1
|
Becker E, Vonk JA, van Kouwen LAH, Verdonschot PFM, Kraak MHS. Species specific responses to stressors hamper Trichoptera recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173992. [PMID: 38901595 DOI: 10.1016/j.scitotenv.2024.173992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Worldwide, aquatic biodiversity is severely threatened as a result of anthropogenic pressures such as pollution, habitat destruction and climate change. Widescale legislation resulted in reduced nutrient- and pesticide loads, and restoration measures allowed modest recovery of freshwater biodiversity. However, from 2010 onwards, recovery in the otherwise unrestored aquatic habitats stagnated. The aim of the present study was therefore to reveal long-term trends in aquatic biodiversity in an anthropogenic landscape and to explain the observed patterns. To this end, over 40 years of biomonitoring data of the indicative taxa group Trichoptera (caddisflies), with an exceptionally high spatial and temporal resolution, was employed. Periods of recovery, stagnation, and decline were delineated using linear and non-linear modelling approaches. Subsequently, species were grouped based on abundance patterns over time and this grouping was used to ascertain species-specific responses to anthropogenic stressors using a trait-based approach. Richness and abundance of all Trichoptera jointly, as well as of the five most abundant and the remaining 136 species, significantly increased from 1980 to significant breakpoints from 2010 onwards, after which these metrics, except the abundances of the 5 most abundant, declined significantly. Trend-based species groupings were not significantly explained by biological traits or ecological preferences. However, Trichoptera species increasing in abundance were less sensitive to climate change and poor water quality, or concerned sensitive species which benefited from restoration measures. Species with stable or declining abundances showed higher sensitivity to climate change. The Trichoptera declining in abundance indicated that conditions in non-protected or restored habitats did not improve due to climate change on top of the other anthropogenic pressures. These observations reinforce the need for increased efforts to improve the only moderately restored water- and habitat quality in anthropogenic landscapes to halt further aquatic ecosystem degradation and to turn biodiversity losses again into recoveries.
Collapse
Affiliation(s)
- Elmar Becker
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, the Netherlands.
| | - J Arie Vonk
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Leon A H van Kouwen
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, the Netherlands; HAS green academy, 's-Hertogenbosch 5223 DE, the Netherlands
| | - Piet F M Verdonschot
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, 6700 AA Wageningen, the Netherlands
| | - Michiel H S Kraak
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| |
Collapse
|
2
|
David GM, Pimentel IM, Rehsen PM, Vermiert AM, Leese F, Gessner MO. Multiple stressors affecting microbial decomposer and litter decomposition in restored urban streams: Assessing effects of salinization, increased temperature, and reduced flow velocity in a field mesocosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173669. [PMID: 38839005 DOI: 10.1016/j.scitotenv.2024.173669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
A multitude of anthropogenic stressors impact biological communities and ecosystem processes in urban streams. Prominent among them are salinization, increased temperature, and altered flow regimes, all of which can affect microbial decomposer communities and litter decomposition, a fundamental ecosystem process in streams. Impairments caused by these stressors individually or in combination and recovery of communities and ecosystem processes after release from these stressors are not well understood. To improve our understanding of multiple stressors impacts we performed an outdoor stream mesocosm experiment with 64 experimental units to assess the response of microbial litter decomposers and decomposition. The three stressors we applied in a full-factorial design were increased salinity (NaCl addition, 0.53 mS cm-1 above ambient), elevated temperature (3.5 °C above ambient), and reduced flow velocity (3.5 vs 14.2 cm s-1). After two weeks of stressor exposure (first sampling) and two subsequent weeks of recovery (second sampling), we determined leaf-associated microbial respiration, fungal biomass, and the sporulation activity and community composition of aquatic hyphomycetes in addition to decomposition rates of black alder (Alnus glutinosa) leaves confined in fine-mesh litter bags. Microbial colonization of the litter was accompanied by significant mass loss in all mesocosms. However, there was little indication that mass loss, microbial respiration, fungal biomass, sporulation rate or community composition of aquatic hyphomycetes was strongly affected by either single stressors or their interactions. Two exceptions were temperature effects on sporulation and decomposition rate. Similarly, no notable differences among mesocosms were observed after the recovery phase. These results suggest that microbial decomposers and leaf litter decomposition are either barely impaired by exposure to the tested stressors at the levels applied in our experiment, or that communities in restored urban streams are well adapted to cope with these stressor levels.
Collapse
Affiliation(s)
- Gwendoline M David
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.
| | - Iris Madge Pimentel
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Philipp M Rehsen
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Anna-Maria Vermiert
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Bochum, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Mark O Gessner
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Department of Ecology, Berlin Institute of Technology (TU Berlin), Berlin, Germany
| |
Collapse
|
3
|
van Kouwen LAH, Kraak MHS, van der Lee GH, Verdonschot PFM. Four decades of region- and species-specific trends in lowland stream Ephemeroptera abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171619. [PMID: 38471583 DOI: 10.1016/j.scitotenv.2024.171619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Lowland stream ecosystems are under threat from climate change, industrialization, urbanization, and intensive agriculture. Since the 1980s, improvements in water quality have led to an increase in lowland stream biodiversity. Despite restoration efforts, however, further recovery is often hampered by the presence of region-specific (combinations of) stressors, and species-specific stressor responses. Identification of these stressors may not be achieved by the analysis of abundance data over large areas for entire communities or species assemblages. Therefore, our study introduces an alternative in-depth approach, selecting Ephemeroptera as a model organism group and analyzing 41 years of species abundance data across distinct geographical regions. Our findings revealed that 15 Ephemeroptera species had already disappeared before 1985, emphasizing the importance of evaluating an extended historical period when analyzing biodiversity trends. While biodiversity was generally characterized by an initial recovery that stagnated over time, the analysis of the past 41 years of Ephemeroptera abundance data revealed strong differences in species' abundance trends between periods, regions, and species. Certain species were likely to have benefitted from local restoration measures in specific geographical regions, while others may have declined due to the presence of region-specific stressors. Our approach underscores the importance of studying the development of region- and species-specific stream biodiversity trends over time to aid the selection of the appropriate restoration measures to recover lowland stream biodiversity.
Collapse
Affiliation(s)
- Leon A H van Kouwen
- HAS green academy, 's-Hertogenbosch 5223 DE, Netherlands; Institute for Biodiversity and Ecosystem Dynamics, Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam 1098 XH, Netherlands.
| | - Michiel H S Kraak
- Institute for Biodiversity and Ecosystem Dynamics, Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam 1098 XH, Netherlands
| | - Gea H van der Lee
- Wageningen Environmental Research, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| | - Piet F M Verdonschot
- Institute for Biodiversity and Ecosystem Dynamics, Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam 1098 XH, Netherlands; Wageningen Environmental Research, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| |
Collapse
|
4
|
van der Lee GH, Polling M, van der Laan I, Kodde L, Verdonschot RCM. From DNA to diagnostics: A case study using macroinvertebrate metabarcoding to assess the effectiveness of restoration measures in a Dutch stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171413. [PMID: 38442754 DOI: 10.1016/j.scitotenv.2024.171413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Stream ecosystems are under pressure due to multiple stressors. Restoration measures can halt further degradation and improve their ecological status. However, assessment of the effectiveness of the implemented measures is often insufficient because of logistic and financial constraints. DNA-metabarcoding has been proposed to scale up sample processing, although its application as a diagnostic tool has received less attention. The aim of our study was to evaluate if DNA-metabarcoding of stream macroinvertebrates can be used to compute a stressor-specific index to assess the effectiveness of a stream restoration project. For this purpose, we sampled the upstream, restored, and downstream section of a recently restored lowland stream in the Netherlands. At each site, we applied three different methods of macroinvertebrate identification: morphological identification of bulk samples (morphology), DNA-metabarcoding of the same bulk samples (DNA) and metabarcoding of eDNA extracted from the water (eDNA). First, we compared the community composition identified by each method. The communities identified by morphology and DNA were highly similar, whereas the communities generated by the eDNA differed. Second, we analysed whether the identification methods could be used to assess the effectiveness of the restoration project, focussing on a stressor-specific index for flow as the restoration measures aimed at improving flow conditions. Both the morphology and bulk DNA samples indicated improved flow conditions in the restored section of the stream (i.e., less stress from the reduction or absence of flow than in the unrestored sections). Contrary, the eDNA-water samples did not differentiate the amount of stress throughout the catchment, although applying recent developments in eDNA sampling could lead to more robust results. In conclusion, this study forms proof of concept that DNA from bulk samples can be utilized to assess the effectiveness of restoration measures, showing the added value of this approach for water managers.
Collapse
Affiliation(s)
- Gea H van der Lee
- Wageningen Environmental Research, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Marcel Polling
- Wageningen Environmental Research, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Iris van der Laan
- Waterschap de Dommel, Bosscheweg 56, 5283 WB Boxtel, the Netherlands
| | - Linda Kodde
- Wageningen Environmental Research, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Ralf C M Verdonschot
- Wageningen Environmental Research, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
5
|
Silva CFD, Pereira EA, Carvalho MDAR, Botero WG, de Oliveira LC. Urban river recovery: a systematic review on the effectiveness of water clean-up programs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26355-26377. [PMID: 38530521 DOI: 10.1007/s11356-024-33055-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Urban rivers are affected at different levels by the intensification of human activities, representing a serious threat to the maintenance of terrestrial life and sustainable urban development. Consequently, great efforts have been dedicated to the ecological restoration of urban rivers around the world, as a solution to recovering the environmental functionality of these environments. In this sense, the present work aimed to investigate the effectiveness of interventions carried out aimed at the recovery of urban rivers, through a systematic review of the literature between 2010 and 2022, using the search term "rivers recovery." The results showed that there have been notable advances in the implementation of river recovery programs in urban areas around the world between the years analyzed. The ecosystems studied were affected, for the most part, by the increase in the supply of nutrients from domestic and industrial effluents, in addition to having highly urbanized surroundings and with several changes in land use patterns. The preparation of this literature review made it possible to demonstrate that the effectiveness of river recovery is extremely complex, since river recovery projects are developed for different reasons, as well as being carried out in different ways according to the intended objective.
Collapse
Affiliation(s)
- Caroline Ferreira da Silva
- Federal University of São Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, João Leme dos Santos Highway, km 110 - SP-264, Sorocaba, SP, 18052.780, Brazil
| | - Elisabete Alves Pereira
- Federal University of São Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, João Leme dos Santos Highway, km 110 - SP-264, Sorocaba, SP, 18052.780, Brazil
| | - Mayara de Almeida Ribeiro Carvalho
- Federal University of São Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, João Leme dos Santos Highway, km 110 - SP-264, Sorocaba, SP, 18052.780, Brazil
| | - Wander Gustavo Botero
- Federal University of Alagoas, Graduate Program in Chemistry and Biotechnology, Maceió, Alagoas, 57072-900, Brazil
| | - Luciana Camargo de Oliveira
- Federal University of São Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, João Leme dos Santos Highway, km 110 - SP-264, Sorocaba, SP, 18052.780, Brazil.
| |
Collapse
|
6
|
Hilderbrand RH, Bambakidis T, Crump BC. The Roles of Microbes in Stream Restorations. MICROBIAL ECOLOGY 2023; 85:853-861. [PMID: 36695828 DOI: 10.1007/s00248-023-02179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/18/2023] [Indexed: 05/04/2023]
Abstract
The goods and services provided by riverine systems are critical to humanity, and our reliance increases with our growing population and demands. As our activities expand, these systems continue to degrade throughout the world even as we try to restore them, and many efforts have not met expectations. One way to increase restoration effectiveness could be to explicitly design restorations to promote microbial communities, which are responsible for much of the organic matter breakdown, nutrient removal or transformation, pollutant removal, and biomass production in river ecosystems. In this paper, we discuss several design concepts that purposefully create conditions for these various microbial goods and services, and allow microbes to act as ecological restoration engineers. Focusing on microbial diversity and function could improve restoration effectiveness and overall ecosystem resilience to the stressors that caused the need for the restoration. Advances in next-generation sequencing now allow the use of microbial 'omics techniques (e.g., metagenomics, metatranscriptomics) to assess stream ecological conditions in similar fashion to fish and benthic macroinvertebrates. Using representative microbial communities from stream sediments, biofilms, and the water column may greatly advance assessment capabilities. Microbes can assess restorations and ecosystem function where animals may not currently be present, and thus may serve as diagnostics for the suitability of animal reintroductions. Emerging applications such as ecological metatranscriptomics may further advance our understanding of the roles of specific restoration designs towards ecological services as well as assess restoration effectiveness.
Collapse
Affiliation(s)
- Robert H Hilderbrand
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA.
| | - Ted Bambakidis
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
7
|
Skovsholt LJ, Riis T, Matheson F, Hawes I. Growth response to nitrate enrichment helps facilitate success of an alien Potamogeton in New Zealand streams. Heliyon 2023; 9:e15528. [PMID: 37128336 PMCID: PMC10148038 DOI: 10.1016/j.heliyon.2023.e15528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Motivated by stream ecosystem degradation by eutrophication, we mimicked slow flowing lowland stream conditions with a novel experimental setup to further our understanding of aquatic plant responses to increases in nitrate and light. We conducted a mesocosm growth experiment of two species from the genus Potamogeton: P. crispus (alien) and P. ochreatus (native), grown at four nitrate and four light levels. We hypothesised that (i) internal nutrient status of the plants would scale with water column nutrient concentration, and that (ii) plant performance would reflect the nutrient status of the plant. Furthermore, we hypothesised that (iii) a low irradiance level would negate the effects of an increased nitrate level. In relation to (ii) we hypothesised that (iv) the traits of the alien species would enable it to outperform the native species where both the availability of light and nutrient resources was high. Internal tissue N content was broadly similar in the two higher (>250 μg NO3 - L-1) and the two lower nutrient treatments (<20 μg NO3 - L-1) in both species and plants were therefore collapsed into high and low N-groups. High-N individuals had higher growth rates than low-N ones regardless of species or light treatment and plants had reduced growth rates at the lowest light treatment, however this response was less evident for P. crispus. The highest growth rate was found at the high-N individuals of P. crispus at the highest light treatment, and correspondingly, in this treatment this species exhibited an increase in branching degree and lateral spread from the low-N plants. As P. crispus spreads by fragmentation, our results show it to be a highly effective competitor in anthropogenically impacted areas compared to its native counterpart. Our study exemplifies how light can influence eutrophication responses of plants and how both need to be accounted for in management decisions.
Collapse
Affiliation(s)
- Louis Johansen Skovsholt
- University of Waikato, School of Science, New Zealand
- NIWA, New Zealand
- Corresponding author. University of Waikato, School of Science, New Zealand.
| | - Tenna Riis
- Aarhus University, Department of Biology, Denmark
| | | | - Ian Hawes
- University of Waikato, School of Science, New Zealand
| |
Collapse
|
8
|
Baattrup-Pedersen A, Johnsen TJ, Larsen SE, Riis T. Alkalinity and diatom assemblages in lowland streams: How to separate alkalinity from inorganic phosphorus in ecological assessments? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153829. [PMID: 35151750 DOI: 10.1016/j.scitotenv.2022.153829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Benthic algae are widely used as ecological indicators of the ecological status of streams because they are widely distributed, they show high species diversity and they respond rapidly to human pressures in particular eutrophication and organic pollution. Recent findings have highlighted that in addition to human pressures, alkalinity may also play a role for community composition as bicarbonate becomes an increasingly important carbon source for photosynthesis when alkalinity increases. With this study, we aimed to elucidate how alkalinity influences the distribution of diatoms in Danish lowland streams, and to explore ifdiatom assemblage patterns can be affected by alkalinity in a way that interferes with the ecological assessment using diatom-based indices. We found that alkalinity affect the benthic algae community in lowland streams and that different species of diatoms were associated with different levels of alkalinity, a finding that might indicate dissimilarities in the efficiency of their HCO3- use. Nitzschia intermedia, Synedra acus, Nitzschia recta, Diatoma tenue, and Nitzschia linearis were associated with high alkalinity, whereas Synedra rumpens, Fragilaria vaucheriae, Psammothidium bioretii, and Gomphonema parvulum were associated with low alkalinity in streams with very low levels of phosphate. We also found that the Danish indicator for ecological status in streams (a combination of two Austrian indices, the Saprobic Index (SID) and the Trophic Index (TID) may exceed levels acceptable for good ecological status in moderate to high alkaline streams despite low phosphate levels. These findings highlight the need for the development of a diagnostic method to disentangle the effects of alkalinity from eutrophication and, additionally, that we need more insight into the autecology of species to interpret ecological assessments to be able to guide management efforts.
Collapse
Affiliation(s)
| | - Trine Just Johnsen
- Aarhus University, Department of Ecoscience, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Søren Erik Larsen
- Aarhus University, Department of Ecoscience, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Tenna Riis
- Aarhus University, Department of Biology, Ole Worms Allé 1, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Brooks AJ, Bray J, Nichols SJ, Shenton M, Kaserzon S, Nally RM, Kefford BJ. Sensitivity and specificity of macroinvertebrate responses to gradients of multiple agricultural stressors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118092. [PMID: 34520947 DOI: 10.1016/j.envpol.2021.118092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Environmental degradation of rivers in agricultural landscapes is typically caused by multiple co-occurring stressors, but how interactions among stressors affect freshwater ecosystems is poorly understood. Therefore, we investigated the sensitivity and specificity of several measures of benthic macroinvertebrate community response to the individual and combined effects of the pesticide sulfoxaflor (SFX), increased sand sedimentation and elevated nutrients using outdoor recirculating mesocosms. Among the single stressor treatments, nutrients had no observable impact and sand only affected one community response measure compared to controls. High SFX levels had the largest effects on benthic macroinvertebrate communities, negatively affecting six of seven macroinvertebrate response measures. Sulfoxaflor had similar adverse effects on biota when in combination with sand and nutrients in the multi-stressor treatment, suggesting that generally SFX has overwhelming and pervasive effects irrespective of the presence of the other stressors. In contrast to SFX, elevated nutrients had no detectable effect on macroinvertebrate communities, likely as a consequence of nutrients being rapidly taken up by bacteria rather than by benthic algae. Elevated sand sedimentation increased the negative effects of SFX on sediment sensitive taxa, but generally had limited biological effects. This was despite the levels of sedimentation in our treatments being at concentrations that have caused large impacts in other studies. This research points to direct and rapid toxic effects of SFX on stream macroinvertebrates, contrasting with effects of the other stressors. This study emphasises that pesticide effects could be misattributed to other common freshwater stressors, potentially focussing restoration actions on a stressor of lesser importance.
Collapse
Affiliation(s)
- Andrew J Brooks
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia; Department of Planning, Industry and Environment - Water, PO Box 53, Wollongong, NSW, 2500, Australia.
| | - Jonathan Bray
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia; Gisborne District Council, PO Box 747, Gisborne, 4010, New Zealand
| | - Susan J Nichols
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Mark Shenton
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Ralph Mac Nally
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Ben J Kefford
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| |
Collapse
|
10
|
Best Practices for Monitoring and Assessing the Ecological Response to River Restoration. WATER 2021. [DOI: 10.3390/w13233352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nature-based solutions are widely advocated for freshwater ecosystem conservation and restoration. As increasing amounts of river restoration are undertaken, the need to understand the ecological response to different measures and where measures are best applied becomes more pressing. It is essential that appraisal methods follow a sound scientific approach. Here, experienced restoration appraisal experts review current best practice and academic knowledge to make recommendations and provide guidance that will enable practitioners to gather and analyse meaningful data, using scientific rigor to appraise restoration success. What should be monitored depends on the river type and the type and scale of intervention. By understanding how habitats are likely to change we can anticipate what species, life stages, and communities are likely to be affected. Monitoring should therefore be integrated and include both environmental/habitat and biota assessments. A robust scientific approach to monitoring and appraisal is resource intensive. We recommend that appraisal efforts be directed to where they will provide the greatest evidence, including ‘flagship’ restoration schemes for detailed long-term monitoring. Such an approach will provide the evidence needed to understand which restoration measures work where and ensure that they can be applied with confidence elsewhere.
Collapse
|
11
|
de Vries J, Kraak MHS, Skeffington RA, Wade AJ, Verdonschot PFM. A Bayesian network to simulate macroinvertebrate responses to multiple stressors in lowland streams. WATER RESEARCH 2021; 194:116952. [PMID: 33662684 DOI: 10.1016/j.watres.2021.116952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 05/09/2023]
Abstract
Aquatic ecosystems are affected by multiple environmental stressors across spatial and temporal scales. Yet the nature of stressor interactions and stressor-response relationships is still poorly understood. This hampers the selection of appropriate restoration measures. Hence, there is a need to understand how ecosystems respond to multiple stressors and to unravel the combined effects of the individual stressors on the ecological status of waterbodies. Models may be used to relate responses of ecosystems to environmental changes as well as to restoration measures and thus provide valuable tools for water management. Therefore, we aimed to develop and test a Bayesian Network (BN) for simulating the responses of stream macroinvertebrates to multiple stressors. Although the predictive performance may be further improved, the developed model was shown to be suitable for scenario analyses. For the selected lowland streams, an increase in macroinvertebrate-based ecological quality (EQR) was predicted for scenarios where the streams were relieved from single and multiple stressors. Especially a combination of measures increasing flow velocity and enhancing the cover of coarse particulate organic matter showed a significant increase in EQR compared to current conditions. The use of BNs was shown to be a promising avenue for scenario analyses in stream restoration management. BNs have the capacity for clear visual communication of model dependencies and the uncertainty associated with input data and results and allow the combination of multiple types of knowledge about stressor-effect relations. Still, to make predictions more robust, a deeper understanding of stressor interactions is required to parametrize model relations. Also, sufficient training data should be available for the water type of interest. Yet, the application of BNs may now already help to unravel the contribution of individual stressors to the combined effect on the ecological quality of water bodies, which in turn may aid the selection of appropriate restoration measures that lead to the desired improvements in macroinvertebrate-based ecological quality.
Collapse
Affiliation(s)
- Jip de Vries
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands.
| | - Michiel H S Kraak
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - Richard A Skeffington
- Department of Geography and Environmental Science, University of Reading, Reading, UK
| | - Andrew J Wade
- Department of Geography and Environmental Science, University of Reading, Reading, UK
| | - Piet F M Verdonschot
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands; Wageningen Environmental Research, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
12
|
Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling. SUSTAINABILITY 2021. [DOI: 10.3390/su13042139] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Climate change and ecological crisis are a huge threat to Europe and the world. To overcome these challenges, Europe adopted the New Green Deal as a strategy transforming the Union into a competitive resource-efficient economy without greenhouse gas emissions and become carbon neutral in a few decades. The European Green Deal includes the new circular economy action plan, highlighting the importance of a products’ “green design”, saving raw materials, and waste prevention oriented along the entire life cycle of products. Construction and buildings represent one of the key topics for the green transition. In the European Union, buildings are responsible for 40% of our energy consumption and 36% of greenhouse gas emissions, which are mainly caused by construction, usage, renovation, and demolition. Improving environmental efficiency can play a key role in reaching the carbon neutrality of Europe that is expected to be achieved by 2050. In this research, it was explored how Eco-design, as an innovative approach in buildings and construction, Life Cycle Thinking and Life Cycle Assessment, as fundamental supporting tools in sustainability, and finally appropriate and effective Construction and Demolition Waste recycling processes, particularly oriented to concrete recycling according to the case studies analyzed, can promote a circular economy in buildings and construction.
Collapse
|