1
|
Chaturvedi M, Kaur N, Rahman PKSM, Sharma S. Solubilization and enhanced degradation of benzene phenolic derivatives-Bisphenol A/Triclosan using a biosurfactant producing white rot fungus Hypocrea lixii S5 with plant growth promoting traits. Front Microbiol 2024; 15:1433745. [PMID: 39360314 PMCID: PMC11445159 DOI: 10.3389/fmicb.2024.1433745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Endocrine disrupting chemicals (EDCs) as benzene phenolic derivatives being hydrophobic partition to organic matter in sludge/soil sediments and show slow degradation rate owing to poor bioavailability to microbes. Methods In the present study, the potential of a versatile white rot fungal isolate S5 identified as Hypocrea lixii was monitored to degrade bisphenol A (BPA)/triclosan (TCS) under shake flask conditions with concomitant production of lipopeptide biosurfactant (BS) and plant growth promotion. Results Sufficient growth of WRF for 5 days before supplementation of 50 ppm EDC (BPA/TCS) in set B showed an increase in degradation rates by 23% and 29% with corresponding increase in secretion of lignin-modifying enzymes compared to set A wherein almost 84% and 97% inhibition in fungal growth was observed when BPA/TCS were added at time of fungal inoculation. Further in set B, EDC concentration stimulated expression of laccase and lignin peroxidase (Lip) with 24.44 U/L of laccase and 281.69 U/L of Lip in 100 ppm BPA and 344 U/L Lip in 50 ppm TCS supplemented medium compared to their respective controls (without EDC). Biodegradation was also found to be correlated with lowering of surface tension from 57.02 mN/m (uninoculated control) to 44.16 mN/m in case of BPA and 38.49 mN/m in TCS, indicative of biosurfactant (BS) production. FTIR, GC-MS, and LC-ESI/MSMS confirmed the presence of surfactin lipopeptide isoforms. The WRF also displayed positive plant growth promoting traits as production of ammonia, indole acetic acid, siderophores, Zn solubilization, and 1-1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, reflecting its soil restoration ability. Discussion The combined traits of biosurfactant production, EDC degradation and plant growth promotion displayed by WRF will help in emulsifying the hydrophobic pollutants favoring their fast degradation along with restoration of contaminated soil in natural conditions.
Collapse
Affiliation(s)
| | - Navpreet Kaur
- Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Pattanathu K. S. M. Rahman
- Centre for Natural Products and Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Shashi Sharma
- Amity Institute of Biotechnology, Amity University, Noida, UP, India
| |
Collapse
|
2
|
Ren H, Wu F, Ju H, Wu D, Wei Z. Elaborating the role of rhamnolipids on the formation of humic substances during rice straw composting based on Fenton pretreatment and fungal inoculation. BIORESOURCE TECHNOLOGY 2023; 376:128843. [PMID: 36898556 DOI: 10.1016/j.biortech.2023.128843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Composting is a green and sustainable way to dispose and reuse agricultural wastes, but the low degradation rate during composting hinders its application. This study was conducted to explore the effect of added surfactant rhamnolipids after Fenton pretreatment and inoculation of fungi (Aspergillus fumigatus) into the compost on the formation of humic substances (HS) during rice straw composting, and explored the effect of this method. The results showed that rhamnolipids speeded up the degradation of organic matter and HS formation during composting. Rhamnolipids promoted the generation of lignocellulose-degrading products after Fenton pretreatment and fungal inoculation. The differential products benzoic acid, ferulic acid, 2, 4-Di-tert-butylphenol and syringic acid were obtained. Additionally, key fungal species and modules were identified using multivariate statistical analysis. Reducing sugars, pH, and total nitrogen were the key environmental factors that affected HS formation. This study provides a theoretical basis for the high-quality transformation of agricultural wastes.
Collapse
Affiliation(s)
- Hao Ren
- Instrumental Analysis Center, Northeast Agricultural University, Northeast Agricultural University, Harbin 150030, China
| | - Fangfang Wu
- Instrumental Analysis Center, Northeast Agricultural University, Northeast Agricultural University, Harbin 150030, China
| | - Hanxun Ju
- Instrumental Analysis Center, Northeast Agricultural University, Northeast Agricultural University, Harbin 150030, China
| | - Di Wu
- Instrumental Analysis Center, Northeast Agricultural University, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- Instrumental Analysis Center, Northeast Agricultural University, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Phenolic compounds and antioxidant activity of Lippia graveolens Kunth residual leaves fermented by two filamentous fungal strains in solid-state process. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Hasnat Zahan, Molla AH, Haque MM. Exploration of Potential Indigenous Fungal Species for Mycoremediation of Industrial Effluent. J WATER CHEM TECHNO+ 2022. [DOI: 10.3103/s1063455x22020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Yu C, Li M, Zhang B, Xin Y, Tan W, Meng F, Hou J, He X. Hydrothermal pretreatment contributes to accelerate maturity during the composting of lignocellulosic solid wastes. BIORESOURCE TECHNOLOGY 2022; 346:126587. [PMID: 34933104 DOI: 10.1016/j.biortech.2021.126587] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The aim of this work was to study the optimal conditions and mechanism of lignocellulose degradation in the hydrothermal pretreatment coupled with aerobic fermentation (HTPAF). The optimized process parameters in the hydrothermal pretreatment (HTP) were discussed. The response relationship between enzyme activity and microbial community in HTPAF were explored. The results showed that with the moisture content of 50%-90%, the lignin content decreased by 150 mg/g after treatment at 120 °C for 6 h, and a loose pore structure was formed on the surface of the chestnut shells after HTP. The compost maturity time was shortened to 12 days. The dominant microbial genera in HTPAF were Gallicola, Moheibacter and Atopostipes, which were significant different with that of the traditional composting. HTPAF is beneficial to increase the maximum temperature of aerobic fermentation and quickly degrade lignin to shorten the maturity time.
Collapse
Affiliation(s)
- Chengze Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Bin Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanhua Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
6
|
Greff B, Szigeti J, Nagy Á, Lakatos E, Varga L. Influence of microbial inoculants on co-composting of lignocellulosic crop residues with farm animal manure: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114088. [PMID: 34798585 DOI: 10.1016/j.jenvman.2021.114088] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The rapidly developing agro-industry generates huge amounts of lignocellulosic crop residues and animal manure worldwide. Although co-composting represents a promising and cost-effective method to treat various agricultural wastes simultaneously, poor composting efficiency prolongs total completion time and deteriorates the quality of the final product. However, supplementation of the feedstock with beneficial microorganisms can mitigate these negative effects by facilitating the decomposition of recalcitrant materials, enhancing microbial enzyme activity, and promoting maturation and humus formation during the composting process. Nevertheless, the influence of microbial inoculation may vary greatly depending on certain factors, such as start-up parameters, structure of the feedstock, time of inoculation, and composition of the microbial cultures used. The purpose of this contribution is to review recent developments in co-composting procedures involving different lignocellulosic crop residues and farm animal manure combined with microbial inoculation strategies. To evaluate the effectiveness of microbial additives, the results reported in a large number of peer-reviewed articles were compared in terms of composting process parameters (i.e., temperature, microbial activity, total organic carbon and nitrogen contents, decomposition rate of lignocellulose fractions, etc.) and compost characteristics (humification, C/N ratio, macronutrient content, and germination index). Most studies confirmed that the use of microbial amendments in the co-composting process is an efficient way to facilitate biodegradation and improve the sustainable management of agricultural wastes. Overall, this review paper provides insights into various inoculation techniques, identifies the limitations and current challenges of co-composting, especially with microbial inoculation, and recommends areas for further research in this field.
Collapse
Affiliation(s)
- Babett Greff
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary.
| | - Jenő Szigeti
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - Ágnes Nagy
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - Erika Lakatos
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - László Varga
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| |
Collapse
|
7
|
Yogarathinam LT, Velswamy K, Gangasalam A, Ismail AF, Goh PS, Subramaniam MN, Satya Narayana M, Yaacob N, Abdullah MS. Parametric analysis of lignocellulosic ultrafiltration in lab scale cross flow module using pore blocking and artificial neural network model. CHEMOSPHERE 2022; 286:131822. [PMID: 34416593 DOI: 10.1016/j.chemosphere.2021.131822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
In this study, fouling mechanism and modelling analysis of synthetic lignocellulose biomass and agricultural palm oil effluent was studied using polyethersulfone (PES) ultrafiltration (UF) 10 kDa membrane. The impact of process variables (transmembrane pressure (TMP), pH and concentration of feed solution) on lignocellulosic flux was analysed using pore blocking model. The feasible approaches on utilising deep learning artificial neural network (ANN) to predict smaller flux datasets are studied. Among the input variables, pH of lignin feed solution has significant control towards flux and lignin rejection coefficient for both lignin and lignocellulosic solution. Alteration in the structure of lignin at different pH conditions contributed in the improvement of lignin rejection coefficient to 0.98 at the feed pH of 9. A maximum steady state flux of 52.03 L/m2h was observed at the lower lignin concentration (0.25 g/L), TMP of 200 kPa and feed pH of 3. At high TMP and concentration, lignin rejection decreased due to enhancement of feed concentration on membrane surface. The mechanistic model exhibited that cake layer phenomena was dominant in both lignin and lignocellulosic solution. The proposed ANN model showed good correlation (R2-1.00) with experimental non-linear flux dynamic data of both lignin and synthetic lignocellulosic solution. In ANN analysis, activation function, algorithm and neuron effect have significant effect in design of accurate model for prediction of small flux datasets. Aerobically-treated palm oil mill filtration analysis also showed that cake layer phenomenon was dominant. A water recovery of 82 % was achieved even at low TMP under short durations.
Collapse
Affiliation(s)
- Lukka Thuyavan Yogarathinam
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India; Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Kirubakaran Velswamy
- Department of Chemical and Materials Engineering, Donadeo Innovation Center for Engineering, University of Alberta-T6G 1H9, Edmonton, Canada
| | - Arthanareeswaran Gangasalam
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India.
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mahesan Naidu Subramaniam
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mosangi Satya Narayana
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Nurshahnawal Yaacob
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
8
|
Sijinamanoj V, Muthukumar T, Muthuraja R, Rayappan K, Karmegam N, Saminathan K, Govarthanan M, Kathireswari P. Ligninolytic valorization of agricultural residues by Aspergillus nomius and Trichoderma harzianum isolated from gut and comb of Odontotermes obesus (Termitidae). CHEMOSPHERE 2021; 284:131384. [PMID: 34323800 DOI: 10.1016/j.chemosphere.2021.131384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Fungi produce enzymes that degrade the complex lignin thereby enabling the efficient utilization of plant lignocellulosic biomass in the production of biofuel and cellulose-based products. In the present study, the agricultural residues such as paddy straw, sugarcane bagasse, and coconut husk were used as substrates for the biodegradation by Aspergillus nomius (MN700028) and Trichoderma harzianum (MN700029) isolated from gut of the termite, Odontotermes obesus and fungus comb in the termite mound, respectively. The influence of varying concentrations of different carbon sources, pH, and temperature on ligninolytic enzyme production was examined under laboratory conditions. The highest activities of manganese peroxidase (0.24 U/mL), lignin peroxidase (10.38 U/mL) and laccase (0.05 U/mL) were observed under studied conditions. Fungal pretreatment of lignocellulosic biomass for 45 days showed that A. nomius and T. harzianum degraded 84.4% and 81.66% of hemicelluloses, 8.16% and 93.75% of cellulose, and 52.59% and 65% of lignin, respectively. The interaction of pH, temperature, and different carbon sources with fungal biomass and enzyme production was found significant (p ≤ 0.05). SEM analysis indicated alterations in the microstructures of degraded lignocellulosic substrates. A. nomius and T. harzianum were highly efficient in ligninolytic enzymes production and in vitro digestibility of agricultural residues. The study reports the production of laccase by A. nomius isolated from termite gut for the first time. The fungal isolates A. nomius and T. harzianum posses potential for ligninocellulosic waste degradation.
Collapse
Affiliation(s)
- Velayuthan Sijinamanoj
- PG and Research Department of Zoology, Kongunadu Arts and Science College, Coimbatore, 641 029, Tamil Nadu, India
| | - Thangavelu Muthukumar
- Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Raji Muthuraja
- Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kathirvel Rayappan
- Department of Zoology, Sri Vidya Mandir Arts and Science College, Krishnagiri, 636 902, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Kulandaivel Saminathan
- Department of Chemistry, Kongunadu Arts and Science College, Coimbatore, 641 029, Tamil Nadu, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Palanisamy Kathireswari
- PG and Research Department of Zoology, Kongunadu Arts and Science College, Coimbatore, 641 029, Tamil Nadu, India.
| |
Collapse
|
9
|
Isolation and Characterization of a Novel Laccase for Lignin Degradation, LacZ1. Appl Environ Microbiol 2021; 87:e0135521. [PMID: 34524901 DOI: 10.1128/aem.01355-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lignin is a complex natural organic polymer and is one of the primary components of lignocellulose. The efficient utilization of lignocellulose is limited because it is difficult to degrade lignin. In this study, we screened a lacz1 gene fragment encoding laccase from the macrotranscriptome data of a microbial consortium WSC-6, which can efficiently degrade lignocellulose. The reverse transcription-quantitative PCR (RT-qPCR) results demonstrated that the expression level of the lacz1 gene during the peak period of lignocellulose degradation by WSC-6 increased by 30.63 times compared to the initial degradation period. Phylogenetic tree analysis demonstrated that the complete lacz1 gene is derived from a Bacillus sp. and encoded laccase. The corresponding protein, LacZ1, was expressed and purified by Ni-chelating affinity chromatography. The optimum temperature was 75°C, the optimum pH was 4.5, and the highest enzyme activity reached 16.39 U/mg. We found that Cu2+ was an important cofactor needed for LacZ1 to have enzyme activity. The molecular weight distribution of lignin was determined by gel permeation chromatography (GPC), and changes in the lignin structure were determined by 1H nuclear magnetic resonance (1H NMR) spectra. The degradation products of lignin by LacZ1 were determined by gas chromatography and mass spectrometry (GC-MS), and three lignin degradation pathways (the gentian acid pathway, benzoic acid pathway, and protocatechuic acid pathway) were proposed. This study provides insight into the degradation of lignin and new insights into high-temperature bacterial laccase. IMPORTANCE Lignin is a natural aromatic polymer that is not easily degraded, hindering the efficient use of lignocellulose-rich biomass resources, such as straw. Biodegradation is a method of decomposing lignin that has recently received increasing attention. In this study, we screened a gene encoding laccase from the lignocellulose-degrading microbial consortium WSC-6, purified the corresponding protein LacZ1, characterized the enzymatic properties of laccase LacZ1, and speculated that the degradation pathway of LacZ1 degrades lignin. This study identified a new, high-temperature bacterial laccase that can degrade lignin, providing insight into lignin degradation by this laccase.
Collapse
|
10
|
Daou M, Bisotto A, Haon M, Oliveira Correia L, Cottyn B, Drula E, Garajová S, Bertrand E, Record E, Navarro D, Raouche S, Baumberger S, Faulds CB. A Putative Lignin Copper Oxidase from Trichoderma reesei. J Fungi (Basel) 2021; 7:jof7080643. [PMID: 34436182 PMCID: PMC8400822 DOI: 10.3390/jof7080643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The ability of Trichoderma reesei, a fungus widely used for the commercial production of hemicellulases and cellulases, to grow and modify technical soda lignin was investigated. By quantifying fungal genomic DNA, T. reesei showed growth and sporulation in solid and liquid cultures containing lignin alone. The analysis of released soluble lignin and residual insoluble lignin was indicative of enzymatic oxidative conversion of phenolic lignin side chains and the modification of lignin structure by cleaving the β-O-4 linkages. The results also showed that polymerization reactions were taking place. A proteomic analysis conducted to investigate secreted proteins at days 3, 7, and 14 of growth revealed the presence of five auxiliary activity (AA) enzymes in the secretome: AA6, AA9, two AA3 enzymes), and the only copper radical oxidase encoded in the genome of T. reesei. This enzyme was heterologously produced and characterized, and its activity on lignin-derived molecules was investigated. Phylogenetic characterization demonstrated that this enzyme belonged to the AA5_1 family, which includes characterized glyoxal oxidases. However, the enzyme displayed overlapping physicochemical and catalytic properties across the AA5 family. The enzyme was remarkably stable at high pH and oxidized both, alcohols and aldehydes with preference to the alcohol group. It was also active on lignin-derived phenolic molecules as well as simple carbohydrates. HPSEC and LC-MS analyses on the reactions of the produced protein on lignin dimers (SS ββ, SS βO4 and GG β5) uncovered the polymerizing activity of this enzyme, which was accordingly named lignin copper oxidase (TrLOx). Polymers of up 10 units were formed by hydroxy group oxidation and radical formation. The activations of lignin molecules by TrLOx along with the co-secretion of this enzyme with reductases and FAD flavoproteins oxidoreductases during growth on lignin suggest a synergistic mechanism for lignin breakdown.
Collapse
Affiliation(s)
- Mariane Daou
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Alexandra Bisotto
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Mireille Haon
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Lydie Oliveira Correia
- PAPPSO Platform, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Betty Cottyn
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (B.C.); (S.B.)
| | - Elodie Drula
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Soňa Garajová
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Emmanuel Bertrand
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Eric Record
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - David Navarro
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
- CIRM-CF BBF, INRAE, Aix Marseille University, 13288 Marseille, France
| | - Sana Raouche
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Stéphanie Baumberger
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (B.C.); (S.B.)
| | - Craig B. Faulds
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
- Correspondence:
| |
Collapse
|
11
|
Ntsobi N, Fanadzo M, Le Roes-Hill M, Nchu F. Effects of Clonostachys rosea f. catenula Inoculum on the Composting of Cabbage Wastes and the Endophytic Activities of the Composted Material on Tomatoes and Red Spider Mite Infestation. Microorganisms 2021; 9:microorganisms9061184. [PMID: 34072654 PMCID: PMC8228010 DOI: 10.3390/microorganisms9061184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Globally, fungal inocula are being explored as agents for the optimization of composting processes. This research primarily evaluates the effects of inoculating organic vegetable heaps with the entomopathogenic fungus Clonostachys rosea f. catenula (Hypocreales) on the biophysicochemical properties of the end-product of composting. Six heaps of fresh cabbage (Brassica oleracea var. capitata) waste were inoculated with C. rosea f. catenula conidia and another six were not exposed to the fungus. The composted materials from the fungus- and control-treated heaps were subsequently used as a medium to cultivate tomatoes (Solanum lycopersicum). The biophysicochemical characteristics of the composted materials were also assessed after composting. In addition, the protective effect of the fungal inoculum against red spider mite (Tetranychus urticae) infestations in the tomatoes was evaluated through the determination of conidial colonization of the plant tissue and the number of plants infested by the insect. Furthermore, phytotoxicity tests were carried out post experiment. There were few significant variations (p < 0.05) in heap temperature or moisture level between treatments based on the weekly data. We found no significant differences in the levels of compost macronutrient and micronutrient constituents. Remarkably, the composted materials, when incorporated into a growth medium from fungus-treated heaps, induced a 100% endophytic tissue colonization in cultivated tomato plants. While fewer red spider mite infestations were observed in tomato plants grown in composted materials from fungus-treated heaps, the difference was not significant (χ2 = 0.96 and p = 0.32). The fungal treatment yielded composted materials that significantly (p < 0.05) enhanced tomato seed germination, and based on the phytotoxicity test, the composted samples from the heaps exposed to the C. rosea f. catenula inoculum were not toxic to tomato seeds and seedlings. In conclusion, this study showed that C. rosea f. catenula improved the quality of composted materials in terms of fungal endophytism and seed germination.
Collapse
Affiliation(s)
- Nomfusi Ntsobi
- Department of Agriculture, Wellington Campus, Cape Peninsula University of Technology, Jan Van Riebeeck Street, Private Bag X8, Wellington 7654, South Africa; (N.N.); (M.F.)
- Department of Horticultural Sciences, Bellville Campus, Cape Peninsula University of Technology, Symphony Way, P.O. Box 1906, Bellville 7535, South Africa
| | - Morris Fanadzo
- Department of Agriculture, Wellington Campus, Cape Peninsula University of Technology, Jan Van Riebeeck Street, Private Bag X8, Wellington 7654, South Africa; (N.N.); (M.F.)
| | - Marilize Le Roes-Hill
- Applied Microbial and Health Biotechnology Institute, Bellville Campus, Cape Peninsula University of Technology, Symphony Way, P.O. Box 1906, Bellville 7535, South Africa;
| | - Felix Nchu
- Department of Horticultural Sciences, Bellville Campus, Cape Peninsula University of Technology, Symphony Way, P.O. Box 1906, Bellville 7535, South Africa
- Correspondence:
| |
Collapse
|
12
|
Liu T, Kumar Awasthi M, Jiao M, Kumar Awasthi S, Qin S, Zhou Y, Liu H, Li J, Zhang Z. Changes of fungal diversity in fine coal gasification slag amendment pig manure composting. BIORESOURCE TECHNOLOGY 2021; 325:124703. [PMID: 33476856 DOI: 10.1016/j.biortech.2021.124703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to investigate fungal diversity and relative abundance (RA) during pig manure composting via high-throughput sequencing approach. Fine coal gasification slag (FCGS) (0%, 2%, 4%, 6%, 8% and 10%) were added into composting raw materials as additive and performed 42 days. Adjust C/N and moisture to 30 and 65%. Results showed that dominant phyla were Ascomycota (99.62%) and Basidiomycota (0.38%). The main genera were Epicoccum (1.26%), Alternaria (83.35%), Aspergillus (12.08%) and Gibberella (1.69%). 10% treatment got the higher abundance and operational taxonomic units number from rank abundance curve and petals diagram. Compared with control, FCGS amendment composting could increase the sanitary time (3-7 d) and total nitrogen (0.05-12.03%). The principal component analysis was considered that FCGS treatments and control had significantly difference. The RA of fungi varied among all treatments. Therefore, 10% treatment was a potential candidate to enhance fungal diversity and composting quality.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
13
|
Madbouly AK. Biodiversity of Genus Trichoderma and Their Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Arthroderma tuberculatum and Arthroderma multifidum Isolated from Soils in Rook ( Corvus frugilegus) Colonies as Producers of Keratinolytic Enzymes and Mineral Forms of N and S. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249162. [PMID: 33302453 PMCID: PMC7763491 DOI: 10.3390/ijerph17249162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022]
Abstract
Keratinolytic fungi representing the genus Arthroderma that were isolated from the soils of a rook (Corvus frugilegus) colony were used as biological agents for the disposal of waste feathers. The aim of this study was to assess the abilities of Arthroderma tuberculatum and Arthroderma multifidum fungi with a varied inflow of keratin matter to biodegrade waste feathers. The evaluation was based on the determination of feather mass loss, the activity of keratinolytic enzymes, and the content of mineral N and S forms. It was found that the activity of protease released by the fungi contributed to an increase in the level of soluble proteins and peptides and the concentration of ammonium ions, as well as alkalization of the culture medium. Keratinase activity was significantly correlated with sulfate release, especially in A. tuberculatum cultures. The strains of A. tuberculatum fungi isolated from the soil with the highest supply of organic matter, i.e., strains III, IV, and V, had the lowest enzymatic activity, compared to the A. multifidum strains, but they released mineral nitrogen and sulfur forms that are highly important for fertilization, as well as nutritionally important peptides and amino acids. A. tuberculatum strains can be used for the management of waste feathers that can be applied in agricultural practice.
Collapse
|