1
|
Wieczorek K, Bukowski P, Stawiński K, Ryłko I. Recycling of Polyurethane Foams via Glycolysis: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4617. [PMID: 39336358 PMCID: PMC11433504 DOI: 10.3390/ma17184617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Polyurethane foams constitute highly problematic waste due to their low density and consequently large volume. Among the most promising recycling approaches, the glycolysis of polyurethane waste stands out and was extensively discussed in this article. Existing literature reviews lack a detailed analysis of glycolysis processes and a clear presentation of the most important data. However, in this review, the scientific literature on glycolysis has been thoroughly examined and updated with the latest research in the field. The article provides an overview of glycolysis methods, categorized into rigid and flexible foams, along with a review of the catalysts and process conditions employed. Additionally, this study offers a comprehensive analysis of industrial methods protected by active patents, which has not been previously explored in the literature. This detailed examination of patent information adds significant value to the review and distinguishes it from others. Furthermore, this review also aims to introduce the main types of polyurethanes and their properties. It outlines the fundamentals of recycling strategies, thermomodernization trends, and environmental considerations, highlighting the critical role of recycling in the industry. The article serves as a complete foundation for exploring new alternative methods in this field.
Collapse
Affiliation(s)
- Kinga Wieczorek
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
- Selena Industrial Technologies Sp. z o.o., Pieszycka 3, 58-200 Dzierżoniów, Poland
| | - Przemysław Bukowski
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| | - Krystian Stawiński
- Selena Industrial Technologies Sp. z o.o., Pieszycka 3, 58-200 Dzierżoniów, Poland
| | - Iwona Ryłko
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| |
Collapse
|
2
|
Makowska S, Szymborski D, Sienkiewicz N, Kairytė A. Current Progress in Research into Environmentally Friendly Rigid Polyurethane Foams. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3971. [PMID: 39203149 PMCID: PMC11355871 DOI: 10.3390/ma17163971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024]
Abstract
Polyurethane foams are materials characterized by low density and thermal conductivity and can therefore be used as thermal insulation materials. They are synthesized from toxic and environmentally unfriendly petrochemicals called isocyanates and polyols, which react with each other to form a urethane group via the displacement of the movable hydrogen atom of the -OH group of the alcohol to the nitrogen atom of the isocyanate group. The following work describes the synthesis of polyurethane foams, focusing on using environmentally friendly materials, such as polyols derived from plant sources or modifiers, to strengthen the foam interface derived from plant precipitation containing cellulose derived from paper waste. The polyurethane foam industry is looking for new sources of materials to replace the currently used petrochemical products. The solutions described are proving to be an innovative and promising area capable of changing the face of current PU foam synthesis.
Collapse
Affiliation(s)
- Sylwia Makowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (S.M.); (D.S.); (N.S.)
- Civil Engineering Research Centre, Vilnius Gediminas Technical University, Saulėtekio av. 11, 10223 Vilnius, Lithuania
| | - Dawid Szymborski
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (S.M.); (D.S.); (N.S.)
| | - Natalia Sienkiewicz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (S.M.); (D.S.); (N.S.)
| | - Agnė Kairytė
- Civil Engineering Research Centre, Vilnius Gediminas Technical University, Saulėtekio av. 11, 10223 Vilnius, Lithuania
| |
Collapse
|
3
|
Graham M, Samuel G, Farley M. Roadmap for low-carbon ultra-low temperature storage in biobanking. J Transl Med 2024; 22:747. [PMID: 39118108 PMCID: PMC11308585 DOI: 10.1186/s12967-024-05383-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
Biobanks have become an integral part of health and bioscience research. However, the ultra-low temperature (ULT) storage methods that biobanks employ [ULT freezers and liquid nitrogen (LN2)] are associated with carbon emissions that contribute to anthropogenic climate change. This paper aims to provide a 'Roadmap' for reducing carbon emissions associated with ULT storage in biobanking. The Roadmap offers recommendations associated with nine areas of ULT storage practice: four relating to ULT freezers, three associated with LN2 storage, and two generalised discussions regarding biosample management and centralisation. For each practice, we describe (a) the best approaches to mitigate carbon emissions, (b) explore barriers associated with hindering their implementation, and (c) make a series of recommendations that can help biobank stakeholders overcome these barriers. The recommendations were the output of a one year, UK-based, multidisciplinary research project that involved a quantitative Carbon Footprinting Assessment of the emissions associated with 1 year of ULT storage (for both freezers and LN2) at four different case study sites; as well as two follow up stakeholder workshops to qualitatively explore UK biobank stakeholder perceptions, views, and experiences on how to consider such assessments within the broader social, political, financial, technical, and cultural contexts of biobanking.
Collapse
Affiliation(s)
- Matthew Graham
- Department for Global Health and Social Medicine, King's College London, London, WC2R 2LS, UK
| | - Gabrielle Samuel
- Department for Global Health and Social Medicine, King's College London, London, WC2R 2LS, UK.
| | | |
Collapse
|
4
|
del Amo J, Iswar S, Vanbergen T, Borreguero AM, De Vos SDE, Verlent I, Willems J, Rodriguez Romero JF. Polyurethane Composites Recycling with Styrene-Acrylonitrile and Calcium Carbonate Recovery. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2844. [PMID: 38930213 PMCID: PMC11204646 DOI: 10.3390/ma17122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
The glycolysis process of flexible polyurethane foams containing styrene-acrylonitrile and calcium carbonate as fillers was explored in detail. The use of DABCO as a catalyst allowed us to reduce the catalyst concentration and the polyurethane-to-glycol mass ratio to 0.1% and 1:1, respectively. The glycolysis process allowed us to obtain a high-purity polyol (99%), which can totally replace raw polyols in the synthesis of new flexible polyurethane foams, maintaining the standard mechanical properties of the original one and modifying the ratio of isocyanates employed to correct the closed cell structure caused by the impurities present in the recovered polyol. This isocyanate mixture was also optimized, resulting in a ratio of 30 and 70% of the isocyanates TDI80 and TDI65, respectively. Additionally, the fillers incorporated in the glycolyzed foams were recovered. Both recovered fillers, styrene-acrylonitrile and calcium carbonate, were fully characterized, showing a quality very similar to that of commercial compounds. Finally, the replacement of commercial fillers by the recovered ones in the synthesis of new polyurethane foams was studied, demonstrating the feasibility of using them in the synthesis of new foams without significantly altering their properties.
Collapse
Affiliation(s)
- Jesús del Amo
- Chemical Engineering Department, University of Castilla-La Mancha, Institute of Chemical and Environmental Technology, ITQUIMA, Avda. Camilo José Cela s/n, 13004 Ciudad Real, Spain; (J.d.A.); (A.M.B.)
| | - Subramaniam Iswar
- Recticel Engineered Foams Belgium BV, Damstraat 2, 9230 Wetteren, Belgium; (S.I.); (I.V.); (J.W.)
| | - Thomas Vanbergen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, P.O. Box 2454, 3001 Leuven, Belgium; (T.V.); (S.D.E.D.V.)
| | - Ana Maria Borreguero
- Chemical Engineering Department, University of Castilla-La Mancha, Institute of Chemical and Environmental Technology, ITQUIMA, Avda. Camilo José Cela s/n, 13004 Ciudad Real, Spain; (J.d.A.); (A.M.B.)
| | - Simon Dirk E. De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, P.O. Box 2454, 3001 Leuven, Belgium; (T.V.); (S.D.E.D.V.)
| | - Isabel Verlent
- Recticel Engineered Foams Belgium BV, Damstraat 2, 9230 Wetteren, Belgium; (S.I.); (I.V.); (J.W.)
| | - Jan Willems
- Recticel Engineered Foams Belgium BV, Damstraat 2, 9230 Wetteren, Belgium; (S.I.); (I.V.); (J.W.)
| | - Juan Francisco Rodriguez Romero
- Chemical Engineering Department, University of Castilla-La Mancha, Institute of Chemical and Environmental Technology, ITQUIMA, Avda. Camilo José Cela s/n, 13004 Ciudad Real, Spain; (J.d.A.); (A.M.B.)
| |
Collapse
|
5
|
Guo L, Wang F, Chai H, Liu G, Jian X, Zhao J, Liu K, Liu H, Liu T, Zhang X, Wang Y, Liu F. Mechanochemical Recycling of Flexible Polyurethane Foam Scraps for Quantitative Replacement of Polyol Using Wedge-Block-Reinforced Extruder. Polymers (Basel) 2024; 16:1633. [PMID: 38931982 PMCID: PMC11207381 DOI: 10.3390/polym16121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Recycling flexible polyurethane foam (F-PUF) scraps is difficult due to the material's high cross-linking structure. In this work, a wedge-block-reinforced extruder with a considerable enhanced shear extrusion and stretching area between the rotating screw and the stationary wedge blocks was utilized to recycle F-PUF scraps into powder containing surface-active hydroxyl groups. The powder was then utilized for the quantitative replacement of polyol in the foaming process. Characterizations showed that the continuous shear extrusion and stretching during the extrusion process reduced the volume mean diameter (VMD) of the F-PUF powder obtained by extruding it three times at room temperature to reach 54 μm. The -OH number (OHN) of the powder prepared by extruding it three times reached 19.51 mgKOH/g due to the mechanochemical effect of the powdering method. The F-PUF containing recycled powder used to quantitively replace 10 wt.% polyol was similar in microstructure and chemical structure to the original F-PUF, with a compression set of 2%, indentation load deflection of 21.3 lbf, resilience of 43.4%, air permeability of 815.7 L/m2·s, tensile strength of 73.0 Kpa, and tear strength of 2.3 N/cm, indicating that the recycling method has potential for industrial applications.
Collapse
Affiliation(s)
- Lei Guo
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (L.G.); (F.W.); (H.C.); (G.L.); (X.J.); (J.Z.); (K.L.)
- National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science & Technology, Qingdao 266061, China;
| | - Fu Wang
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (L.G.); (F.W.); (H.C.); (G.L.); (X.J.); (J.Z.); (K.L.)
| | - Hailin Chai
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (L.G.); (F.W.); (H.C.); (G.L.); (X.J.); (J.Z.); (K.L.)
| | - Gongxu Liu
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (L.G.); (F.W.); (H.C.); (G.L.); (X.J.); (J.Z.); (K.L.)
| | - Xingao Jian
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (L.G.); (F.W.); (H.C.); (G.L.); (X.J.); (J.Z.); (K.L.)
| | - Jinyang Zhao
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (L.G.); (F.W.); (H.C.); (G.L.); (X.J.); (J.Z.); (K.L.)
| | - Kexin Liu
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (L.G.); (F.W.); (H.C.); (G.L.); (X.J.); (J.Z.); (K.L.)
| | - Haichao Liu
- National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science & Technology, Qingdao 266061, China;
| | - Tiewei Liu
- Hisense Refrigerator Co., Ltd., Qingdao 266700, China; (T.L.); (X.Z.); (Y.W.)
| | - Xiangping Zhang
- Hisense Refrigerator Co., Ltd., Qingdao 266700, China; (T.L.); (X.Z.); (Y.W.)
| | - Yongshuai Wang
- Hisense Refrigerator Co., Ltd., Qingdao 266700, China; (T.L.); (X.Z.); (Y.W.)
| | - Fumin Liu
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (L.G.); (F.W.); (H.C.); (G.L.); (X.J.); (J.Z.); (K.L.)
| |
Collapse
|
6
|
Ahir M, Bodhak C, Gupta RK. Harnessing Enhanced Flame Retardancy in Rigid Polyurethane Composite Foams through Hemp Seed Oil-Derived Natural Fillers. Polymers (Basel) 2024; 16:1584. [PMID: 38891530 PMCID: PMC11174686 DOI: 10.3390/polym16111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Over the past few decades, polymer composites have received significant interest and become protagonists due to their enhanced properties and wide range of applications. Herein, we examined the impact of filler and flame retardants in hemp seed oil-based rigid polyurethane foam (RPUF) composites' performance. Firstly, the hemp seed oil (HSO) was converted to a corresponding epoxy analog, followed by a ring-opening reaction to synthesize hemp bio-polyols. The hemp polyol was then reacted with diisocyanate in the presence of commercial polyols and other foaming components to produce RPUF in a single step. In addition, different fillers like microcrystalline cellulose, alkaline lignin, titanium dioxide, and melamine (as a flame retardant) were used in different wt.% ratios to fabricate composite foam. The mechanical characteristics, thermal degradation behavior, cellular morphology, apparent density, flammability, and closed-cell contents of the generated composite foams were examined. An initial screening of different fillers revealed that microcrystalline cellulose significantly improves the mechanical strength up to 318 kPa. The effect of melamine as a flame retardant in composite foam was also examined, which shows the highest compression strength of 447 kPa. Significantly better anti-flaming qualities than those of neat foam based on HSO have been reflected using 22.15 wt.% of melamine, with the lowest burning time of 4.1 s and weight loss of 1.88 wt.%. All the composite foams showed about 90% closed-cell content. The present work illustrates the assembly of a filler-based polyurethane foam composite with anti-flaming properties from bio-based feedstocks with high-performance applications.
Collapse
Affiliation(s)
- Mansi Ahir
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, KS 66762, USA;
- National Institute for Materials Advancement, Pittsburg State University, 1204 Research Road, Pittsburg, KS 66762, USA
| | - Chandan Bodhak
- National Institute for Materials Advancement, Pittsburg State University, 1204 Research Road, Pittsburg, KS 66762, USA
| | - Ram K. Gupta
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, KS 66762, USA;
- National Institute for Materials Advancement, Pittsburg State University, 1204 Research Road, Pittsburg, KS 66762, USA
| |
Collapse
|
7
|
Khalaf MM, Abd El-Lateef HM, Abou Taleb MF, Gouda M. Graphene nanosheet reinforcement of polyurethane nanocomposite for green and sustainable photoluminescence, superhydrophobic, and anticorrosive paint. LUMINESCENCE 2024; 39:e4753. [PMID: 38698700 DOI: 10.1002/bio.4753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/24/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
A simple and environmentally friendly method was developed for smart and efficient waterborne polyurethane (PUR) paint. Sugarcane bagasse was recycled into reduced graphene oxide nanosheets (rGONSs). Both lanthanide-doped aluminate nanoparticles (LAN; photoluminescent agent, 7-9 nm) and rGONSs (reinforcement agent) were integrated into a waterborne polyurethane to produce a novel photoluminescent, hydrophobic, and anticorrosive nanocomposite coating. Using ferrocene-based oxidation under masked circumstances, graphene oxide nanosheets were produced from sugarcane bagasse. The oxidized semicarbazide (SCB) nanostructures were integrated into polyurethane coatings as a drying, anticorrosion, and crosslinking agent. Polyurethane coatings with varying amounts of phosphor pigment were prepared and subsequently applied to mild steel. The produced paints (LAN/rGONSs@PUR) were tested for their hydrophobicity, hardness, and scratch resistance. Commission Internationale de l'éclairage (CIE) Laboratory parameters and photoluminescence analysis established the opacity and colourimetric properties of the nanocomposite coatings. When excited at 365 nm, the luminescent transparent paints emitted a strong greenish light at 517 nm. The anticorrosion characteristics of the coated steel were investigated. The phosphor-containing (11% w/w) polyurethane coatings displayed the most pronounced anticorrosion capability and long-persistent luminosity. The prepared waterborne polyurethane paints were very photostable and durable.
Collapse
Affiliation(s)
- Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
8
|
Horváth T, Kecskés K, Jordán Csábrádiné A, Szőri-Dorogházi E, Viskolcz B, Szőri M. Searching for the Achilles' Heel of Urethane Linkage-An Energetic Perspective. Polymers (Basel) 2024; 16:1126. [PMID: 38675045 PMCID: PMC11053941 DOI: 10.3390/polym16081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
A sudden increase in polyurethane (PU) production necessitates viable recycling methods for the waste generated. PU is one of the most important plastic materials with a wide range of applications; however, the stability of the urethane linkage is a major issue in chemical recycling. In this work, termination reactions of a model urethane molecule, namely methyl N-phenyl carbamate (MPCate), are investigated using G3MP2B3 composite quantum chemical method. Our main goal was to gain insights into the energetic profile of urethane bond termination and find an applicable chemical recycling method. Hydrogenation, hydrolysis, methanolysis, peroxidation, glycolysis, ammonolysis, reduction with methylamine and termination by dimethyl phosphite were explored in both gas and condensed phases. Out of these chemicals, degradation by H2, H2O2 and CH3NH2 revealed promising results with lower activation barriers and exergonic pathways, especially in water solvation. Implementing these effective PU recycling methods can also have significant economic benefits since the obtained products from the reactions are industrially relevant substances. For example, aniline and dimethyl carbonate could be reusable in polymer technologies serving as potential methods for circular economy. As further potential transformations, several ionizations of MPCate were also examined including electron capture and detachment, protonation/deprotonation and reaction with OH-. Alkaline digestion against the model urethane MPCate was found to be promising due to the relatively low activation energy. In an ideal case, the transformation of the urethane bond could be an enzymatic process; therefore, potential enzymes, such as lipoxygenase, were also considered for the catalysis of peroxidation, and lipases for methanolysis.
Collapse
Affiliation(s)
- Tamás Horváth
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros A/2, H-3515 Miskolc, Hungary; (K.K.); (A.J.C.); (E.S.-D.)
| | - Karina Kecskés
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros A/2, H-3515 Miskolc, Hungary; (K.K.); (A.J.C.); (E.S.-D.)
| | - Anikó Jordán Csábrádiné
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros A/2, H-3515 Miskolc, Hungary; (K.K.); (A.J.C.); (E.S.-D.)
| | - Emma Szőri-Dorogházi
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros A/2, H-3515 Miskolc, Hungary; (K.K.); (A.J.C.); (E.S.-D.)
| | - Béla Viskolcz
- Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515 Miskolc, Hungary;
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros A/2, H-3515 Miskolc, Hungary; (K.K.); (A.J.C.); (E.S.-D.)
| |
Collapse
|
9
|
Osemeahon SA, Akinterinwa A, Fasina E, Andrew FP, Shagal MH, Kareem SA, Reuben U, Onyebuchi PU, Adelagun OR, Esenowo D. Reduction of polystyrene/polyurethane plastic wastes from the environment into binders for water-resistant emulsion paints. Heliyon 2024; 10:e27868. [PMID: 38533006 PMCID: PMC10963325 DOI: 10.1016/j.heliyon.2024.e27868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Waste management is fundamental to resource and environmental sustainability. Expanded polystyrene (EPS) and polyurethane (PU) waste plastics were recycled and applied as binder in emulsion paint formulation. The recycled polystyrene (rPS) and polyurethane (rPU) were blended into composite resins, where toluene was used as the solvent. The blends of rPS and rPU were optimized, while some physicochemical properties of the composite blends (rPS/PU) were evaluated. The results showed that the incorporation of rPU into rPS increased the viscosity (1818 mPa-3924 mPa), rate of gelation (dry-to-touch time: 15 min-0.25 min), moisture content (2.7%-8.1%), moisture uptake (3.2%-5.0%), solid content (48%-53.4%) and density (0.82 g/cm3 to 1.050.82 g/cm3) of the rPS/PU composite resins. Characterization was carried out using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and atomic force microscopy (AFM). The results summarily showed that there are interactions among the rPS and rPU molecules in the composite, where complimentary structural and morphological characteristics were also achieved. The composite resin also exhibited superior bond strength (0.5-4.24 Mpa) on wood, cast mortar, ceramic, and steel surfaces due to its stronger intra- and inter-surface interactions compared to the neat rPS resin. The composite resin was used as a binder in the formulation of emulsion paint. The paint exhibited stronger resistance to water, among other superior properties, when compared to the paints formulated using neat rPS and conventional polyvinyl acetate (PVA) resins. The reduction of plastic waste in this study holds potential for the production of highly water-resistant emulsion paint for outdoor and indoor applications.
Collapse
Affiliation(s)
| | | | - Esther Fasina
- Department of Chemistry, Modibbo Adama University, PMB 2076, Yola, Nigeria
| | - Fartisincha P. Andrew
- Department of Science Laboratory Technology, Modibbo Adama University, PMB 2076, Yola, Nigeria
| | - Muhammed H. Shagal
- Department of Chemistry, Modibbo Adama University, PMB 2076, Yola, Nigeria
| | - Semiu A. Kareem
- Department of Chemical Engineering, Modibbo Adama University, PMB 2076, Yola, Nigeria
| | - Usaku Reuben
- Department of Science Laboratory Technology, Modibbo Adama University, PMB 2076, Yola, Nigeria
| | - Patience U. Onyebuchi
- Department of Science Laboratory Technology, Modibbo Adama University, PMB 2076, Yola, Nigeria
| | | | - David Esenowo
- Department of Chemistry, Modibbo Adama University, PMB 2076, Yola, Nigeria
| |
Collapse
|
10
|
Waleed HQ, Hadjadj R, Viskolcz B, Fiser B. Stoichiometric reaction and catalytic effect of 2-dimethylaminoethanol in urethane formation. Phys Chem Chem Phys 2024; 26:7103-7108. [PMID: 38345799 DOI: 10.1039/d3cp05800j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
A computational study of the stoichiometric reaction and catalytic effect of 2-dimethylaminoethanol (DMEA) in urethane formation was performed. DMEA, besides its catalytic tertiary amine site, contains a hydroxyl group that can react with isocyanates and thus, it can affect the synthesis of polyurethane. In the catalytic system, the reaction between phenyl isocyanate and butan-1-ol, involving DMEA as a catalyst, was investigated. Meanwhile, for the competitive stoichiometric process, the reaction between phenyl isocyanate and DMEA was also considered. Both reactions were investigated by using the G3MP2BHandHLYP composite method and acetonitrile was chosen as the solvent. It was revealed that both pathways (catalytic and stoichiometric processes) are similar thermodynamically, but the catalytic reaction is preferred kinetically, which indicates the applicability of DMEA in urethane synthesis.
Collapse
Affiliation(s)
- Hadeer Q Waleed
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros 3515, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros 3515, Hungary.
| | - Rachid Hadjadj
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros 3515, Hungary.
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros 3515, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros 3515, Hungary.
| | - Béla Fiser
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros 3515, Hungary.
- Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, Beregszász, Transcarpathia, 90200, Ukraine
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Lodz, 90-236, Poland
| |
Collapse
|
11
|
Liu Z, Fang Z, Zheng N, Yang K, Sun Z, Li S, Li W, Wu J, Xie T. Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins. Nat Chem 2023; 15:1773-1779. [PMID: 37640848 DOI: 10.1038/s41557-023-01308-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Polyurethane thermosets are indispensable to modern life, but their widespread use has become an increasingly pressing environmental burden. Current recycling approaches are economically unattractive and/or lead to recycled products of inferior properties, making their large-scale implementation unviable. Here we report a highly efficient chemical strategy for upcycling thermoset polyurethane foams that yields products of much higher economic values than the original material. Starting from a commodity foam, we show that the polyurethane network is chemically fragmented into a dissolvable mixture under mild conditions. We demonstrate that three-dimensional photo-printable resins with tunable material mechanical properties-which are superior to commercial high-performance counterparts-can be formulated with the addition of various network reforming additives. Our direct upcycling of commodity foams is economically attractive and can be implemented with ease, and the principle can be expanded to other commodity thermosets.
Collapse
Affiliation(s)
- Zenghe Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Zizheng Fang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Kexuan Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhuo Sun
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Sujing Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Wei Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jingjun Wu
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Kassem H, Imbernon L, Stricker L, Jonckheere L, Du Prez FE. Reprocessable Polyurethane Foams Using Acetoacetyl-Formed Amides. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37917002 DOI: 10.1021/acsami.3c12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Like any other thermosetting material, polyurethane foams (PUFs) contain permanent cross-links that hinder their reprocessability and make their recyclability a tedious and environmentally unfriendly process. Herein, we introduce acetoacetyl-formed amides, formed by the reaction of isocyanates with acetoacetate groups, as dynamic units in the backbone of PUFs. By extensive variation of the foam composition, optimum parameters have been found to produce malleable foams above temperatures of 130 °C, without the requirement of any solvent during the foaming process. The PU cross-linked material can be compression-molded at least three times, giving rise to PU elastomers and thus maintaining a cross-linked network structure. Characterization of the original foams shows comparable properties to standard PUFs, for example, having a density of 32 kg/m3, while they show similar chemical and thermal properties upon reprocessing to strong PU elastomers, exhibiting Tg ranging from -42 to -48 °C. This research provides a straightforward method to produce thermally reprocessable PUFs as a promising pathway to address the recycling issues of end-of-life foams.
Collapse
Affiliation(s)
- Hiba Kassem
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
- Recticel NV, Damstraat 2, Industriezone 7, 9230 Wetteren, Belgium
| | - Lucie Imbernon
- Recticel NV, Damstraat 2, Industriezone 7, 9230 Wetteren, Belgium
| | - Lucas Stricker
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | - Laura Jonckheere
- Recticel NV, Damstraat 2, Industriezone 7, 9230 Wetteren, Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Chang YJ, Chang JS, Lee DJ. Gasification of biomass for syngas production: Research update and stoichiometry diagram presentation. BIORESOURCE TECHNOLOGY 2023; 387:129535. [PMID: 37495160 DOI: 10.1016/j.biortech.2023.129535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Gasification is a thermal process that converts organic materials into syngas, bio-oil, and solid residues. This mini-review provides an update on current research on producing high-quality syngas from biomass via gasification. Specifically, the review highlights the effective valorization of feedstocks, the development of novel catalysts for reforming reactions, the configuration of novel integrated gasification processes with an assisted field, and the proposal of advanced modeling tools, including the use of machine learning strategies for process design and optimization. The review also includes examples of using a stoichiometry diagram to describe biomass gasification. The research efforts in this area are constantly evolving, and this review provides an up-to-date overview of the most recent advances and prospects for future research. The proposed advancements in gasification technology have the potential to significantly contribute to sustainable energy production and reduce greenhouse gas emissions.
Collapse
Affiliation(s)
- Ying-Ju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong; Department of Chemical Engineering & Materials Engineering, Yuan Ze University, Chung-li, 32003, Taiwan.
| |
Collapse
|
14
|
Waleed HQ, Hadjadj R, Viskolcz B, Fiser B. Effect of morpholine, and 4-methylmorpholine on urethane formation: a computational study. Sci Rep 2023; 13:17950. [PMID: 37863884 PMCID: PMC10589236 DOI: 10.1038/s41598-023-44492-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
A theoretical study of urethane formation through the reaction of phenyl isocyanate and butan-1-ol was carried out, without and in the presence of morpholine, and 4-methylmorpholine catalysts. The reaction with and without catalysts was studied at BHandHLYP/6-31G(d) and G3MP2BHandHLYP levels of theories. The reaction mechanism in the presence of catalysts differs significantly from the catalyst-free case and includes seven steps. The catalyst-free system was investigated along with the catalytic process, the geometries were optimized, and the corresponding thermodynamic properties were calculated. Calculated reactant complexes were compared with crystal structures of morpholine, and 4-methylmorpholine complexed with diols found in the literature. The structures were strikingly similar and thus, the validity of the proposed and studied general organocatalytic reaction mechanism was partially verified. Meanwhile, an irregularity in the energy profile occurred due to the zwitterionic nature of an intermediate. To handle the irregularity, a correction was implemented which handles the appearance of a zwitterionic structure and the corresponding energetic properties. The results showed that morpholine is less effective catalyst compared to 4-methylmorpholine, which can be associated with the difference in their PA (1523.95 and 963.07 kJ/mol, respectively). The current results prove the important role of amine catalysts in urethane synthesis which can be applied in polyurethane catalyst design and development.
Collapse
Affiliation(s)
- Hadeer Q Waleed
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
| | - Rachid Hadjadj
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
| | - Béla Fiser
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary.
- Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, Beregszász, Transcarpathia, 90200, Ukraine.
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Lodz, 90-236, Poland.
| |
Collapse
|
15
|
Miravalle E, Bracco P, Brunella V, Barolo C, Zanetti M. Improving Sustainability through Covalent Adaptable Networks in the Recycling of Polyurethane Plastics. Polymers (Basel) 2023; 15:3780. [PMID: 37765634 PMCID: PMC10537520 DOI: 10.3390/polym15183780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The global plastic waste problem has created an urgent need for the development of more sustainable materials and recycling processes. Polyurethane (PU) plastics, which represent 5.5% of globally produced plastics, are particularly challenging to recycle owing to their crosslinked structure. Covalent adaptable networks (CANs) based on dynamic covalent bonds have emerged as a promising solution for recycling PU waste. CANs enable the production of thermoset polymers that can be recycled using methods that are traditionally reserved for thermoplastic polymers. Reprocessing using hot-pressing techniques, in particular, proved to be more suited for the class of polyurethanes, allowing for the efficient recycling of PU materials. This Review paper explores the potential of CANs for improving the sustainability of PU recycling processes by examining different types of PU-CANs, bond types, and fillers that can be used to optimise the recycling efficiency. The paper concludes that further research is needed to develop more cost-effective and industrial-friendly techniques for recycling PU-CANs, as they can significantly contribute to sustainable development by creating recyclable thermoset polymers.
Collapse
Affiliation(s)
- Edoardo Miravalle
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy; (E.M.); (P.B.); (V.B.); (C.B.)
| | - Pierangiola Bracco
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy; (E.M.); (P.B.); (V.B.); (C.B.)
- INSTM Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
| | - Valentina Brunella
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy; (E.M.); (P.B.); (V.B.); (C.B.)
- INSTM Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
| | - Claudia Barolo
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy; (E.M.); (P.B.); (V.B.); (C.B.)
- INSTM Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
- ICxT Interdepartmental Centre, University of Turin, Via Lungo Dora Siena 100, 10153 Turin, Italy
| | - Marco Zanetti
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy; (E.M.); (P.B.); (V.B.); (C.B.)
- INSTM Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
- ICxT Interdepartmental Centre, University of Turin, Via Lungo Dora Siena 100, 10153 Turin, Italy
| |
Collapse
|
16
|
Grdadolnik M, Zdovc B, Drinčić A, Onder OC, Utroša P, Ramos SG, Ramos ED, Pahovnik D, Žagar E. Chemical Recycling of Flexible Polyurethane Foams by Aminolysis to Recover High-Quality Polyols. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:10864-10873. [PMID: 37502771 PMCID: PMC10369675 DOI: 10.1021/acssuschemeng.3c02311] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/16/2023] [Indexed: 07/29/2023]
Abstract
Polyurethane foams (PUFs) are widely used commodity materials, but most of them end up in landfills at the end of their life, which is not in line with the circular economy approach. Here, we introduce microwave-assisted aminolysis with amine reagents that contain primary and tertiary amino groups in the structure. These reagents enable complete degradation of the urethane groups in the structure of the flexible PUFs with a much lower amount of degradation reagent than is typically required for solvolysis reactions. The purified, recovered polyols are close equivalents to the corresponding virgin polyols in terms of their structural and molar mass characteristics. Therefore, they can be used for the production of high-quality PUFs without having to adapt the synthesis process. The flexible PUFs made from recovered polyols have comparable mechanical properties to those made from virgin polyols.
Collapse
Affiliation(s)
- Maja Grdadolnik
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Blaž Zdovc
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Ana Drinčić
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Ozgun Can Onder
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Petra Utroša
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Susana Garcia Ramos
- Intermediates
Technical Service & Development department, Repsol Quimica S.A., Mendez Álvaro 44, CP28045 Madrid, Spain
| | - Enrique Dominguez Ramos
- Intermediates
Technical Service & Development department, Repsol Quimica S.A., Mendez Álvaro 44, CP28045 Madrid, Spain
| | - David Pahovnik
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Ema Žagar
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| |
Collapse
|
17
|
Gu X, Zhu S, Liu S, Liu Y. Analysis of the Influencing Factors of the Efficient Degradation of Waste Polyurethane and Its Scheme Optimization. Polymers (Basel) 2023; 15:polym15102337. [PMID: 37242911 DOI: 10.3390/polym15102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
This work proposes an efficient catalytic recovery and utilization method for waste polyurethane foam. This method uses ethylene glycol (EG) and propylene glycol (PPG) as two-component alcohololytic agents for the alcoholysis of waste polyurethane foams. For the preparation of recycled polyethers, the conditions of different catalytic degradation systems were catalyzed by duplex metal catalysts (DMC) and alkali metal catalysts, and a synergy with both was also used. The experimental method was adopted with the blank control group and was set up for comparative analysis. The effect of the catalysts on the recycling of waste polyurethane foam was investigated. The catalytic degradation of DMC and the alkali metal catalysts alone, as well as the synergistic effect of the two catalysts, was explored. The findings revealed that the NaOH and DMC synergistic catalytic system was the best, and that the system activity was high under a two-component catalyst synergistic degradation. When the amount of NaOH added in the degradation system was 0.25%, the amount of DMC added was 0.04%, the reaction time was 2.5 h, and the reaction temperature was 160 °C, the waste polyurethane foam was completely alcoholized, and the prepared regenerated polyurethane foam had high compressive strength and good thermal stability. The efficient catalytic recycling method of waste polyurethane foam proposed in this paper has certain guiding and reference values for the practical production of solid-waste-recycled polyurethane.
Collapse
Affiliation(s)
- Xiaohua Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 200051, China
- School of Energy and Building Environment, Guilin University of Aerospace Technology, Guilin 541004, China
| | - Shangwen Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 200051, China
| | - Siwen Liu
- College of Innovative Material and Energy, Hubei University, Wuhan 430062, China
| | - Yan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 200051, China
| |
Collapse
|
18
|
Abstract
Porous organic cages (POCs) are a relatively new class of low-density crystalline materials that have emerged as a versatile platform for investigating molecular recognition, gas storage and separation, and proton conduction, with potential applications in the fields of porous liquids, highly permeable membranes, heterogeneous catalysis, and microreactors. In common with highly extended porous structures, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), POCs possess all of the advantages of highly specific surface areas, porosities, open pore channels, and tunable structures. In addition, they have discrete molecular structures and exhibit good to excellent solubilities in common solvents, enabling their solution dispersibility and processability─properties that are not readily available in the case of the well-established, insoluble, extended porous frameworks. Here, we present a critical review summarizing in detail recent progress and breakthroughs─especially during the past five years─of all the POCs while taking a close look at their strategic design, precise synthesis, including both irreversible bond-forming chemistry and dynamic covalent chemistry, advanced characterization, and diverse applications. We highlight representative POC examples in an attempt to gain some understanding of their structure-function relationships. We also discuss future challenges and opportunities in the design, synthesis, characterization, and application of POCs. We anticipate that this review will be useful to researchers working in this field when it comes to designing and developing new POCs with desired functions.
Collapse
Affiliation(s)
- Xinchun Yang
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Zakir Ullah
- Convergence Research Center for Insect Vectors, Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Cafer T Yavuz
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955, Saudi Arabia
- Advanced Membranes & Porous Materials Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
- KAUST Catalysis Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
19
|
Borucka M, Mizera K, Przybysz J, Kozikowski P, Gajek A. Analysis of Flammability and Smoke Emission of Plastic Materials Used in Construction and Transport. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2444. [PMID: 36984324 PMCID: PMC10054394 DOI: 10.3390/ma16062444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
This study provides valuable data on the specific toxic products that could be released from the commercially used, flexible polyurethane foams (FPUFs) during a fire. The steady-state tube furnace (Purser furnace) was used to generate combustion and thermal degradation products under different fire conditions. The concentrations of asphyxiates and irritant gases were determined using a Fourier transform infrared spectroscopy gas analyser. The volatile and semi-volatile organic compounds released in the fire effluents were collected using the solid-phase microextraction technique and identified by gas chromatography with a mass selective detector. In addition, the thermal stability of the FPUFs was evaluated by simultaneous thermal analysis. The cone calorimetry test was used to determine the flame retardancy of the selected materials. The obtained results show that the emission of carbon monoxide and hydrogen cyanide during the thermal degradation and combustion of the tested foams exceeded the permissible values and pose a serious threat to human life and health. Moreover, substituted benzenes, aldehydes, and polycyclic hydrocarbons were found in the released gases during all of the test conditions.
Collapse
|
20
|
Easley AD, Mangano A, Fors BP. Safer Polyurethane Foams with Cyclic Carbonates. Angew Chem Int Ed Engl 2023; 62:e202218062. [PMID: 36637901 DOI: 10.1002/anie.202218062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Polyurethanes (PUs) are a class of materials usually synthesized from isocyanates, diols, and water. Water is essential for producing carbon dioxide (CO2 ) which is used for the self-blowing of the foams. Due to safety concerns with the production of isocyanates, alternative chemistries have been evaluated and cyclic carbonate systems have shown great promise. In a recent advancement by Bourguignon, Grignard, and Detrembleur, a cyclic carbonate and diamine system is capable of generating CO2 for self-blowing through hydrolysis of the carbonate-based monomer. The authors demonstrate that with a simple variation of the diamine monomer a wide range of physical and thermo-mechanical properties were achievable. This work represents a significant step towards safer and more environmentally friendly PUs.
Collapse
Affiliation(s)
- Alexandra D Easley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Alison Mangano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Brett P Fors
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| |
Collapse
|
21
|
Kowalczyk Ł, Korol J, Chmielnicki B, Laska A, Chuchala D, Hejna A. One More Step towards a Circular Economy for Thermal Insulation Materials-Development of Composites Highly Filled with Waste Polyurethane (PU) Foam for Potential Use in the Building Industry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:782. [PMID: 36676519 PMCID: PMC9864609 DOI: 10.3390/ma16020782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The rapid development of the building sector has created increased demand for novel materials and technologies, while on the other hand resulting in the generation of a severe amount of waste materials. Among these are polyurethane (PU) foams, which are commonly applied as thermal insulation materials. Their management is a serious industrial problem, due to, for example, their complex chemical composition. Although some chemical and thermochemical methods of PU foam recycling are known, their broader use is limited due to requirements related to the complexity and safety of their installation, thus implicating high costs. Therefore, material recycling poses a promising alternative. The incorporation of waste PU foams as fillers for polymer composites could make it possible to take advantage of their structure and performance. Herein, polypropylene-based composites that were highly filled with waste PU foam and modified using foaming agents were prepared and analyzed. Depending on the foam loading and the foaming agent applied, the apparent density of material was reduced by as much as 68%. The efficient development of a porous structure, confirmed by scanning electron microscopy and high-resolution computed micro-tomography, enabled a 64% decrease in the thermal conductivity coefficient. The foaming of the structure affected the mechanical performance of composites, resulting in a deterioration of their tensile and compressive performance. Therefore, developing samples of the analyzed composites with the desired performance would require identifying the proper balance between mechanical strength and economic, as well as ecological (share of waste material in composite, apparent density of material), considerations.
Collapse
Affiliation(s)
- Łukasz Kowalczyk
- Central Mining Institute, Department of Material Engineering, Pl. Gwarkow 1, 40-166 Katowice, Poland
| | - Jerzy Korol
- Central Mining Institute, Department of Material Engineering, Pl. Gwarkow 1, 40-166 Katowice, Poland
| | - Błażej Chmielnicki
- Łukasiewicz Research Network–Institute of Engineering of Polymer Materials and Dyes, Center for Paints and Plastics, ul. Chorzowska 50A, 44-100 Gliwice, Poland
| | - Aleksandra Laska
- Faculty of Mechanical Engineering and Ship Technology and EkoTech Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Daniel Chuchala
- Faculty of Mechanical Engineering and Ship Technology and EkoTech Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Aleksander Hejna
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
| |
Collapse
|
22
|
Gu X, Wang X, Wang T, Zhu Y, Guo X, Liu S, Zhu S, Liu Y. Analysis of Factors Influencing the Efficiency of Catalysts Used in Waste PU Degradation. Polymers (Basel) 2022; 14:polym14245450. [PMID: 36559817 PMCID: PMC9781215 DOI: 10.3390/polym14245450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Polyurethane (PU) is an indispensable part of people's lives. With the development of polyurethane, the disposal of polyurethane waste has become a significant issue around the world. Conventional degradation catalysts have poor dispersion and low degradation efficiency when used in the process of solid degradation into liquid. Therefore, this paper innovatively adopts self-made core-shell nanoscale titanium catalysis, traditional alkali metal catalyst (KOH), and polyol to carry out the glycolysis of waste polyurethane (PU) pipeline foam. The homogenized nanoscale titanium catalyst coated with alcohol gel has an obvious core-shell structure. The alcohol gel not only protects the catalyst but also dissolves with the alcoholysis agent in the process of glycolysis and disperses more evenly into the alcoholysis agent to avoid the phenomenon of nanocatalyst agglomeration, so as to facilitate catalytic cracking without reducing catalyst activity. In this study, investigated and compared the production of renewable polyurethane foam via a one-step method based on use of a homogeneous core-shell nanostructured titanium catalyst vs. a traditional alkaline catalyst in terms of the properties of regenerated polyether polyols as well as of the foams produced from these polyols. The physicochemical properties of regenerated polyether polyols that were analyzed included viscosity, hydroxyl value, and average molecular weight. The regenerated polyurethane foams were characterized based on water absorption, TG, SEM, and thermal conductivity analyses. The results show that, when the addition of homogeneous titanium catalyst was T2 0.050 wt.%, the viscosity of regenerated polyether polyols was the lowest, at 5356.7 mPa·s, which was reduced by 9.97% compared with those obtained using the alkali metal catalyst (KOH). When the amount of titanium catalyst was T3 0.075 wt.%, the hard foam made of regenerated polyurethane prepared by the catalyst showed the best properties, with a compressive strength of 0.168 MPa, which is 4.76% higher than that of the foam prepared using KOH catalyst.
Collapse
Affiliation(s)
- Xiaohua Gu
- School of Energy and Building Environment, Guilin University of Aerospace Technology, Guilin 541004, China
- School of Material Science and Engineering, Qiqihar University, Qiqihar 161006, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Correspondence: (X.G.); (Y.L.); Tel.: +86-18121138868 (X.G.); +86-18078343019 (Y.L.)
| | - Xiaoyao Wang
- School of Material Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Tong Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanwei Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinyu Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Siwen Liu
- College of Innovative Material & Energy, Hubei University, Hubei 430062, China
| | - Shangwen Zhu
- School of Energy and Building Environment, Guilin University of Aerospace Technology, Guilin 541004, China
| | - Yan Liu
- School of Energy and Building Environment, Guilin University of Aerospace Technology, Guilin 541004, China
- Correspondence: (X.G.); (Y.L.); Tel.: +86-18121138868 (X.G.); +86-18078343019 (Y.L.)
| |
Collapse
|
23
|
Liu S, Duan R, He S, Liu H, Huang M, Liu X, Liu W, Zhu C. Research progress on dielectric properties of PU and its application on capacitive sensors and OTFTs. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
24
|
Zamani S, Lange JP, Kersten SRA, Ruiz MP. Polyurethane Recycling: Conversion of Carbamates-Catalysis, Side-Reactions and Mole Balance. Polymers (Basel) 2022; 14:polym14224869. [PMID: 36432996 PMCID: PMC9692361 DOI: 10.3390/polym14224869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Diisocyanates, a key monomer in polyurethane, are generally lost during recycling. Polyurethane alcoholysis to carbamate and subsequent cracking to isocyanate represents a promising, phosgene-free recycling route. This work reports the thermal and catalytic cracking of a model carbamate (Methyl N-phenyl carbamate, MPC) to isocyanate (Phenyl isocyanate). Multiple catalysts (ZnO, Bi2O3, Al2O3, and Montmorillonite K-10) were evaluated in a closed system (batch autoclaves) to decompose MPC at temperatures of 160-200 °C, with a thorough analysis of the products and high (≥90%) mole balance. The thermal reaction was very limited at these temperatures, whereas the catalytic reaction led mainly to aniline and urea and seemed to be dominated by water adsorbed on the catalyst surface.
Collapse
Affiliation(s)
- Shahab Zamani
- Sustainable Process Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Jean-Paul Lange
- Sustainable Process Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
- Shell Global Solutions International B.V., Shell Technology Centre Amsterdam, Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Sascha R. A. Kersten
- Sustainable Process Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - M. Pilar Ruiz
- Sustainable Process Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
- Correspondence:
| |
Collapse
|
25
|
Shashoua Y, Peydaei A, Mortensen MN, Kanstrup AB, Gregory DJ. Real time degradation studies on polyurethane household sponges in Danish weather and marine environments. MARINE POLLUTION BULLETIN 2022; 184:114128. [PMID: 36130424 DOI: 10.1016/j.marpolbul.2022.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Polyurethane (PUR) ether sponges represent a widely-used cleaning tool with a short service lifetime resulting in the production of high quantities of waste. However, the fate of PUR in natural environments is poorly understood. In this study, sponges were exposed to the natural environments of Danish weather and seawater for two years. Physiochemical changes were monitored using visual, microscopic, spectroscopic and chromatographic techniques. Results from Attenuated Total Reflection-Fourier Transform Infrared spectroscopy and change in mass indicated that photo-oxidation was the primary degradation pathway of polyurethane ether- based sponges with a specific surface degradation rate of 12,500 μm year-1 in Danish weather. Significantly, analysis by gas chromatography-mass spectrometry showed the release to the environment of toxic substance TDI as a product of photo-oxidation. Although PUR degraded more slowly in seawater than in weather, flame retardant TMCP leached from sponges to water, indicating potential health risks of PUR waste to aquatic life.
Collapse
Affiliation(s)
- Yvonne Shashoua
- Environmental Archaeology and Materials Science, National Museum of Denmark, IC Modewegsvej-Brede, Kongens Lyngby 2800, Denmark
| | - Asal Peydaei
- Environmental Archaeology and Materials Science, National Museum of Denmark, IC Modewegsvej-Brede, Kongens Lyngby 2800, Denmark.
| | - Martin N Mortensen
- Environmental Archaeology and Materials Science, National Museum of Denmark, IC Modewegsvej-Brede, Kongens Lyngby 2800, Denmark
| | - Anders B Kanstrup
- Environmental Archaeology and Materials Science, National Museum of Denmark, IC Modewegsvej-Brede, Kongens Lyngby 2800, Denmark
| | - David J Gregory
- Environmental Archaeology and Materials Science, National Museum of Denmark, IC Modewegsvej-Brede, Kongens Lyngby 2800, Denmark
| |
Collapse
|
26
|
Ranganathan P, Chen CW, Chou YL, Rwei SP, Ramaraj SK. Biomass chemical upcycling of waste rPET for the fabrication of formamide-free TPEE microcellular foams via scCO2 foaming. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
27
|
Deng Y, Li S, Appels L, Dewil R, Zhang H, Baeyens J, Mikulcic H. Producing hydrogen by catalytic steam reforming of methanol using non-noble metal catalysts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116019. [PMID: 36029634 DOI: 10.1016/j.jenvman.2022.116019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Current energy systems have a significant environmental impact and contribute to the climate change. The future energy systems must call upon clean and renewable sources, capable of producing energy with low CO2 emission, hence partly decarbonizing the energy sector. Producing H2 by catalytic steam reforming of methanol (CSRM) is gaining interest for its specific applications in fuel cells, in a decentralized H2 production, or to locally boost the heat content of e.g. natural gas. Supported metal catalysts enhance the endothermic steam-driven methanol conversion. The paper discusses the CSRM manufactures and assesses 2 novel, cheap and efficient catalysts (Co/α-Al2O3 and MnFe2O4). The performance of the Co/α-Al2O3 catalyst is significantly superior to MnFe2O4. The methanol conversion exceeds 95% with high H2 yields (>2.5 mol H2/mol CH3OH) and low CO and CO2 by-product formation. The methanol reaction is very fast and a nearly constant product distribution is achieved for gas-catalyst contact times in excess of 0.3 s. The catalyst maintains its efficiency and selectivity for several days of reaction. The hydrogen productivity of the Co/α-Al2O3 is about 0.9 L H2 gcat-1 h-1., nearly a fourfold of the MnFe2O4 alternative. The different occurring reactions are combined in a kinetics analysis and demonstrate the high rate of reaction and the predicted product distribution. A catalytic sintered metal fleece reactor is finally developed, mostly in view of its integration with a solid oxide fuel cell (SOFC). The assessed CSRM system clearly merits further pilot plant research.
Collapse
Affiliation(s)
- Yimin Deng
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, 2860, Sint-Katelijne-Waver, Belgium
| | - Shuo Li
- Beijing University of Chemical Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, 100029, Beijing, China
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, 2860, Sint-Katelijne-Waver, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, 2860, Sint-Katelijne-Waver, Belgium
| | - Huili Zhang
- Beijing University of Chemical Technology, School of Life Science and Technology, 100029, Beijing, China
| | - Jan Baeyens
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, 2860, Sint-Katelijne-Waver, Belgium; Beijing University of Chemical Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, 100029, Beijing, China.
| | - Hrvoje Mikulcic
- Xi'an Jiaotong University, Department of Thermal Engineering, Xi'an, Shaanxi, China; University of Zagreb, Department of Energy, Power Engineering and Environment (FSB), Zagreb, Croatia.
| |
Collapse
|
28
|
Guo L, Wang W, Guo X, Hao K, Liu H, Xu Y, Liu G, Guo S, Bai L, Ren D, Liu F. Recycling of Flexible Polyurethane Foams by Regrinding Scraps into Powder to Replace Polyol for Re-Foaming. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6047. [PMID: 36079426 PMCID: PMC9457413 DOI: 10.3390/ma15176047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In the context of protecting the ecological environment and carbon neutrality, high-value recycling of flexible polyurethane foam (F-PUF) scraps, generated in the production process, is of great significance to save petroleum raw materials and reduce energy consumption. In the present study, F-PUF scraps were ground into powder by strong shear regrinding using two-roll mill and then reused as a partial replacement of polyol for re-foaming. A series of characterizations were employed to investigate the effect of milling cycles, roller temperatures, and content of the powder on the properties of the powder and F-PUF containing powder. It was revealed that the mechanochemical effect induced breaking of the cross-linking structure and increased activity of the powder. The volume mean diameter (VMD) of powder prepared with 7 milling cycles, at room temperature, is about 97.73 μm. The microstructure and density of the F-PUF containing powder prepared in the above-mentioned manner to replace up to 15 wt.% polyol, is similar to the original F-PUF, with resilience 49.08% and compression set 7.8%, which indicates that the recycling method will play an important role in industrial applications.
Collapse
Affiliation(s)
- Lei Guo
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
- National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Wenchao Wang
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Xiurui Guo
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Kuanfa Hao
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Haichao Liu
- National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Yuan Xu
- Sino-Thai International Rubber College, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Gongxu Liu
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Shouyun Guo
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Lichen Bai
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Donghui Ren
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Fumin Liu
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| |
Collapse
|
29
|
He P, Lu H, Ruan H, Wang C, Zhang Q, Huang Z, Liu J. Mechanochemistry: An Efficient Way to Recycle Thermoset Polyurethanes. Polymers (Basel) 2022; 14:3277. [PMID: 36015532 PMCID: PMC9412547 DOI: 10.3390/polym14163277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
A recycling process of waste thermosetting polyurethane plastics was proposed based on the mechanochemical method, aiming at the three-dimensional network cross-linking structure of thermosetting polyurethane. Orthogonal experimental design was adopted to select three factors of crushing speed, crushing time, and feed amount to determine the best crushing parameters. Then, the waste polyurethane insulation boards were crushed and degraded by the mechanism of regenerative forming with the adjustable speed test machine. Accordingly, the recycled powder was obtained. Finally, nine kinds of polyurethane recycled composite plates were prepared by hot pressing process. The degradation effect of thermosetting polyurethane was analyzed by Fourier transform infrared spectroscopy, scanning electron microscope, and X-ray diffraction. Moreover, the mechanical properties and thermal insulation properties of recycled composite plates were tested and analyzed. The results show that the network cross-linking molecular structure of waste thermosetting polyurethane plastics is destroyed by the effect of mechanochemical action, and methyl and aldehyde groups are decomposed. Therefore, a recycled powder with strong reactivity and plasticity is generated, which improves the activity regeneration ability. After adding thermoplastic resin, the mechanical properties and formability of recycled composite plates are enhanced, with maximum tensile strength up to 9.913 MPa. Correspondingly, the thermal insulation performance of plates is reduced. However, the minimum thermal conductivity can also reach 0.056 W/m·K. This study provides an effective method for the recycling of thermosetting polyurethane plastics.
Collapse
Affiliation(s)
- Ping He
- College of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Tavakoli M, Alhais Lopes P, Hajalilou A, Silva AF, Reis Carneiro M, Carvalheiro J, Marques Pereira J, de Almeida AT. 3R Electronics: Scalable Fabrication of Resilient, Repairable, and Recyclable Soft-Matter Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203266. [PMID: 35697348 DOI: 10.1002/adma.202203266] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
E-waste is rapidly turning into another man-made disaster. It is proposed that a paradigm shift toward a more sustainable future can be made through soft-matter electronics that are resilient, repairable if damaged, and recyclable (3R), provided that they achieve the same level of maturity as industrial electronics. This includes high-resolution patterning, multilayer implementation, microchip integration, and automated fabrication. Herein, a novel architecture of materials and methods for microchip-integrated condensed soft-matter 3R electronics is demonstrated. The 3R function is enabled by a biphasic liquid metal-based composite, a block copolymer with nonpermanent physical crosslinks, and an electrochemical technique for material recycling. In addition, an autonomous laser-patterning method for scalable circuit patterning with an exceptional resolution of <30 µm in seconds is developed. The phase-shifting property of the BCPs is utilized for vapor-assisted "soldering" circuit repairing and recycling. The process is performed entirely at room temperature, thereby opening the door for a wide range of heat-sensitive and biodegradable polymers for the next generation of green electronics. The implementation and recycling of sophisticated skin-mounted patches with embedded sensors, electrodes, antennas, and microchips that build a digital fingerprint of the human electrophysiological signals is demonstrated by collecting mechanical, electrical, optical, and thermal data from the epidermis.
Collapse
Affiliation(s)
- Mahmoud Tavakoli
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-290, Portugal
| | - Pedro Alhais Lopes
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-290, Portugal
| | - Abdollah Hajalilou
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-290, Portugal
| | - André F Silva
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-290, Portugal
| | - Manuel Reis Carneiro
- Soft Machines Lab, Mechanical Engineering, Carnegie Melon University, Pittsburgh, PA, 15213, USA
| | - José Carvalheiro
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-290, Portugal
| | - João Marques Pereira
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-290, Portugal
| | - Aníbal T de Almeida
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-290, Portugal
| |
Collapse
|
31
|
Current Prospects for Plastic Waste Treatment. Polymers (Basel) 2022; 14:polym14153133. [PMID: 35956648 PMCID: PMC9370925 DOI: 10.3390/polym14153133] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
The excessive amount of global plastic produced over the past century, together with poor waste management, has raised concerns about environmental sustainability. Plastic recycling has become a practical approach for diminishing plastic waste and maintaining sustainability among plastic waste management methods. Chemical and mechanical recycling are the typical approaches to recycling plastic waste, with a simple process, low cost, environmentally friendly process, and potential profitability. Several plastic materials, such as polypropylene, polystyrene, polyvinyl chloride, high-density polyethylene, low-density polyethylene, and polyurethanes, can be recycled with chemical and mechanical recycling approaches. Nevertheless, due to plastic waste’s varying physical and chemical properties, plastic waste separation becomes a challenge. Hence, a reliable and effective plastic waste separation technology is critical for increasing plastic waste’s value and recycling rate. Integrating recycling and plastic waste separation technologies would be an efficient method for reducing the accumulation of environmental contaminants produced by plastic waste, especially in industrial uses. This review addresses recent advances in plastic waste recycling technology, mainly with chemical recycling. The article also discusses the current recycling technology for various plastic materials.
Collapse
|
32
|
Ates M, Karadag S, Eker AA, Eker B. Polyurethane foam materials and their industrial applications. POLYM INT 2022. [DOI: 10.1002/pi.6441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Murat Ates
- Atespolymer Research group, Department of Chemistry, Faculty of Arts and Sciences Tekirdag Namik Kemal University, Degirmenalti Campus, 59030, Tekirdag Turkey
- Nanochem Polymer Energy Company, Silahtaraga Mh., University 1st street, Number: 13/1 Z102, Tekirdag Turkey
| | - Selin Karadag
- Atespolymer Research group, Department of Chemistry, Faculty of Arts and Sciences Tekirdag Namik Kemal University, Degirmenalti Campus, 59030, Tekirdag Turkey
| | - Aysegul Akdogan Eker
- Department of Mechanical Engineering, Faculty of Engineering Yildiz Technical University, 34349, Besiktas Istanbul Turkey
| | - Bulent Eker
- Department of Biosystem Engineering, Faculty of Agriculture Tekirdag Namik Kemal University, 59030, Tekirdag Turkey
| |
Collapse
|
33
|
Hierarchical porous carbon foam electrodes fabricated from waste polyurethane elastomer template for electric double-layer capacitors. Sci Rep 2022; 12:11786. [PMID: 35821518 PMCID: PMC9276828 DOI: 10.1038/s41598-022-16006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Plastic waste has become a major global environmental concern. The utilization of solid waste-derived porous carbon for energy storage has received widespread attention in recent times. Herein, we report the comparison of electrochemical performance of porous carbon foams (CFs) produced from waste polyurethane (PU) elastomer templates via two different activation pathways. Electric double-layer capacitors (EDLCs) fabricated from the carbon foam exhibited a gravimetric capacitance of 74.4 F/g at 0.1 A/g. High packing density due to the presence of carbon spheres in the hierarchical structure offered excellent volumetric capacitance of 134.7 F/cm3 at 0.1 A/g. Besides, the CF-based EDLCs exhibited Coulombic efficiency close to 100% and showed stable cyclic performance for 5000 charge-discharge cycles with good capacitance retention of 97.7% at 3 A/g. Low equivalent series resistance (1.05 Ω) and charge transfer resistance (0.23 Ω) due to the extensive presence of hydroxyl functional groups contributed to attaining high power (48.89 kW/kg). Based on the preferred properties such as high specific surface area, hierarchical pore structure, surface functionalities, low metallic impurities, high conductivity and desirable capacitive behaviour, the CF prepared from waste PU elastomers have shown potential to be adopted as electrodes in EDLCs.
Collapse
|
34
|
Chan YY, Schartel B. It Takes Two to Tango: Synergistic Expandable Graphite–Phosphorus Flame Retardant Combinations in Polyurethane Foams. Polymers (Basel) 2022; 14:polym14132562. [PMID: 35808608 PMCID: PMC9269610 DOI: 10.3390/polym14132562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
Due to the high flammability and smoke toxicity of polyurethane foams (PUFs) during burning, distinct efficient combinations of flame retardants are demanded to improve the fire safety of PUFs in practical applications. This feature article focuses on one of the most impressive halogen-free combinations in PUFs: expandable graphite (EG) and phosphorus-based flame retardants (P-FRs). The synergistic effect of EG and P-FRs mainly superimposes the two modes of action, charring and maintaining a thermally insulating residue morphology, to bring effective flame retardancy to PUFs. Specific interactions between EG and P-FRs, including the agglutination of the fire residue consisting of expanded-graphite worms, yields an outstanding synergistic effect, making this approach the latest champion to fulfill the demanding requirements for flame-retarded PUFs. Current and future topics such as the increasing use of renewable feedstock are also discussed in this article.
Collapse
|
35
|
Zakharyan EM, Maksimov AL. Pyrolysis of Polyurethanes. Process Features and Composition of Reaction Products. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Arif ZU, Khalid MY, Ahmed W, Arshad H, Ullah S. Recycling of the glass/carbon fibre reinforced polymer composites: A step towards the circular economy. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2015781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| | - Muhammad Yasir Khalid
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| | - Waqas Ahmed
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| | - Hassan Arshad
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| | - Sibghat Ullah
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| |
Collapse
|
37
|
Recent Advances in Development of Waste-Based Polymer Materials: A Review. Polymers (Basel) 2022; 14:polym14051050. [PMID: 35267873 PMCID: PMC8914771 DOI: 10.3390/polym14051050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Limited petroleum sources, suitable law regulations, and higher awareness within society has caused sustainable development of manufacturing and recycling of polymer blends and composites to be gaining increasing attention. This work aims to report recent advances in the manufacturing of environmentally friendly and low-cost polymer materials based on post-production and post-consumer wastes. Sustainable development of three groups of materials: wood polymer composites, polyurethane foams, and rubber recycling products were comprehensively described. Special attention was focused on examples of industrially applicable technologies developed in Poland over the last five years. Moreover, current trends and limitations in the future “green” development of waste-based polymer materials were also discussed.
Collapse
|
38
|
Utilization of Polyurethane Foam Dust in Development of Thermal Insulation Composite. BUILDINGS 2022. [DOI: 10.3390/buildings12020126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The massive production of Polyurethane foam from various products generates an extensive amount of waste, mostly in the form of dust that is emitted while cutting, trimming, or grinding the foam. In this research, the polyurethane dust (PUD) waste is incorporated into unsaturated polyester resin (UPR) to fabricate a heat insulation composite material to be used in construction. Filler percentages ranging from 10% to 50% were used to make the UPR-PUD composite materials. The thermal and mechanical properties of the material were studied in order to evaluate the ability of the composites for this type of application. Thermogravimetric Analysis and Differential Scanning Calorimeter tests were applied to determine the thermal stability of the material. In addition, the microstructure of the prepared composites and the incorporation of PUD filler into the polyester matrix were investigated by Scanning Electron Microscopy, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) analysis. The FTIR and XRD analyses suggested that adding PUD improved the curing process of unsaturated polyester and enhanced its crystalline structure. The experimental results showed promising thermal insulation capability, with low thermal conductivity in the range of 0.076 to 0.10 and low water retention. Moreover, the composites exhibited compression strength between 56 and 100 MPa and tensile strength between 10.3 and 28 MPa, much higher than traditional thermal insulators and many building materials.
Collapse
|
39
|
Rajabloo T, De Ceuninck W, Van Wortswinkel L, Rezakazemi M, Aminabhavi T. Environmental management of industrial decarbonization with focus on chemical sectors: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114055. [PMID: 34768037 DOI: 10.1016/j.jenvman.2021.114055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
A considerable portion of fossil CO2 emissions comes from the energy sector for production of heat and electricity. The industrial sector has the second order in emission in which the main parts are released from energy-intensive industries, namely metallurgy, building materials, chemicals, and manufacturing. The decarbonization of industrial wastes contemplates the classic decarbonization through optimization of conventional processes as well as utilization of renewable energy and resources. The upgrading of existing processes and integration of the methodologies with a focus on efficiency improvement and reduction of energy consumption and the environment is the main focus of this review. The implementation of renewable energy and feedstocks, green electrification, energy conversion methodologies, carbon capture, and utilization, and storage are also covered. The main objectives of this review are towards chemical industries by introducing the potential technology enhancement at different subsectors. For this purpose, state-of-the-art roadmaps and pathways from the literature findings are presented. Both common and innovative renewable attempts are needed to reach out both short- and long-term deep decarbonization targets. Even though all of the innovative solutions are not economically viable at the industrial scale, they play a crucial role during and after the energy transition interval.
Collapse
Affiliation(s)
- Talieh Rajabloo
- Hasselt University, Institute for Materials Research IMO, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; EnergyVille, Thor park 8320, 3600, Genk, Belgium.
| | - Ward De Ceuninck
- Hasselt University, Institute for Materials Research IMO, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590, Diepenbeek, Belgium; EnergyVille, Thor park 8320, 3600, Genk, Belgium
| | - Luc Van Wortswinkel
- EnergyVille, Thor park 8320, 3600, Genk, Belgium; Flemish Institute for Technology Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Tejraj Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
40
|
Lee DJ. Gasification of municipal solid waste (MSW) as a cleaner final disposal route: A mini-review. BIORESOURCE TECHNOLOGY 2022; 344:126217. [PMID: 34715334 DOI: 10.1016/j.biortech.2021.126217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The production of hydrogen-rich syngas from municipal solid waste (MSW) by pyrolysis/gasification is one of the most promising waste-to-energy pathways for realizing a circular bioeconomy. This mini-review provides an overview of current research and development efforts in the field, focusing on the development of syngas upgrades and novel gasification processes, with the ultimate goal of making MSW gasification a sustainable and affordable route for the final disposal of MSW. A graphical assessment protocol is proposed to support comprehension of the main reactions that are involved in the MSW gasification. MSW gasification studies are reviewed with the prospects considered to provide a reference for future work.
Collapse
Affiliation(s)
- Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617 Taiwan; Departmegaont of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong, China; College of Engineering, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
41
|
He P, Ruan H, Wang C, Lu H. Mechanical Properties and Thermal Conductivity of Thermal Insulation Board Containing Recycled Thermosetting Polyurethane and Thermoplastic. Polymers (Basel) 2021; 13:polym13244411. [PMID: 34960962 PMCID: PMC8708046 DOI: 10.3390/polym13244411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
This study used a mechanochemical method to analyze the recycling mechanism of polyurethane foam and optimize the recycling process. The use of mechanochemical methods to regenerate the polyurethane foam powder breaks the C–O bond of the polyurethane foam and greatly enhances the activity of the powder. Based on orthogonal test design, the mesh, proportion, temperature, and time were selected to produce nine recycled boards by heat pressing. Then, the influence of four factors on the thermal conductivity and tensile strength of the recycled board was analyzed. The results show that 120 mesh polyurethane foam powder has strong activity, and the tensile strength can reach 9.913 Mpa when it is formed at 205 °C and 40 min with 50% PP powder. With the help of the low thermal conductivity of the polyurethane foam, the thermal conductivity of the recycled board can reach 0.037 W/m·K at the parameter of 40 mesh, 80%, 185 °C, 30 min. This research provides an effective method for the recycling of polyurethane foam.
Collapse
Affiliation(s)
- Ping He
- Correspondence: ; Tel.: +86-177-0560-8398
| | | | | | | |
Collapse
|
42
|
Swartz JL, Sheppard DT, Haugstad G, Dichtel WR. Blending Polyurethane Thermosets Using Dynamic Urethane Exchange. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jeremy L. Swartz
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States
| | - Daylan T. Sheppard
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States
| | - Greg Haugstad
- Characterization Facility, University of Minnesota, 100 Union St. SE, Minneapolis, Minnesota 55455, United States
| | - William R. Dichtel
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States
| |
Collapse
|
43
|
Santucci V, Fiore S. Recovery of Waste Polyurethane from E-Waste-Part I: Investigation of the Oil Sorption Potential. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6230. [PMID: 34771760 PMCID: PMC8584342 DOI: 10.3390/ma14216230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 01/29/2023]
Abstract
The shredding of end-of-life refrigerators produces every year in Italy 15,000 tons of waste polyurethane foam (PUF), usually destined for energy recovery. This work presents the results of the investigation of the oil sorption potential of waste PUF according to ASTM F726-17 standard. Three oils (diesel fuel and two commercial motor oils) having different densities (respectively, 0.83, 0.87, and 0.88 kg/dm3) and viscosities (respectively, 3, 95, and 140 mm2/s at 40 °C) were considered. The waste PUF was sampled in an Italian e-waste treatment plant, and its characterization showed 16.5 wt% particles below 0.71 mm and 13 wt% impurities (paper, plastic, aluminum foil), mostly having dimensions (d) above 5 mm. Sieving at 0.071 mm was applied to the waste PUF to obtain a "coarse" (d > 0.71 mm) and a "fine" fraction (d < 0.71 mm). Second sieving at 5 mm allowed an "intermediate" fraction to be obtained, with dimensions between 0.71 and 5 mm. The oil sorption tests involved the three fractions of waste PUF, and their performances were compared with two commercial oil sorbents (sepiolite and OKO-PUR). The results of the tests showed that the "fine" PUF was able to retain 7.1-10.3 g oil/g, the "intermediate" PUF, 4.2-7.4 g oil/g, and the "coarse" PUF, 4.5-7.0 g oil/g, while sepiolite and OKO-PUR performed worse (respectively, 1.3-1.6 and 3.3-5.3 g oil/g). In conclusion, compared with the actual management of waste PUF (100 wt% sent to energy recovery), the amount destined directly to energy recovery could be limited to 13 wt% (i.e., the impurities). The remaining 87 wt% could be diverted to reuse for oil sorption, and afterward directed to energy recovery, considered as a secondary option.
Collapse
Affiliation(s)
| | - Silvia Fiore
- Department of Engineering for Environment, Land, and Infrastructures (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| |
Collapse
|
44
|
Ranganathan P, Chen CW, Tasi MC, Rwei SP, Lee YH. Biomass Thermoplastic (Co)polyamide Elastomers Synthesized from a Fatty Dimer Acid: a Sustainable Route toward a New Era of Uniform and Bimodal Foams. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Palraj Ranganathan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan, Republic of China
| | - Chin-Wen Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan, Republic of China
| | - Ming-Chung Tasi
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan, Republic of China
| | - Syang-Peng Rwei
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan, Republic of China
| | - Yi-Huan Lee
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan, Republic of China
| |
Collapse
|
45
|
Advances in Low-Density Flexible Polyurethane Foams by Optimized Incorporation of High Amount of Recycled Polyol. Polymers (Basel) 2021; 13:polym13111736. [PMID: 34073296 PMCID: PMC8198888 DOI: 10.3390/polym13111736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
An industrially manufactured recycled polyol, obtained by acidolysis process, was for the first time proved to be a possible replacement of the reference fossil-based polyol in a low-density formulation suitable for industrial production of flexible polyurethane foams. The influence of increasing recycled polyol amounts on the properties of the polyurethane foam has been studied, also performing foam emission tests to evaluate the environmental impact. Using 10 pbw recycled polyol in the standard formulation, significant differences of the physical properties were not observed, but increase of the recycled polyol amount to 30 pbw led to a dramatic decrease of the foam air flow and a very tight foam. To overcome this drawback, N,N′-bis[3-(dimethylamino)propyl]urea was selected as tertiary amine catalyst, enabling the preservation of foam properties even at high recycled polyol level (30 pbw). Foam emission data demonstrated that this optimized foam formulation also led to an important reduction of volatile organic compounds. The results open the way for further optimization studies in low-density flexible polyurethane foam formulations, to increase the reutilization of the polyurethane waste and reduce the amount of petroleum-based raw materials.
Collapse
|
46
|
Multistage Chemical Recycling of Polyurethanes and Dicarbamates: A Glycolysis–Hydrolysis Demonstration. SUSTAINABILITY 2021. [DOI: 10.3390/su13063583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of polyurethanes and, therefore, the quantity of its scrap are increasing. Considering the thermoset characteristic of most polyurethanes, the most circular recycling method is by means of chemical depolymerization, for which glycolysis is finding its way into the industry. The main goal of polyurethane glycolysis is to recover the polyols used, but only limited attempts were made toward recovering the aromatic dicarbamate residues and derivates from the used isocyanates. By the split-phase glycolysis method, the recovered polyols form a top-layer phase and the bottom layer contain transreacted carbamates, excess glycol, amines, urea, and other side products. The hydrolysis of carbamates results in amines and CO2 as the main products. Consequently, the carbamates in the bottom layer of polyurethane split-phase glycolysis can also be hydrolyzed in a separate process, generating amines, which can serve as feedstock for isocyanate production to complete the polyurethane material cycle. In this paper, the full recycling of polyurethanes is reviewed and experimentally studied. As a matter of demonstration, combined glycolysis and hydrolysis led to an amine production yield of about 30% for model systems. With this result, we show the high potential for further research by future optimization of reaction conditions and catalysis.
Collapse
|