.jenvman.2022.117192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Low and unstable pollutant removal is regarded as the bottleneck problem in constructed wetlands (CWs) for wastewater treatment. This study investigated the effect of static magnetic field (MF) on enhancing the purification efficiency and microbial mechanism in vertical flow CW systems for treating domestic wastewater. The results showed that MF-CWs outperformed control systems in terms of treatment performance, with average removal efficiencies of COD, NH4+-N, TN, and TP reaching 92.58%, 73.58%, 72.53%, and 95.83%, respectively. The change of malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) activity indicated that MF application was beneficial for plant health. Additionally, higher ammonia monooxygenase (AMO) activity in MF-CWs suggested the removal of NH4+-N was facilitated. The high-throughput sequencing results demonstrated that MF application could enrich the functional bacteria such as Patescibacteria phylum, mainly, including Gammaproteobacteria, Betaproteobacteria, and Alphaproteobacteria, which further accelerated pollutants transformation. These findings would be beneficial in understanding pollutant removal processes and their mechanism in CWs with MF application.
Collapse
Affiliation(s)
- Cong Li
- School of Geography and Environment, Liaocheng University, Liaocheng 252059, PR China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jianjun Lian
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, PR China
| | - Xiaoting Yu
- Liaocheng City Ecological Environment Bureau, Liaocheng 252000, PR China
| | - Chunzhen Fan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
10
|
Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25427-25451. [PMID: 35094282 DOI: 10.1007/s11356-021-18287-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
The discharge of emerging pollutants, such as beta-blockers (BB), has been recognized as one of the major threats to the environment due to the ecotoxicity associated with these emerging pollutants. The BB are prescribed to treat high blood pressure and cardiovascular diseases; however, even at lower concentration, these pollutants can pose eco-toxic impacts towards aquatic organisms. Additionally, owing to their recalcitrant nature, BB are not effectively removed through conventional technologies, such as activated sludge process, trickling filter and moving bed bioreactor; thus, it is essential to understand the degradation mechanism of BB in established as well as embryonic technologies, like adsorption, electro-oxidation, Fenton process, ultraviolet-based advance oxidation process, ozonation, membrane systems, wetlands and algal treatment. In this regard, this review articulates the recalcitrant nature of BB and their associated removal technologies. Moreover, the major advantages and limitations of these BB removal technologies along with the recent advancements with regard to the application of innovative materials and strategies have also been elucidated. Therefore, the present review intends to aid the researchers in improving the BB removal efficiency of these technologies, thus alleviating the problem of the release of BB into the environment.
Collapse
|
11
|
Jiang BN, Lu MB, Zhang ZY, Xie BL, Song HL. Quantifying biochar-induced greenhouse gases emission reduction effects in constructed wetlands and its heterogeneity: A multi-level meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158688. [PMID: 36108836 DOI: 10.1016/j.scitotenv.2022.158688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Zero-waste biochar is an emerging tool for carbon neutralization, but the role of biochar in reducing greenhouse gases (GHGs) emissions from CWs were controversy and uncertainty. Yet, no previous study has integrated multiple research systems to quantitatively examine biochar-mediated GHGs emission reduction potential in CWs. Here we synthesized 114 studies to quantify biochar-induced declines ability of GHGs in the CWs by using the multi-level meta-analysis, reveal the variation of GHGs emission effect in different biochar-CWs and its response relationship with biochar, and identify the moderating variables that had a strong explanatory effect on the emission reduction effect of biochar. We showed that biochar remarkably affect CO2 mitigation (p < 0.05), but has insignificant and heterogeneous effects on CH4 and N2O. Pyrolysis time, influent dissolved oxygen (DO), influent NO3--N concentration, hydraulic retention time (HRT) and wetland type can significantly affect the effect of biochar on CH4 emission reduction. Particularly, the importance of HRT and wetland type was 0.89 and 0.85, respectively. Specially, the surface batch CWs modified by biochar could significantly promote the emission of CH4 (p < 0.001), and the effect size was up to 89.59. For N2O, biochar diameter, biochar addition ratio, influent COD/TN ratio, plant name, and removal efficiency of NO3--N/TN/COD were significant moderators. Among them, influent COD/TN ratio and plant name showed a stronger explanation. Planting Cyperus alternifolius L. significantly enhanced the N2O emission reduction capacity by biochar (p < 0.001), and effect size was as low as -24.32. 700-900 °C biochar can promote CH4 flux but inhibit N2O flux. This study provides an important theoretical basis and valuable strategic guidance for more accurate estimation and improvement of synergistic emission reduction benefits between CH4 and N2O of biochar in CWs.
Collapse
Affiliation(s)
- Bi-Ni Jiang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, PR China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing 210014, PR China
| | - Min-Bo Lu
- CCDI(Suzhou) Exploration & Design Consultant Co., Ltd., Suzhou 215123, PR China
| | - Zhi-Yong Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing 210014, PR China
| | - Bo-Lun Xie
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, PR China.
| |
Collapse
|
12
|
Du J, Niu Y, Wu H, Konnerup D, Wu S, Ramírez-Vargas CA, Yang Y, Brix H, Arias CA. Effects of electroconductive materials on treatment performance and microbial community structure in biofilter systems with silicone tubings. CHEMOSPHERE 2022; 307:135828. [PMID: 35944690 DOI: 10.1016/j.chemosphere.2022.135828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/19/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Biofilter systems coupling with microbial electrochemical technology can enhance the removal performance of pollutants. In this study, two types of coke (PK-A and PK-LSN) were used as electroconductive substrates in biofilter systems with silicone tubings. The results showed that the silicone tubings were beneficial for removing NH4+-N. The PK-A systems reached removal efficiencies up to 83.5-85.3% for NH4+-N without aeration. Compared to gravel systems, significantly higher removal efficiencies of NO3--N (84.8-95.4%) were obtained in coke systems, and better removal of PO43--P (91.9-95.7%) was also simultaneously achieved in PK-A systems. Redundancy analysis (RDA) indicated that the better performances of coke systems rely on the functions of both electroactive (Trichococcus and Sulfurovum) and non-electroactive bacteria (Clostridium_sensu_stricto_1, Propionicicella, and Acinetobacter). These findings highlight the important contribution of silicone tubings to oxygen supply and provide useful guidance for the application of coke in composite matrix systems.
Collapse
Affiliation(s)
- Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Department of Biology, Aarhus University, Aarhus, Denmark; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, China.
| | - Yulong Niu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Haiming Wu
- Department of Biology, Aarhus University, Aarhus, Denmark; School of Environmental Science & Engineering, Shandong University, Qingdao, China
| | - Dennis Konnerup
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Carlos A Ramírez-Vargas
- Department of Biology, Aarhus University, Aarhus, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Aarhus, Denmark
| | - Yanqin Yang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, China
| | - Hans Brix
- Department of Biology, Aarhus University, Aarhus, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Aarhus, Denmark
| | - Carlos A Arias
- Department of Biology, Aarhus University, Aarhus, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Chen Z, Hu B, Hu S, Vogel-Mikuš K, Pongrac P, Vymazal J. Immobilization of chromium enhanced by arbuscular mycorrhizal fungi in semi-aquatic habitats with biochar addition. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129562. [PMID: 35868083 DOI: 10.1016/j.jhazmat.2022.129562] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) exhibit great potential in heavy-metal immobilization in semi-aquatic habitats. Under high heavy-metal stress, however, the role of AMF is limited, and the detoxification mechanism of AMF in heavy metals' stabilization remains unclear. This study investigated the effects of AMF on a wetland plant (Iris pseudacorus) and chromium (Cr) immobilization at different water depths in semi-aquatic habitats with biochar addition. Results showed that AMF increased the physiological and photosynthetic functions in I. pseudacorus under Cr exposures. Besides, AMF alleviated the accumulation of reactive oxygen species and lipid peroxidation by enhancing the antioxidant enzyme activities. AMF and biochar significantly decreased Cr concentrations in outlet water and increased Cr accumulation in I. pseudacorus. Besides, biochar also vastly improved Cr accumulation in the substrate under the fluctuating water depth. AMF reduced Cr bioavailability in the substrate, with Cr (Ⅵ) concentrations and acid-soluble forms of Cr decreased by 0.3-64.5% and 19.0-40.8%, respectively. Micro-proton-induced X-ray emission was used to determine element localization and revealed that AMF improved the nutrients uptake by wetland plants and inhibited Cr translocation from roots to shoots. Overall, this study demonstrated that the interaction between AMF and biochar could significantly enhance the immobilization of high Cr concentrations in semi-aquatic habitats.
Collapse
Affiliation(s)
- Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol 16500, Czech Republic
| | - Bo Hu
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol 16500, Czech Republic
| | - Shanshan Hu
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol 16500, Czech Republic.
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Paula Pongrac
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Jan Vymazal
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol 16500, Czech Republic
| |
Collapse
|
14
|
Yu D, Niu J, Zhong L, Chen K, Wang G, Yan M, Li D, Yao Z. Biochar raw material selection and application in the food chain: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155571. [PMID: 35490824 DOI: 10.1016/j.scitotenv.2022.155571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
As one of the largest carbon emitters, China promises to achieve carbon emissions neutrality by 2060. Various industries are developing businesses to reduce carbon emissions. As an important greenhouse gas emissions scenario, the reduction of carbon emissions in the food chain can be achieved by preparing the wastes into biochar. The food chain, as one of the sources of biochar, consists of production, processing and consumption, in which many wastes can be transferred into biochar. However, few studies use the food chain as the system to sort out the raw materials of biochar. A systematic review of the food chain application in serving as raw materials for biochar is helpful for further application of such technique, providing supportive information for the development of biochar preparation and wastes treating. In addition, there are many pollution sources in the food production process, such as agricultural contaminated soil and wastewater from livestock and aquatic, that can be treated on-site to achieve the goal of treating wastes with wastes within the food chain. This study focuses on waste resource utilization and pollution remediation in the food chain, summarizing the sources of biochar in the food chain and analyzing the feasibility of using waste in food chain to treat contaminated sites in the food chain and discussing the impacts of the greenhouse gas emissions. This review provides a reference for the resource utilization of waste and pollution reduction in the food chain.
Collapse
Affiliation(s)
- Dayang Yu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jinjia Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Longchun Zhong
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Kaiyu Chen
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Guanyi Wang
- State Grid UHV Engineering Construction Company, Beijing 100052, China
| | - Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
15
|
Ultrashort Hydraulic Retention Time of Aeration and Nonaeration Constructed Wetlands for a Large Volume of Primary-Treated Wastewater from a Medical Rubber Glove Factory. INTERNATIONAL JOURNAL OF ECOLOGY 2022. [DOI: 10.1155/2022/2407435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A substantial volume of primary-treated wastewater from a medical rubber glove factory caused public freshwater to become sewage. The ultrashort hydraulic retention time in constructed wetlands was urgently employed for wastewater remediation. Pilot-scale, aeration, and nonaeration horizontal surface flow constructed wetlands (HSFCWs) with emergent plants were designed, compared, and optimized. Activated carbon, coconut shells, and oyster shells were subsequently transferred into a plastic basket as a substrate layer, while Typha angustifolia L. was used as an emergent plant. The experiments were conducted at a hydraulic retention time of 2, 4, 6, and 8 hr. per effluent recirculation. Sampling data were collected for each of the four effluent recirculations. The removal efficiencies of BOD, COD, FOG, TKN, TSS, TDS, EC, and salinity in the aeration HSFCWs were high—53.25, 67.28, 97.93, 78.93, 95.87, 87.52, 86.36, and 90.38%—at the first effluent recirculation of sampling, respectively, while the removal efficiencies in the nonaeration HSFCWs were also high—55.12, 57.38, 94.62, 83.10, 95.95, 88.09, 89.54, and 93.46%, respectively. Increasing the hydraulic retention time increased removal efficiencies. The removal efficiency of BOD in aerated HSFCWs was higher than in nonaerated HSFCWs in the second effluent recirculation of sampling. This is because the oxygen supplied by aeration in the system increased the organic and inorganic pollutant removal efficiencies. Other pollutants were removed more effectively during the second effluent recirculation. Excluding BOD and COD, Duncan’s multiple test revealed that the number of effluent recirculations for removal efficiencies of FOG, TKN, TSS, TDS, EC, and salinity was nonsignificant at the
level. These findings led to optimization of the medical rubber glove wastewater treatment at an ultrashort hydraulic retention time of 2–4 hr. This process and the control of CWs may be the best industrial wastewater treatment practice and a long-term solution for the industrial sector.
Collapse
|
16
|
Zheng C, Zhang X, Gan L, He Z, Zhu J, Zhang W, Gao Y, Yang L. Effects of biochar on the growth of Vallisneria natans in surface flow constructed wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66158-66170. [PMID: 34331223 DOI: 10.1007/s11356-021-15399-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
To improve the nitrogen and phosphorus removal efficiency of surface flow constructed wetlands (SFCWs), biochar was added to an SFCW matrix. The effects of adding different amounts of biochar on water purification, the growth of Vallisneria natans (V. natans), and microbial mechanisms were explored through SFCW simulation experiments. The results showed that through the joint action of biochar and V. natans, the concentrations of total nitrogen, total phosphorus, and ammonia nitrogen in the effluent significantly decreased. The total biomass, relative growth rate, and chlorophyll content of V. natans were significantly reduced by adding biochar (≥20%, v/v), as the root activity and the root to leaf biomass ratio slightly increased at first and then decreased. The carbon and nitrogen contents of V. natans slightly increased with the addition of biochar (≥10%, v/v), but the phosphorus content slightly decreased. Moreover, the nitrogen content of the matrices decreased significantly over time (P<0.05), and the phosphorus content in the matrix showed an increasing trend in the same period. In addition, the microbial 16S rDNA sequencing results indicated that the diversity and abundance of the microbial community in the matrix of the biochar-added SFCW tended to decrease. Nevertheless, the abundance of functional bacteria related to nitrogen and phosphorus removal (i.e., Pseudomonas and Dechloromonas) slightly increased, which would benefit denitrification and dephosphorization in the SFCW. Hence, the addition of biochar to the SFCW matrix facilitated the improvement of effluent water quality, while excessive biochar addition (≥10%, v/v) restrained the growth of V. natans but did not cause death. This conclusion provides valid data support regarding the ability of biochar-added SFCW to purify lightly contaminated water.
Collapse
Affiliation(s)
- Chaoqun Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xuanwen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Lin Gan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Zhaofang He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Jinling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Wen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yan Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
17
|
Cheng C, Sun T, Li H, He Q, Pavlostathis SG, Zhang J. New insights in correlating greenhouse gas emissions and microbial carbon and nitrogen transformations in wetland sediments based on genomic and functional analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113280. [PMID: 34273644 DOI: 10.1016/j.jenvman.2021.113280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/15/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Greenhouse gas (GHG) emissions from constructed wetlands (CWs) lower the environmental and ecological benefits of CWs and thus have raised increasing environmental concern. To prevent GHGs emissions, it is important to assess and quantify the correlation of GHGs emission and microbial carbon and nitrogen transformations. In this study, two typical wetland substrate samples (mud sampled from Xiaomei River CW and sand sampled from Dongwen River CW) were used to build lab-scale vertical subsurface flow CW microcosms, labeled as XRCW and DRCW, respectively. The mean COD removal rate of the DRCW group (76.1%) was higher than that of XRCW group (60.6%). Both groups achieved a high extent of nitrogen nutrient removal, indicating a higher metabolic activity of nitrifying and denitrifying microorganisms in the system, especially in XRCW. The mean emission fluxes of N2O, CH4 and CO2 in the XRCW group were 52.7 μg/m2-h, 1.6 mg/m2-h and 100.4 mg/m2-h, which were higher than that in the DRCW group (30.0 μg/m2-h, 1.0 mg/m2-h and 28.0 mg/m2-h, respectively). The relation of GHG emissions to microbial carbon and nitrogen transformation was assessed by genomics and functional analysis. The release of GHGs by the XRCW group had a positive correlation with the relative abundance of Proteobacteria, while for the DRCW group a positive correlation was found with the relative abundance of Cyanobacteria. Nitrogen fixation by Cyanobacteria could be an approach to reduce GHG emissions. The release of CH4 and CO2 was positively correlated with glucose metabolism. N2O gas emission was affected by the species of denitrifiers. This study is of great importance to clarify the emissions of GHGs in vertical subsurface flow CWs, as it is relating to microbial carbon and nitrogen transformation. The connection is of great significance to control the emission of GHGs in wetlands.
Collapse
Affiliation(s)
- Cheng Cheng
- College of Environmental and Ecology, Chongqing University, Chongqing, 400045, PR China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Tianyi Sun
- College of Environmental and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Hanjie Li
- College of Environmental and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Qiang He
- College of Environmental and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
18
|
Feng L, He S, Wei L, Zhang J, Wu H. Impacts of aeration and biochar on physiological characteristics of plants and microbial communities and metabolites in constructed wetland microcosms for treating swine wastewater. ENVIRONMENTAL RESEARCH 2021; 200:111415. [PMID: 34087189 DOI: 10.1016/j.envres.2021.111415] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CWs) by modifying operation strategies or substrates have grown in popularity in recent years for improving the treatment capacity. However, few studies focused on the responses of wetland vegetation and associated microorganisms in CWs for treating high-strength wastewaters. This study evaluated the long-term responses of plants and microbes in CWs with biochar and intermittent aeration for treating real swine wastewater. The results showed that intermittent aeration or combined with biochar could decrease the stress response of wetland plants against the swine wastewater. Biochar addition promoted the production of extracellular polymeric substances (EPS, total 516.27 mg L-1) mainly including protein-like, humic-like and tryptophan-like components. However, intermittent aeration resulted in the EPS reduction (99.24 mg L-1). As for microbial communities, biochar addition supported rich and diverse microbial communities (652 OTUs), while the combination with biochar and aeration could not improve diversity of microbes (597 OTUs). Additionally, the combination altered the microbial community structures and changed microbial composition correlated with environmental factors.
Collapse
Affiliation(s)
- Likui Feng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
19
|
Lu H, Xiao L, Wang T, Lu S, Wang H, Guo X, Li J. The application of steel slag in a multistage pond constructed wetland to purify low-phosphorus polluted river water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112578. [PMID: 33965685 DOI: 10.1016/j.jenvman.2021.112578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
To investigate the effect of a constructed wetland (CW) with steel slag as the filler on water contaminated by low phosphorus levels, a multistage pond CW system was designed in this study. Low-phosphorus polluted river water was used as the research object. This study explored the effects of using steel slag as a CW filler on phosphorus removal and the total phosphorus (TP) purification effect of the wetland system. The results showed that the TP removal rates in the ecological pond, oxidation pond, surface flow wetlands and submerged plant pond were 5.17%, 8.02%, 21.56%, and 16.31%, respectively. Intermittent increases in phosphorus concentration were observed in the reactors and were caused by the decay of plant tissues, which released pollutants. Because steel slag was added to the filler, the TP concentrations in the effluent of the first- and second-level horizontal subsurface CWs increased by 151.13% and 16.29%, respectively, compared to the influent concentration. The 20th to 40th days of the test run was a period of rapid phosphorus release of the system. The use of steel slag has a potential risk of phosphorus release when applied in CWs used to purify low-phosphorus contaminated water bodies.
Collapse
Affiliation(s)
- Hongbin Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing, 100875, PR, China
| | - Liping Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Tao Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Shaoyong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Huanhua Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Xiaochun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Jiaxin Li
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; School of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| |
Collapse
|
20
|
Application of constructed wetlands in treating rural sewage from source separation with high-influent nitrogen load: a review. World J Microbiol Biotechnol 2021; 37:138. [PMID: 34278536 DOI: 10.1007/s11274-021-03105-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Constructed wetlands (CWs) are characterized by low construction cost, convenient maintenance and management, and environmentally friendly features. They have emerged as promising technologies for decentralized sewage treatment across rural areas. Source separation of black water and gray water can facilitate sewage recycling and reuse of reclaimed water, reduce the size of treatment facilities, and lower infrastructure investment and operating cost. This is consistent with the concept of sustainable development. However, black water contains high concentrations of ammonia nitrogen, and the denitrification capacity of CWs is not excellent due to insufficient carbon source. Therefore, application of CWs for black water treatment faces challenges. This article provides a review on the progress in CWs for treatment of the sewage with high-influent nitrogen load, with emphasis on the commonly used strengthening means and the role of plants in nitrogen removal via CWs. The current issues of rural sewage treatment with high-influent nitrogen load by CWs are also assessed. Finally, the challenges and perspectives are discussed for the optimization of CWs-enhanced denitrification strategies.
Collapse
|
21
|
Cheng J, Zhang X, Tang Y, Song Z, Jiang Y, Xu Z, Jin X. Nitrogen removal from domestic wastewater using core-shell anthracite/Mg-layered double hydroxides (LDHs) in constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38349-38360. [PMID: 33733402 DOI: 10.1007/s11356-021-13422-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
To investigate the mechanism of nitrogen removal by anthracites and enhance the nitrogen removal efficiency in constructed wetland, three kinds of layered double hydroxides (MgFe-LDHs, MgCo-LDHs, MgAl-LDHs) were prepared by co-precipitation under alkaline conditions and coated in situ on the surface of anthracites to synthesize core-shell anthracites/Mg-LDHs composites. Experiments with different treatments (columns loaded with original anthracites and anthracite/Mg-LDH composites) were conducted to study the nitrogen removal efficiency of domestic wastewater in constructed wetlands. The results of nitrogen removal experiments showed that the anthracite/MgAl-LDH composite had the best performance with average removal rates of 53.69%, 72.91%, and 47.43% for TN, NH4+-N, and organic nitrogen, respectively. Modification changed the denitrification mode of the anthracites. The data of adsorption isothermal experiments were fitted better with the Freundlich model. The amount of ammonifier, nitrosobacteria, nitrobacter, and denitrifier on the surface of the Mg-LDH-modified anthracite was higher than that of the original anthracite. The performance of the anthracite in removing nitrogen was attributed to physical interception, chemical adsorption, and biological degradation. Moreover, the modified anthracites were superior to the original anthracite in the chemical adsorption and biodegradation, which indicated that coating the Mg-LDHs on the surface of common anthracite was a potential method to improve the nitrogen removal efficiency of domestic wastewater and to restore the eutrophic water body.
Collapse
Affiliation(s)
- Jing Cheng
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China.
| | - Yuqi Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Zan Song
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Yinghe Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Xi Jin
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| |
Collapse
|
22
|
Guo H, Han S, Lee DJ. Genomic studies on natural and engineered aquatic denitrifying eco-systems: A research update. BIORESOURCE TECHNOLOGY 2021; 326:124740. [PMID: 33497924 DOI: 10.1016/j.biortech.2021.124740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Excess nitrogenous compounds in municipal or industrial wastewaters can stimulate growth of denitrifying bacteria, in return, to convert potentially hazardous nitrate to inorganic nitrogen gas. To explore the community structure, distributions and succession of functional strains, and their interactions with other microbial communities, contemporary studies were performed based on detailed genomic analysis. This mini-review updated contemporary genomic studies on denitrifying genes in natural and engineered aquatic systems, with the constructed wetlands being the demonstrative system for the latter. Prospects for the employment of genomic studies on denitrifying systems for process design, optimization and development of novel denitrifying processes were discussed.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Song Han
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei 10610, Taiwan; College of Engineering, Tunghai University, Taichung 40070, Taiwan.
| |
Collapse
|
23
|
The Dynamic Response of Nitrogen Transformation to the Dissolved Oxygen Variations in the Simulated Biofilm Reactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073633. [PMID: 33807451 PMCID: PMC8038029 DOI: 10.3390/ijerph18073633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
Lab-scale simulated biofilm reactors, including aerated reactors disturbed by short-term aeration interruption (AE-D) and non-aerated reactors disturbed by short-term aeration (AN-D), were established to study the stable-state (SS) formation and recovery after disturbance for nitrogen transformation in terms of dissolved oxygen (DO), removal efficiency (RE) of NH4+-N and NO3−-N and activity of key nitrogen-cycle functional genes amoA and nirS (RNA level abundance, per ball). SS formation and recovery of DO were completed in 0.56–7.75 h after transition between aeration (Ae) and aeration stop (As). In terms of pollutant REs, new temporary SS formation required 30.7–52.3 h after Ae and As interruptions, and seven-day Ae/As interruptions required 5.0% to 115.5% longer recovery times compared to one-day interruptions in AE-D and AN-D systems. According to amoA activity, 60.8 h were required in AE-D systems to establish new temporary SS after As interruptions, and RNA amoA copies (copy number/microliter) decreased 88.5%, while 287.2 h were required in AN-D systems, and RNA amoA copies (copy number/microliter) increased 36.4 times. For nirS activity, 75.2–85.8 h were required to establish new SSs after Ae and As interruptions. The results suggested that new temporary SS formation and recovery in terms of DO, pollutant REs and amoA and nirS gene activities could be modelled by logistic functions. It is concluded that temporary SS formation and recovery after Ae and As interruptions occurred at asynchronous rates in terms of DO, pollutant REs and amoA and nirS gene activities. Because of DO fluctuations, the quantitative relationship between gene activity and pollutant RE remains a challenge.
Collapse
|
24
|
Community Composition and Spatial Distribution of N-Removing Microorganisms Optimized by Fe-Modified Biochar in a Constructed Wetland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18062938. [PMID: 33805608 PMCID: PMC8000742 DOI: 10.3390/ijerph18062938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
Microbial nitrogen (N) removal capability can be significantly enhanced in a horizontal subsurface flow constructed wetland (HSCW) amended by Fe-modified biochar (FeB). To further explore the microbiological mechanism of FeB enhancing N removal, nirS- and nirK-denitrifier community diversities, as well as spatial distributions of denitrifiers and anaerobic ammonium oxidation (anammox) bacteria, were investigated in HSCWs (C-HSCW: without biochar and FeB; B-HSCW: amended by biochar; FeB-HSCW: amended by FeB) treating tailwater from a wastewater treatment plant, with C-HSCW without biochar and FeB and B-HSCW amended by biochar as control. The community structures of nirS- and nirK-denitrifiers in FeB-HSCW were significantly optimized for improved N removal compared with the two other HSCWs, although no significant differences in their richness and diversity were detected among the HSCWs. The spatial distributions of the relative abundance of genes involved in denitrification and anammox were more heterogeneous and complex in FeB-HSCW than those in other HSCWs. More and larger high-value patches were observed in FeB-HSCW. These revealed that FeB provides more appropriate habitats for N-removing microorganisms, which can prompt the bacteria to use the habitats more differentially, without competitive exclusion. Overall, the Fe-modified biochar enhancement of the microbial N-removal capability of HSCWs was a result of optimized microbial community structures, higher functional gene abundance, and improved spatial distribution of N-removing microorganisms.
Collapse
|
25
|
Zheng X, Zhang J, Li M, Zhuang LL. Optimization of the pollutant removal in partially unsaturated constructed wetland by adding microfiber and solid carbon source based on oxygen and carbon regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141919. [PMID: 32898802 DOI: 10.1016/j.scitotenv.2020.141919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The partially unsaturated constructed wetland was demonstrated to be able to enhance the oxygen supplement for the microbial nitrification. However, the fast gravity flow of wastewater on the smooth surface of substrate in unsaturated zone led to a short contact time between wastewater and biofilm on the surface of substrate for the microbial pollutant oxidation process. While, the strengthened oxygen supplement also consumed organic carbon, intensifying the shortage of electron donator for the denitrification process. To further enhance the efficiency of both nitrification and denitrification processes, two strategies were conducted as follows: (1) adding microfiber in unsaturated zone to extend the hydraulic retention time (HRT) and improve the oxygenating efficiency; (2) adding slow-release carbon source (Poly butylenes succinate, PBS) as electron donor in saturated zone for denitrification. Results showed that the ammonia oxidation efficiency reached up to 97.0% in the microfiber-enhanced constructed wetland. Additionally, adding microfiber provided more sites for microbes and increased the total number of microbes in unsaturated zone. The addition of PBS in the saturated zone obviously improved the denitrification efficiency with the total nitrogen (TN) removal rate raising from 20.6 ± 4.0% to 90.4 ± 2.7%, which excellently solved the problem of poor denitrification efficiency caused by low ratio of carbon to nitrogen (C/N). In conclusion, the association of microfiber and PBS in partially unsaturated constructed wetland finally accomplished the thorough nitrogen removal.
Collapse
Affiliation(s)
- Xinhui Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China.
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| | - Mengting Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
26
|
Jia W, Sun X, Gao Y, Yang Y, Yang L. Fe-modified biochar enhances microbial nitrogen removal capability of constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139534. [PMID: 32563003 DOI: 10.1016/j.scitotenv.2020.139534] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
To improve the nitrogen removal capability of constructed wetlands, the biochar, produced from bamboo, activated with HCl and coated with Fe (FeCl3·6H2O), and then was added as a substrate into the systems. Three horizontal subsurface flow constructed wetlands (HSCWs) was established to treat the low C/N tailwater from the wastewater treatment plant: C-HSCW (quartz sand + soil), B-HSCW (quartz sand + soil + unmodified biochar), and FeB-HSCW (quartz sand + soil + Fe-modified biochar). Under different combinations of hydraulic retention time and nitrogen loading, the FeB-HSCW revealed extremely effective nitrogen removal, compared to the C-HSCW and B-HSCW. The highest removal efficiencies of NO3--N (95.30%), TN (86.68%), NH4+-N (86.33%), NO2--N (79.35%) and COD (63.36%) were obtained in FeB-HSCW with the hydraulic retention time of 96 h. and low influent nitrogen loading (C/N of 2.5). Nitrogen mass balance analysis showed that microbial processes played the most important role of nitrogen removal in HSCWs and the Fe-modified biochar significantly enhanced the microbial nitrogen removal. A total of 128.40 g nitrogen was removed by microorganisms in FeB-HSCW (average removal rate of 2.52 g N/(m3·d1)), much higher than that in other two HSCWs. The contributions of microorganisms, substrate storage and plant uptake on the total amount of nitrogen removal in the FeB-HSCW was 92.69%, 2.97% and 4.34%, respectively. Moreover, FeB significantly increased the abundances of genes involved in nitrogen removal. The copy numbers of bacterial 16S rRNA and amx, as well as of genes nirS, nirK, nosZ-I, nosZ-II, and hzsA were 1.3- to 27.8-fold higher in the FeB-HSCW than that in the other two HSCWs. Thus, Fe-modified biochar provides a feasible and effective amendment for constructed wetlands to improve the nitrogen removal, particularly nitrate-N, for low C/N wastewaters by enhancing the microbial nitrogen removal capacity (mainly of the denitrification).
Collapse
Affiliation(s)
- Wen Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu Sun
- School of Environmental Engineering, Nanjing Engineering College, Nanjing 210000, China
| | - Yan Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yicheng Yang
- Department of Agricultural & Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
27
|
Li Y, Xing B, Ding Y, Han X, Wang S. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2020; 312:123614. [PMID: 32517889 DOI: 10.1016/j.biortech.2020.123614] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 05/10/2023]
Abstract
Biochar is a carbon-rich product obtained from the thermo-chemical conversion of biomass. Studying the evolution properties of biochar by in-situ modification or post-modification is of great significance for improving the utilisation value of lignocellulosic biomass. In this paper, the production methods of biochar are reviewed. The effects of the biomass feedstock characteristics, production processes, reaction conditions (temperature, heating rate, etc.) as well as in-situ activation, heteroatomic doping, and functional group modification on the physical and chemical properties of biochar are compared. Based on its unique physicochemical properties, recent research advances with respect to the use of biochar in pollutant adsorbents, catalysts, and energy storage are reviewed. The relationship between biochar structure and its application are also revealed. It is suggested that a more effective control of biochar structure and its corresponding properties should be further investigated to develop a variety of biochar for targeted applications.
Collapse
Affiliation(s)
- Yunchao Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Bo Xing
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yan Ding
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xinhong Han
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
28
|
Liang Y, Wang Q, Huang L, Liu M, Wang N, Chen Y. Insight into the mechanisms of biochar addition on pollutant removal enhancement and nitrous oxide emission reduction in subsurface flow constructed wetlands: Microbial community structure, functional genes and enzyme activity. BIORESOURCE TECHNOLOGY 2020; 307:123249. [PMID: 32244072 DOI: 10.1016/j.biortech.2020.123249] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
A set of constructed wetlands (CWs) under different biochar addition ratios (0%, 10%, 20%, and 30%) was established to analyze the pollutant removal performance enhancement and nitrous oxide (N2O) emission reduction from various angles, including microbial community structure, functional genes and enzyme activity. Results revealed that the average removal efficiencies of ammonium (NH4+-N) and total nitrogen (TN) were improved by 2.6%-5.2% and 2.5%-7.0%. Meanwhile, N2O emissions were reduced by 56.0%-67.5% after biochar addition. Increased nitrogen removal efficiency and decreased N2O emissions resulted from the increase of biochar addition ratio. Biochar addition changed the microbial community diversity and similarity. The relative abundance of functional microorganisms such as Nitrosomonas, Nitrospira, Thauera and Pseudomonas, increased due to biochar addition, which promoted the nitrogen cycle and N2O emission reduction. High gene copy number and enzyme activity involved in nitrification and denitrification process were obtained in biochar CWs, moderating N2O emission.
Collapse
Affiliation(s)
- Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| | - Maolin Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China
| | - Ning Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| |
Collapse
|