1
|
An F, Gao Y, Yu M, Xiao T, Lin H, Sun D. Removal and recovery of nitrogen from anaerobically treated leachate based on a neglected HNAD nitrogen removal pathway: NH 3 stripping. BIORESOURCE TECHNOLOGY 2024; 413:131488. [PMID: 39277053 DOI: 10.1016/j.biortech.2024.131488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The heterotrophic nitrification aerobic denitrification (HNAD) process can withstand the environment with high NH4+-N concentration and complex components, and has the potential to be an effective scheme for nitrogen removal of anaerobically treated leachate from municipal solid waste incineration plant. But its mechanism is still unclear and the NH3 stripping process has received little attention. At the same time, the high concentration of NH4+-N in the anaerobically treated leachate also has great recycling potential. In this study, typical HNAD microorganisms were enriched and used for nitrogen removal from anaerobically treated leachate. A one-step system with a total nitrogen removal ratio of more than 98 % was constructed. Isotopic labeling experiments showed that nitrogen was not the main product. The important role of NH3 stripping in the HNAD system was defined, and 46.63 % nitrogen was recovered on this basis.
Collapse
Affiliation(s)
- Facai An
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Yunfei Gao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Maomin Yu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Tianxiao Xiao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Hui Lin
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Gong W, Guo L, Huang C, Xie B, Jiang M, Zhao Y, Zhang H, Wu Y, Liang H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172601. [PMID: 38657817 DOI: 10.1016/j.scitotenv.2024.172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Antibiotic residues in mariculture wastewater seriously affect the aquatic environment. Antibiotic Resistance Genes (ARGs) produced under antibiotic stress flow through the environment and eventually enter the human body, seriously affecting human health. Microalgal-bacterial symbiotic system (MBSS) can remove antibiotics from mariculture and reduce the flow of ARGs into the environment. This review encapsulates the present scenario of mariculture wastewater, the removal mechanism of MBSS for antibiotics, and the biomolecular information under metagenomic assay. When confronted with antibiotics, there was a notable augmentation in the extracellular polymeric substances (EPS) content within MBSS, along with a concurrent elevation in the proportion of protein (PN) constituents within the EPS, which limits the entry of antibiotics into the cellular interior. Quorum sensing stimulates the microorganisms to produce biological responses (DNA synthesis - for adhesion) through signaling. Oxidative stress promotes gene expression (coupling, conjugation) to enhance horizontal gene transfer (HGT) in MBSS. The microbial community under metagenomic detection is dominated by aerobic bacteria in the bacterial-microalgal system. Compared to aerobic bacteria, anaerobic bacteria had the significant advantage of decreasing the distribution of ARGs. Overall, MBSS exhibits remarkable efficacy in mitigating the challenges posed by antibiotics and resistant genes from mariculture wastewater.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Lin Guo
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Chenxin Huang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Mengmeng Jiang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Haotian Zhang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - YuXuan Wu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
3
|
Meng J, Di Y, Geng Y, Li W, Huo R, Zhou S. Enhanced nitrate removal efficiency and microbial response of immobilized mixed aerobic denitrifying bacteria through biochar coupled with inorganic electron donors in oligotrophic water. BIORESOURCE TECHNOLOGY 2024; 396:130457. [PMID: 38369080 DOI: 10.1016/j.biortech.2024.130457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The nitrogen removal characteristics and microbial response of biochar-immobilized mixed aerobic denitrifying bacteria (BIADB) were investigated at 25 °C and 10 °C. BIADB removed 53.51 ± 1.72 % (25 °C) and 39.90 ± 4.28 % (10 °C) nitrate in synthetic oligotrophic water. Even with practical oligotrophic water, BIADB still effectively removed 47.66-53.21 % (25 °C), and 39.26-45.63 % (10 °C) nitrate. The addition of inorganic electron donors increased nitrate removal by approximately 20 % for synthetic and practical water. Bacterial and functional communities exhibited significant temperature and stage differences (P < 0.05), with temperature and total dissolved nitrogen being the main environmental factors. The dominant genera and keystone taxa exhibited significant differences at the two temperatures. Structural equation model analysis showed that dissolved organic matter had the highest direct and indirect effects on diversity and function, respectively. This study provides an innovative pathway for utilizing biochar and inorganic electron donors for nitrate removal from oligotrophic waters.
Collapse
Affiliation(s)
- Jiajing Meng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yiling Di
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuting Geng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Wanying Li
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Rui Huo
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shilei Zhou
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
4
|
Zhang L, Wang Z, Su J, Ali A, Li X. Mechanisms of ammonia, calcium and heavy metal removal from nutrient-poor water by Acinetobacter calcoaceticus strain HM12. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119912. [PMID: 38176381 DOI: 10.1016/j.jenvman.2023.119912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
An Acinetobacter calcoaceticus strain HM12 capable of heterotrophic nitrification-aerobic denitrification (HN-AD) under nutrient-poor conditions was isolated, with an ammonia nitrogen (NH4+-N) removal efficiency of 98.53%. It can also remove heavy metals by microbial induced calcium precipitation (MICP) with a Ca2+ removal efficiency of 75.91%. Optimal conditions for HN-AD and mineralization of the strain were determined by kinetic analysis (pH = 7, C/N = 2.0, Ca2+ = 70.0 mg L-1, NH4+-N = 5.0 mg L-1). Growth curves and nitrogen balance elucidated nitrogen degradation pathways capable of converting NH4+-N to gaseous nitrogen. The analysis of the bioprecipitation showed that Zn2+ and Cd2+ were removed by the MICP process through co-precipitation and adsorption (maximum removal efficiencies of 93.39% and 80.70%, respectively), mainly ZnCO3, CdCO3, ZnHPO4, Zn3(PO4)2 and Cd3(PO4)2. Strain HM12 produces humic and fulvic acids to counteract the toxicity of pollutants, as well as aromatic proteins to increase extracellular polymers (EPS) and promote the biomineralization process. This study provides a experimental evidence for the simultaneous removal of multiple pollutants from nutrient-poor waters.
Collapse
Affiliation(s)
- Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
5
|
Xie Y, Tian X, He Y, Dong S, Zhao K. Nitrogen removal capability and mechanism of a novel heterotrophic nitrification-aerobic denitrification bacterium Halomonas sp. DN3. BIORESOURCE TECHNOLOGY 2023; 387:129569. [PMID: 37517711 DOI: 10.1016/j.biortech.2023.129569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Recently, the functional microorganisms capable of eliminating nitrogenous waste have been applied in mariculture systems. As a potential candidate for treating mariculture wastewater, strain DN3 eliminated 100% of ammonia and nitrate and 96.61%-100% of nitrite within 72 h, when single nitrogen sources at concentrations of 0-50 mg/L. Strain DN3 also exhibited the efficient removal performance of mixed-form nitrogen (ammonia, nitrate, and nitrite) at salinity 30 ‰, C/N ratio 20, and 180 rpm. The nitrogen assimilation pathway dominated inorganic nitrogen metabolism, with less nitrogen (14.23%-25.02% of TN) lost into the air via nitrification and denitrification, based on nitrogen balance analysis. Moreover, the bacterial nitrification pathway was explored by enzymatic assays and inhibition assays. These complex nitrogen assimilation and dissimilation processes were further revealed by bacterial genome analysis. These results provide important insight into nitrogen metabolism of Halomonas sp. and theoretical support for treating mariculture wastewater with strain DN3.
Collapse
Affiliation(s)
- Yumeng Xie
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| | - Xiangli Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China.
| | - Yu He
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| | - Shuanglin Dong
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Kun Zhao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| |
Collapse
|
6
|
Huang S, Fu Y, Zhang H, Wang C, Zou C, Lu X. Research progress of novel bio-denitrification technology in deep wastewater treatment. Front Microbiol 2023; 14:1284369. [PMID: 37860138 PMCID: PMC10582329 DOI: 10.3389/fmicb.2023.1284369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Excessive nitrogen emissions are a major contributor to water pollution, posing a threat not only to the environment but also to human health. Therefore, achieving deep denitrification of wastewater is of significant importance. Traditional biological denitrification methods have some drawbacks, including long processing times, substantial land requirements, high energy consumption, and high investment and operational costs. In contrast, the novel bio-denitrification technology reduces the traditional processing time and lowers operational and maintenance costs while improving denitrification efficiency. This technology falls within the category of environmentally friendly, low-energy deep denitrification methods. This paper introduces several innovative bio-denitrification technologies and their combinations, conducts a comparative analysis of their denitrification efficiency across various wastewater types, and concludes by outlining the future prospects for the development of these novel bio-denitrification technologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiuguo Lu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, China
| |
Collapse
|
7
|
Lan M, Yin Q, Wang J, Li M, Li Y, Li B. Heterotrophic nitrification-aerobic denitrification performance of a novel strain, Pseudomonas sp. B-1, isolated from membrane aerated biofilm reactor. ENVIRONMENTAL RESEARCH 2023; 220:115199. [PMID: 36592808 DOI: 10.1016/j.envres.2022.115199] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
A heterotrophic nitrification-aerobic denitrification (HN-AD) strain isolated from membrane aerated biofilm reactor (MABR) was identified as Pseudomonas sp. B-1, which could effectively utilize multiple nitrogen sources and preferentially consume NH4-N. The maximum degradation efficiencies of NO3-N, NO2-N and NH4-N were 98.04%, 94.84% and 95.74%, respectively. The optimal incubation time, shaking speed, carbon source, pH, temperature and C/N ratio were 60 h, 180 rpm, sodium succinate, 8, 30 °C and 25, respectively. The strain preferred salinity of 1.5% and resisted heavy metals in the order of Mn2+ > Co2+ > Zn2+ > Cu2+. It can be preliminarily speculated from the results of enzyme assay that the strain removed nitrogen via full nitrification-denitrification pathway. The addition of strain into the conventional MABR significantly intensified the HN-AD performance of the reactor. The relative abundance of the functional bacteria including Flavobacterium, Pseudomonas, Paracoccus, Azoarcus and Thauera was obviously increased after the bioaugmentation. Besides, the expression of the HN-AD related genes in the biofilm was also strengthened. Thus, strain B-1 had great application potential in nitrogen removal process.
Collapse
Affiliation(s)
- Meichao Lan
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, China.
| | - Qingdian Yin
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, China
| | - Jixiao Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, China
| | - Ming Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yi Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Baoan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
8
|
Li J, Li J, Zhang Y, Lu H. The responses of marine anammox bacteria-based microbiome to multi-antibiotic stress in mariculture wastewater treatment. WATER RESEARCH 2022; 224:119050. [PMID: 36084441 DOI: 10.1016/j.watres.2022.119050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Saline mariculture wastewater containing multi-antibiotics poses a challenge to anaerobic ammonia oxidation (anammox) process. Herein, the halophilic marine anammox bacteria (MAB)-based microbiome was used for treating mariculture wastewater (35‰ salinity) under multi-antibiotics (enrofloxacin + oxytetracycline + sulfamethoxazole, EOS) stress. And the main focus of this study lies in the response of MAB-based microbiome against multi-antibiotics stress. It is found that MAB-based microbiome shows stable community structure and contributes high nitrogen removal efficiency (>90%) even under high stress of EOS (up to 4 mg·L-1). The relative abundance of main functional genus Candidatus Scalindua, responsible for anammox, had little change while controlling the influent EOS concentration within 4 mg·L-1, whereas, significantly decreased to 2.23% at EOS concentration of as high as 24 mg·L-1. As an alternative, antibiotic resistance bacteria (ARB) species Rheinheimera dominated the microbial community of MAB-based biological reactor under extremely high EOS stress (e.g. 24 mg·L-1 in influent). The response mechanism of MAB-based microbiome consists of extracellular and intracellular defenses with dependence of EOS concentration. For example, while EOS within 4 mg·L-1 in this study, most of the antibiotics were retained by extracellular polymeric substances (EPS) via adsorption; If increasing the EOS concentration to 8 and even 24 mg·L-1, part of antibiotics could intrude into the cells and cause the intracellular accumulation of antibiotic resistance genes (ARGs) (total abundance up to 2.44 × 10-1 copies/16S rRNA) for EOS response. These new understandings will facilitate the practical implementation of MAB-based bioprocess for saline nitrogen- and antibiotics-laden wastewater treatment.
Collapse
Affiliation(s)
- Jialu Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yulong Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Li L, Peng C, Yang Z, He Y, Liang M, Cao H, Qiu Q, Song J, Su Y, Gong B. Microbial communities in swamps of four mangrove reserves driven by interactions between physicochemical properties and microbe in the North Beibu Gulf, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37582-37597. [PMID: 35066825 DOI: 10.1007/s11356-021-18134-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Mangroves are distributed in coastal and estuarine regions and are characterized as a sink for terrestrial pollution. It is believed that complex interactions between environmental factors and microbial communities exist in mangrove swamps. However, little is known about environment-microbe interactions. There is a need to clarify some important environmental factors shaping microbial communities and how environmental factors interact with microbial assemblages in mangrove swamps. In the present study, physicochemical and microbial characteristics in four mangrove reserves (named ZZW, Qin, Bei, and GQ) in the North Beibu Gulf were determined. The interactions between environmental factors and microbial assemblages were analyzed with statistical methods in addition to CCA and RDA. Higher concentrations of sulfate (SO42--S) and Fe but lower concentrations of total phosphorus (TP) and NO3--N were detected in ZZW and Qin. Nutrient elements (NO3--N, NH4+-N, organic matter (OM), SO42--S, Fe, and TP) were more important than heavy metals for determining the microbial assemblages, and NO3--N was the most important factor. NO3--N, SO42--S, TP, and Fe formed a significant co-occurrence network in conjunction with some bacterial taxa, most of which were Proteobacteria. Notably, comparatively elevated amounts of sulfate-reducing bacteria (Desulfatibacillum, Desulfomonile, and Desulfatiglans) and sulfur-oxidizing bacteria (Thioprofundum and Thiohalophilus) were found in ZZW and Qin. The co-occurrence network suggested that some bacteria involved in sulfate reduction and sulfur oxidation drive the transformation of P and N, resulting in the reduction of P and N in mangrove swamps. Through the additional utilization of multivariate regression tree (MRT) and co-occurrence network analysis, our research provides a new perspective for understanding the interactions between environmental factors and microbial communities in mangroves.
Collapse
Affiliation(s)
- Lu Li
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Chunyan Peng
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Zicong Yang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Yu He
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Meng Liang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Hongmin Cao
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Qinghua Qiu
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Jingjing Song
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| | - Youlu Su
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Bin Gong
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
10
|
Zhou S, Song Z, Li Z, Qiao R, Li M, Chen Y, Guo H. Mechanisms of nitrogen transformation driven by functional microbes during thermophilic fermentation in an ex situ fermentation system. BIORESOURCE TECHNOLOGY 2022; 350:126917. [PMID: 35231599 DOI: 10.1016/j.biortech.2022.126917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
In this study, we explored the pathways and mechanisms of nitrogen (N) transformation driven by functional microbes carrying key genes in an ex situ fermentation system (EFS). Temperature and N content were found to be the most important factors driving variation in bacterial and fungal communities, respectively; Bacillus became the most abundant bacteria and Batrachochytrium became the most abundant fungi. Co-occurrence network analysis showed that some bacteria including Halomonas, Truepera, and Gemmatimonas species carry genes that promote mineralization, nitrification, dissimilatory/assimilatory nitrate reduction, denitrification, anammox reactions, and N fixation. The maximum rate of total mineralization reached 136.60 μg N g-1 d-1. Functional microbes promoted various N conversion processes at different rates in the EFS, with levels increasing by at least 0.23 μg N g-1 d-1. These results provide a theoretical basis for feasible optimization measures to address N loss during fermentation.
Collapse
Affiliation(s)
- Sihan Zhou
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanbiao Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongye Qiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mengjie Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yifan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hui Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China; National Engineering Laboratory for Tree Breeding, Beijing, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, China.
| |
Collapse
|
11
|
Cai Z, Zhou L, Liu L, Wang D, Ren W, Long H, Zhang X, Xie Z. Bacterial epiphyte and endophyte communities of seagrass Thalassia hemprichii: the impact of feed extract solution. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:757-772. [PMID: 34713580 DOI: 10.1111/1758-2229.13019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The global seagrass bed ecosystem acts as a natural ecological barrier in the littoral coastal zone. In recent years, this ecosystem has suffered from serious eutrophication and destruction caused by the continuous expansion of aquaculture. However, our understanding of the influence of aquaculture on the bacterial community remains limited. In this study, we used 16S amplicon sequencing to evaluate the impact of aquaculture feed extract solution on the composition and function of bacterial epiphytes and endophyte communities of the core seagrass from the seagrass bed ecosystem in Hainan, Thalassia hemprichii. The feed extract solution was the main factor that significantly affected the bacterial epiphyte and endophyte community structure of seagrass leaves but had no marked effect on alpha diversity was observed. Additionally, the bacterial epiphyte and endophyte community of the T. hemprichii leaves alleviated the effects of organic matter, sulfide, and nutrients caused by aquaculture wastewater. The feed extract solution promoted the proliferation of Bacteroidales, Vibrio, Desulfobulbaceae, Desulfobacteraceae, Pseudoalteromonas, Paludibacter, Marinomonas, and Pseudomonas in the leaves and root of T. hemprichii, which can effectively improve the digestibility of eutrophication. In fact, Desulfobacteraceae and Desulfobulbaceae can reduce sulfate to sulfide and oxidize sulfide to sulfur within seagrass, indicating that the increase in Desulfobulbaceae and Desulfobacteraceae facilitated the accumulation of sulfide with the treatment of feed extract solution, which may be the reason for the degradation of seagrass caused by aquaculture wastewater containing high concentrations of organic pollutants. These results suggest that although seagrass beds can withstand low concentrations of aquaculture pollutants, sulfide emissions should be minimized.
Collapse
Affiliation(s)
- Zefu Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, 571126, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, 570228, China
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, 570228, China
| | - Lei Zhou
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, 570228, China
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, 570228, China
| | - Lihua Liu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, 570228, China
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, 570228, China
| | - Daoru Wang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, 571126, China
| | - Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, 570228, China
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, 570228, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, 570228, China
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, 570228, China
| | - Zhenyu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, 570228, China
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, 570228, China
| |
Collapse
|