1
|
He D, Ma H, Hu D, Wang X, Dong Z, Zhu B. Biochar for sustainable agriculture: Improved soil carbon storage and reduced emissions on cropland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123147. [PMID: 39504664 DOI: 10.1016/j.jenvman.2024.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Climate change, driven by excessive greenhouse gas (GHG) emissions from agricultural land, poses a serious threat to ecological security. It is now understood that significant differences exist in the responses of soil GHG emissions and soil carbon (C) sequestration to the application of different C-based materials (i.e., straw, organic manure (OM), and biochar). Therefore, elucidating the mechanisms by which differences in the properties of these materials affect soil GHG emissions is essential to comprehensively investigate the mechanisms through which variations in material properties influence soil GHG emissions. Herein, we conducted a field experiment to evaluate the responses of soil GHG emissions to cropland application of different C-based materials and employed molecular modeling calculations to explore the mechanisms by which differences in the properties of these materials affect soil GHG emissions. The results showed that biochar demonstrated superior resistance to biochemical decomposition and soil GHG adsorption capacity, leading to a significant reduction in soil GHG emissions due to its excellent physicochemical properties. The active surface properties of straw and OM enhanced their interaction with decomposing enzymes and accelerated their biochemical decomposition. Wheat-maize rotation with biochar application reduced CO2 emissions by 1089.8 kg CO2eq ha-1 and increased soil organic carbon by 141.8% compared to the control after one year. Collectively, these results contribute to the optimization of cropland application strategies for crop residues to balance soil C sequestration and soil GHG emissions, and to ensure sustainable agriculture and ecological security.
Collapse
Affiliation(s)
- Debo He
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Ma
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongni Hu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoguo Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Zhixin Dong
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
2
|
Dong Y, Liang J, E Z, Song J, Liu C, Ding Z, Wang W, Zhang W. Preparation of biochar/iron mineral composites and their adsorption of methyl orange. RSC Adv 2024; 14:33977-33986. [PMID: 39463480 PMCID: PMC11505017 DOI: 10.1039/d4ra05529b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Biochar-supported iron-containing minerals have received much attention due to their synergistic mechanism of decontamination in environmental pollution remediation. In this work, two types of iron/biochar were prepared from different biomasses using ferric chloride as the Fe source and rice husks and peanut shell as biomasses. The formation of fayalite (Fe2SiO4) and magnetite (Fe3O4) in rice husk and peanut shell derived biochar was proved by X-ray diffraction. These minerals not only optimized the physicochemical properties of the biochar but also enhanced its capacity to adsorb methyl orange (MO). Peanut shell-based biochar (PBC) and rice husk-based biochar (RBC) sequestered 3.9 mg g-1 and 4.5 mg g-1 of MO, respectively. In contrast, iron peanut shell-based biochar (Fe-PBC) and iron rice husk-based biochar (Fe-RBC) adsorbed 6.0 mg g-1 and 17.2 mg g-1, outperforming their pristine biochar. The removal of MO showed a synergistic effect due to the loading of iron-bearing minerals. The mechanisms of MO immobilization by biochar samples were explored by experimental and characterization methods. It was found that the mechanisms responsible for MO immobilization on composites were conducted by electrostatic attraction, complexation with oxygen-containing functional groups, π-π interaction and hydrogen bond formation. This finding clarified the relationship among biomass composition, iron mineral evolution, and the adsorption capacity of iron-modified biochar, which is essential for the development of a cost-effective adsorbent.
Collapse
Affiliation(s)
- Yaqiong Dong
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources Lanzhou 730046 China
- Key Laboratory of Petroleum Resources Exploration and Evaluation Lanzhou 730000 Gansu Province China
| | - Zhengyang E
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiayu Song
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Changjie Liu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Petroleum Resources Exploration and Evaluation Lanzhou 730000 Gansu Province China
| | - Zhe Ding
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Petroleum Resources Exploration and Evaluation Lanzhou 730000 Gansu Province China
| | - Wei Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Petroleum Resources Exploration and Evaluation Lanzhou 730000 Gansu Province China
| | - Wentao Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Petroleum Resources Exploration and Evaluation Lanzhou 730000 Gansu Province China
| |
Collapse
|
3
|
Zhang M, Li P, Guo D, Zhao Z, Feng W, Zhang Z. Highly Efficient Adsorption of Norfloxacin by Low-Cost Biochar: Performance, Mechanisms, and Machine Learning-Assisted Understanding. ACS OMEGA 2024; 9:30813-30825. [PMID: 39035892 PMCID: PMC11256322 DOI: 10.1021/acsomega.4c03496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
This study employed potassium carbonate (K2CO3) activation using ball milling in conjunction with pyrolysis to produce biochar from one traditional Chinese herbal medicine Atropa belladonna L. (ABL) residue. The resulting biochar KBC800 was found to possess a high specific surface area (S BET = 1638 m2/g) and pore volume (1.07 cm3/g), making it effective for removing norfloxacin (NOR) from wastewater. Batch adsorption tests confirmed its effectiveness in eliminating NOR, along with its excellent resistance to interference from impurity ions or antibiotics. Notably, the maximum experimental NOR adsorption capacity on KBC800 was 666.2 mg/g at 328 K, surpassing those of other biochar materials reported. The spontaneous and endothermic adsorption of NOR on KBC800 could be better suited to the Sips model. Additionally, KBC800 adsorbs NOR mainly by pore filling, with electrostatic attraction, π-π EDA interactions, and hydrogen bonds also contributing significantly. The machine learning model revealed that NOR adsorption on the biochar was significantly affected by the initial concentration, followed by S BET and average pore size. Based on the random forest model, it is demonstrated that biochar is able to adsorb NOR effectively. It is noteworthy that the use of low-cost pharmaceutical wastes to produce adsorbents for emerging contaminants such as antibiotics could have greater potential for future practical applications under the ongoing dual carbon policy.
Collapse
Affiliation(s)
- Miaomiao Zhang
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, China
| | - Pengwei Li
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, China
| | - Dong Guo
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, China
| | - Ziheng Zhao
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, China
| | - Weisheng Feng
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, China
| | - Zhijuan Zhang
- College
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, China
- Institute
of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Haider MIS, Liu G, Yousaf B, Arif M, Aziz K, Ashraf A, Safeer R, Ijaz S, Pikon K. Synergistic interactions and reaction mechanisms of biochar surface functionalities in antibiotics removal from industrial wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124365. [PMID: 38871166 DOI: 10.1016/j.envpol.2024.124365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Biochar, a carbon-rich material with a unique surface chemistry (high abundance of surface functional groups, large surface area, and well-distributed), has shown great potential as a sustainable solution for industrial wastewater treatment as compared to conventional industrial wastewater treatment techniques demand substantial energy consumption and generate detrimental byproducts. This critical review emphasizes the surface functionalities formation and development in biochar to enhance its physiochemical properties, for utilization in antibiotics removal. Factors affecting the formation of functionalities, including carbonization processes, feedstock materials, operating parameters, and the influence of pre-post treatments, are thoroughly highlighted to understand the crucial role of factors influencing biochar properties for optimal antibiotics removal. Furthermore, the research explores the removal mechanisms and interactions of biochar-based surface functionalities, hydrogen bonding, encompassing electrostatic interactions, hydrophobic interactions, π-π interactions, and electron donor and acceptor interactions, to provide insights into the adsorption/removal behavior of antibiotics on biochar surfaces. The review also explains the mechanism of factors influencing the removal of antibiotics in industrial wastewater treatment, including particle size and pore structure, nature and types of surface functional groups, pH and surface charge, temperature, surface modification strategies, hydrophobicity/hydrophilicity, biochar dose, pollutant concentration, contact time, and the presence of coexisting ions and other substances. Finally, the study offers reusability and regeneration, challenges and future perspectives on the development of biochar-based adsorbents and their applications in addressing antibiotics. It concludes by summarizing the key findings and emphasizing the significance of biochar as a sustainable and effective solution for mitigating antibiotics contamination in industrial wastewater.
Collapse
Affiliation(s)
- Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| | - Muhammad Arif
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Kiran Aziz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Botany, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Krzysztof Pikon
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| |
Collapse
|
5
|
Li P, Zhao Z, Zhang M, Su H, Zhao T, Feng W, Zhang Z. Exploring the Potential of Biochar Derived from Chinese Herbal Medicine Residue for Efficient Removal of Norfloxacin. Molecules 2024; 29:2063. [PMID: 38731553 PMCID: PMC11085230 DOI: 10.3390/molecules29092063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
One-step carbonization was explored to prepare biochar using the residue of a traditional Chinese herbal medicine, Atropa belladonna L. (ABL), as the raw material. The resulting biochar, known as ABLB4, was evaluated for its potential as a sustainable material for norfloxacin (NOR) adsorption in water. Subsequently, a comprehensive analysis of adsorption isotherms, kinetics, and thermodynamics was conducted through batch adsorption experiments. The maximum calculated NOR adsorption capacity was 252.0 mg/g at 298 K, and the spontaneous and exothermic adsorption of NOR on ABLB4 could be better suited to a pseudo-first-order kinetic model and Langmuir model. The adsorption process observed is influenced by pore diffusion, π-π interaction, electrostatic interaction, and hydrogen bonding between ABLB4 and NOR molecules. Moreover, the utilization of response surface modeling (RSM) facilitated the optimization of the removal efficiency of NOR, yielding a maximum removal rate of 97.4% at a temperature of 304.8 K, an initial concentration of 67.1 mg/L, and a pH of 7.4. Furthermore, the biochar demonstrated favorable economic advantages, with a payback of 852.5 USD/t. More importantly, even after undergoing five cycles, ABLB4 exhibited a consistently high NOR removal rate, indicating its significant potential for application in NOR adsorption.
Collapse
Affiliation(s)
- Pengwei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Ziheng Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Miaomiao Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Hang Su
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Ting Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Gao Y, Chen H, Fang Z, Niazi NK, Adusei-Fosu K, Li J, Yang X, Liu Z, Bolan NS, Gao B, Hou D, Sun C, Meng J, Chen W, Quin BF, Wang H. Coupled sorptive and oxidative antimony(III) removal by iron-modified biochar: Mechanisms of electron-donating capacity and reactive Fe species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122637. [PMID: 37769707 DOI: 10.1016/j.envpol.2023.122637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Sorption and oxidation are two potential pathways for the decontamination of trivalent antimony (Sb(III))-bearing water, using iron (Fe)-modified biochar (FeBC). Here we investigated the sorption and oxidation behavior of FeBC for Sb(III) in aqueous solutions. Results revealed that Sb(III) removal by FeBC was significantly improved showing the maximum Sb(III) sorption (64.0 mg g-1). Density functional theory (DFT) calculations indicated that magnetite (Fe3O4) in FeBC offered a sorption energy of -0.22 eV, which is 5 times that of non-modified biochar. With the addition of peroxymonosulfate (PMS), the sorption of Sb(III) on FeBC was 7 times higher than that on BC, indicating the sorption capacity of FeBC for Sb(III) could be substantially increased by adding oxidizing agents. Electrochemical analysis showed that Fe modification imparted FeBC higher electron-donating capacity than that of BC (0.045 v. s. 0.023 mmol e- (g biochar)-1), which might be the reason for the strong Sb(III) oxidation (63.6%) on the surface of FeBC. This study provides new information that is key for the development of effective biochar-based composite materials for the removal of Sb(III) from drinking water and wastewater. The findings from this study have important implications for protecting human health and agriculture.
Collapse
Affiliation(s)
- Yurong Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Zheng Fang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Kwasi Adusei-Fosu
- Resilient Agriculture, AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Jianhong Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China
| | - Zhongzhen Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Jun Meng
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenfu Chen
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Bert F Quin
- Quin Environmentals (NZ) Ltd., PO Box 125122, St. Heliers, Auckland, 1740, New Zealand
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
7
|
Tian H, Peng S, Zhao L, Chen Y, Cui K. Simultaneous adsorption of Cd(II) and degradation of OTC by activated biochar with ferrate: Efficiency and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130711. [PMID: 36641845 DOI: 10.1016/j.jhazmat.2022.130711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Biochar-supported zero-valent iron nanocomposites have received much attention due to their application potential in environmental pollution remediation. However, in many occasions, zero-valent iron loading improves the electron transfer efficiency and catalytic oxidation capacity of biochar while blocking the original pore structure of biochar, limiting its application potential. In this study, a zero-valent iron composites with large SSA (865.86 m2/g) was prepared in one step using pre-pyrolysis of biochar powder and K2FeO4 grinding for co-pyrolysis. The processes of ZVI generation and SSA expansion during the pyrolysis were investigated. The factors affecting the removal process of Cd and OTC in water by the composites were investigated. The mechanisms of Cd fixation and OTC degradation by the composites were explored by experiments, characterization, and DFT calculations. The OTC degradation pathway was proposed by theoretical predication and LC-MS spectrometry. The results indicate that ion exchange, complexation with oxygen-containing functional groups, electrostatic attraction, and interaction with π-electrons are the main mechanisms of Cd immobilization. The degradation pathways of OTC mainly include dehydroxylation, deamination and dealkylation.
Collapse
Affiliation(s)
- Haoran Tian
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shuchuan Peng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Lu Zhao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China
| |
Collapse
|
8
|
Du L, Ahmad S, Liu L, Wang L, Tang J. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159815. [PMID: 36328262 DOI: 10.1016/j.scitotenv.2022.159815] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics have been used in massive quantities for human and animal medical treatment, and antibiotic resistance genes (ARGs) are of great concern worldwide. Antibiotics and ARGs are exposed to the natural environment through the discharge of medical wastewater, causing great harm to the environment and human health. Biochar has been widely used as a green and efficient adsorbent to remove pollutants. However, pristine and unmodified biochars are not considered sufficient and efficient to cope with the current serious water pollution. Therefore, researchers have chosen to improve the adsorption capacity of biochar through different modification methods. To have a better understanding of the application of modified biochar, this review summarizes the biochar modification methods and their performance, particularly, molecular imprinting and biochar aging are outlined as new modification methods, influencing factors of biochar and modified biochar in adsorption of antibiotics and ARGs and adsorption mechanisms, wherein adsorption mechanism of ARGs on biochar is found to be different than that of antibiotics. After that, the directions of biochar and modified biochar worthy of research and the issues that need attention are proposed. It can be noted that under the current dual carbon policy, biochar may have wider application prospects in future.
Collapse
Affiliation(s)
- Linqing Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shakeel Ahmad
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Dong M, He L, Jiang M, Zhu Y, Wang J, Gustave W, Wang S, Deng Y, Zhang X, Wang Z. Biochar for the Removal of Emerging Pollutants from Aquatic Systems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1679. [PMID: 36767042 PMCID: PMC9914318 DOI: 10.3390/ijerph20031679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water contaminated with emerging pollutants has become a serious environmental issue globally. Biochar is a porous and carbon-rich material produced from biomass pyrolysis and has the potential to be used as an integrated adsorptive material. Many studies have shown that biochar is capable to adsorb emerging pollutants from aquatic systems and could be used to solve the water pollution problem. Here, we provided a dual perspective on removing emerging pollutants from aquatic systems using biochar and analyzed the emerging pollutant removal efficiency from the aspects of biochar types, pollutant types and coexistence with heavy metals, as well as the associated mechanisms. The potential risks and future research directions of biochar utilization are also presented. This review aims to assist researchers interested in using biochar for emerging pollutants remediation in aquatic systems and facilitate research on emerging pollutants removal, thereby reducing their environmental risk.
Collapse
Affiliation(s)
- Mingying Dong
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lizhi He
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, China
| | - Mengyuan Jiang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau 4912, Bahamas
| | - Shuo Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Deng
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
10
|
Enhancement on Removal of Oxytetracycline in Aqueous Solution by Corn Stover Biochar: Comparison of KOH and KMnO4 Modifications. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Wang B, Mo Q, Qin B, Song L, Li J, Sheng G, Shi D, Xu X, Hou L. Adsorption behaviors of three antibiotics in single and co-existing aqueous solutions using mesoporous carbon. ENVIRONMENTAL RESEARCH 2022; 215:114375. [PMID: 36167111 DOI: 10.1016/j.envres.2022.114375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The residual antibiotics detected frequently in aquatic environment may pose a potential threat to human health and ecosystem. Exploring a possible way to remove them from antibiotic polluted-water is a key problem demanding prompt solution. To investigate their adsorption characteristics, three antibiotics including tetracycline (TC), ciprofloxacin (CIP), and sulfadiazine (SDZ) have been removed using sucrose-based mesoporous carbon (SMC) in single and co-existing systems. Characterization revealed that the SMC had a high Brunauer-Emmett-Teller (BET) surface area (1215.48 m2/g), large mesoporous pore size (6.36 nm), and abundant oxygen-containing functional groups, which might offer sufficient adsorption sites for antibiotics. The process of antibiotics adsorption was described well using pseudo-second-order model. The rate constant K2 at various temperatures followed the order 308 K > 298 K > 288 K. This finding suggesting the increase in temperature could promote the removal of antibiotics. The maximum adsorption capacities for TC (232.10 mg/g), CIP (257.30 mg/g), and SDZ (204.28 mg/g) of SMC were obtained using Langmuir isotherm (pH = 4-6, T = 308K, SMC dosage = 10 mg, C0 = 30-40 mg/L). These data implied SMC had the excellent adsorptive property and affinity to antibiotics. In binary systems, SMC offers efficient removal percentages (>90%) for each of the target antibiotic. While the removal efficiencies of TC, CIP, and SDZ by SMC in the ternary system were 90.40, 72.99, and 80.46%, respectively. These results suggested the competition on active sites of SMC happened among the three antibiotics. The affinities of SMC to three antibiotics followed the order TC > SDZ > CIP. The removal of antibiotics by SMC were mainly attributed to the mechanisms including electrostatic interactions, hydrophobic interactions, hydrogen bonding and so on. This study will provide a technical support for antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Bin Wang
- College of Civil Engineering, Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guizhou University, Guiyang, 550025, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Qianyuan Mo
- College of Civil Engineering, Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guizhou University, Guiyang, 550025, China
| | - Bo Qin
- College of Civil Engineering, Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guizhou University, Guiyang, 550025, China
| | - Lei Song
- College of Civil Engineering, Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guizhou University, Guiyang, 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Guishang Sheng
- College of Civil Engineering, Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guizhou University, Guiyang, 550025, China
| | - Dezhi Shi
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xiaoyi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Li'an Hou
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Xi'an High-Tech Institute, Xi'an, 710025, China
| |
Collapse
|
12
|
Li M, Wang P, Huang C, Liu Y, Liu S, Zhang K, Cao J, Tan X, Liu S. Effect of dissolved humic acids and coated humic acids on tetracycline adsorption by K 2CO 3-activated magnetic biochar. Sci Rep 2022; 12:18966. [PMID: 36347872 PMCID: PMC9643364 DOI: 10.1038/s41598-022-22830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Humic acids (HAs) widely exist in water environment, and has an important impact on the adsorption of pollutants. Herein, HAs (both dissolved and coated) was employed to assess the effect on the removal of the organic contaminant tetracycline (TC) by K2CO3 modified magnetic biochar (KMBC). Results showed that low concentration of dissolved HAs promoted TC removal, likely due to a bridging effect, while higher concentration of dissolved HAs inhibited TC adsorption because of the competition of adsorption sites on KMBC. By characterization analysis, coated HAs changed the surface and pore characteristics of KMBC, which suppressed the TC removal. In a sequential adsorption experiment involving dissolved HAs and TC, the addition of HAs at the end of the experiment led to the formation of HAs-TC ligands with free TC, which improved the adsorption capacity of TC. TC adsorption by KMBC in the presence of dissolved HAs and coated HAs showed a downward trend with increasing pH from 5.0 to 10.0. The TC adsorption process was favorable and endothermic, and could be better simulated by pseudo-second-order kinetics and Freundlich isotherm model. Hydrogen bonds and π-π interactions were hypothesized to be the underlying influencing mechanisms.
Collapse
Affiliation(s)
- Meifang Li
- grid.440660.00000 0004 1761 0083College of Environmental Science and Engineering, Central South University of Forestry and Technology, Tianxin District, Shaoshan South Road, Changsha, 410004 People’s Republic of China ,grid.440660.00000 0004 1761 0083Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004 People’s Republic of China
| | - Ping Wang
- grid.440660.00000 0004 1761 0083College of Environmental Science and Engineering, Central South University of Forestry and Technology, Tianxin District, Shaoshan South Road, Changsha, 410004 People’s Republic of China ,grid.440660.00000 0004 1761 0083Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004 People’s Republic of China
| | - Chenxi Huang
- grid.440660.00000 0004 1761 0083College of Environmental Science and Engineering, Central South University of Forestry and Technology, Tianxin District, Shaoshan South Road, Changsha, 410004 People’s Republic of China ,grid.440660.00000 0004 1761 0083Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004 People’s Republic of China
| | - Yunguo Liu
- grid.67293.39College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082 People’s Republic of China ,grid.67293.39Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082 People’s Republic of China
| | - Shaobo Liu
- grid.216417.70000 0001 0379 7164School of Architecture and Art, Central South University, Lushan South Road, Yuelu District, Changsha, 410083 People’s Republic of China
| | - Ke Zhang
- grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115 USA
| | - Jingxiao Cao
- grid.440660.00000 0004 1761 0083College of Environmental Science and Engineering, Central South University of Forestry and Technology, Tianxin District, Shaoshan South Road, Changsha, 410004 People’s Republic of China ,grid.440660.00000 0004 1761 0083Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004 People’s Republic of China
| | - Xiaofei Tan
- grid.67293.39College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082 People’s Republic of China ,grid.67293.39Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082 People’s Republic of China
| | - Shaoheng Liu
- grid.440778.80000 0004 1759 9670College of Chemistry and Material Engineering, Hunan University of Arts and Science, Dongting Avenue, Wuling District, Changde, 415000 Hunan People’s Republic of China
| |
Collapse
|
13
|
Georgin J, Pinto D, Franco DSP, Schadeck Netto M, Lazarotto JS, Allasia DG, Tassi R, Silva LFO, Dotto GL. Improved Adsorption of the Toxic Herbicide Diuron Using Activated Carbon Obtained from Residual Cassava Biomass ( Manihot esculenta). Molecules 2022; 27:7574. [PMID: 36364399 PMCID: PMC9656765 DOI: 10.3390/molecules27217574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The production and consumption of cassava (Manihot esculenta) occur in several places worldwide, producing large volumes of waste, mostly in the form of bark. This study sought to bring a new purpose to this biomass through producing activated carbon to use as an adsorbent to remove the herbicide Diuron from water. It was observed that the carbon contains the functional groups of methyl, carbonyl, and hydroxyl in a strongly amorphous structure. The activated carbon had a surface area of 613.7 m2 g-1, a pore volume of 0.337 cm3 g-1, and a pore diameter of 1.18 nm. The Freundlich model was found to best describe the experimental data. It was observed that an increase in temperature favored adsorption, reaching a maximum experimental capacity of 222 mg g-1 at 328 K. The thermodynamic parameters showed that the adsorption was spontaneous, favorable, and endothermic. The enthalpy of adsorption magnitude was consistent with physical adsorption. Equilibrium was attained within 120 min. The linear driving force (LDF) model provided a strong statistical match to the kinetic curves. Diffusivity (Ds) and the model coefficient (KLDF) both increased with a rise in herbicide concentration. The adsorbent removed up to 68% of pollutants in a simulated effluent containing different herbicides. Activated carbon with zinc chloride (ZnCl2), produced from leftover cassava husks, was shown to be a viable alternative as an adsorbent for the treatment of effluents containing not only the herbicide Diuron but also a mixture of other herbicides.
Collapse
Affiliation(s)
- Jordana Georgin
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, RS, Brazil
| | - Diana Pinto
- Universidad De La Costa, Calle 58 # 55-66, Barranquilla 080002, Atlántico, Colombia
| | - Dison S. P. Franco
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, RS, Brazil
| | - Matias Schadeck Netto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, RS, Brazil
| | - Joseane S. Lazarotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, RS, Brazil
| | - Daniel G. Allasia
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, RS, Brazil
| | - Rutineia Tassi
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Luis F. O. Silva
- Universidad De La Costa, Calle 58 # 55-66, Barranquilla 080002, Atlántico, Colombia
| | - Guilherme L. Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
14
|
Hu ZT, Wang XF, Xiang S, Ding Y, Zhao DY, Hu M, Pan Z, Varjani S, Wong JWC, Zhao J. Self-cleaning MnZn ferrite/biochar adsorbents for effective removal of tetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157202. [PMID: 35810898 DOI: 10.1016/j.scitotenv.2022.157202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
A renewable tri-metallic spinel decorated biochar adsorbent (MZF-BC) was fabricated by a facile hydrothermal method and to remove tetracycline. The physicochemical properties of MZF-BC were well studied. MZF-BC with a hybrid pore structure of mesopores (~7.6 nm) and macropores (~50 nm) has the maximum tetracycline adsorption capacity reaching 142.4 mg g-1. Through the study of adsorption kinetics, isotherms and key influencing factors, it was found that MZF-BC adsorption on tetracycline was primarily multi-layer effect with the initial adsorption behavior of pore filling associated with hydrogen bonding and π-π stacking. Furthermore, the MZF-BC performs excellent regeneration ability by driving Fenton-like catalysis as the self-cleaning process in the liquid phase. This study contributes to a new insight into the in-situ regeneration of biochar-based adsorbents after adsorbing organic pollutants in pharmaceutical wastewater treatment.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China; Industrial Catalysts Institute of ZJUT, Hangzhou 310014, China; Zhejiang PUZE Environmental Protection Technology Pte Ltd, Ningbo 315301, China
| | - Xiao-Fang Wang
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Shuo Xiang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yin Ding
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Dong-Yang Zhao
- Industrial Catalysts Institute of ZJUT, Hangzhou 310014, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Jonathan Woon-Chung Wong
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
15
|
Nizzy AM, Kannan S. A review on the conversion of cassava wastes into value-added products towards a sustainable environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69223-69240. [PMID: 35962891 DOI: 10.1007/s11356-022-22500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The solid and liquid wastes generated from cassava-based industries are organic and acidic in nature, which leads to various global concerns-primarily global warming and biodiversity loss. But the conversion of these wastes into value-added products associated with environmental pollution control contributes to sustainable development. Generally, the thermochemical process such as pyrolysis and gasification and biochemical processes such as anaerobic digestion have been applied for the conversion of cassava waste into value-added products. This review addresses the valorization of cassava wastes, which fulfill almost all needs of the hour, such as energy (biofuel), wastewater treatment (adsorbents), bioplastics, starch nanoparticles, organic acid production, and antimicrobial agents. The major aim of this paper is to analyze and provide the disclosure of the efficiency of cassava-based industrial waste as a source to minimize the problem associated with conventional fossil fuels and through which mitigate the impact of global warming and climate change. Furthermore, recent research and achievements in the valorization of cassava waste have been highlighted.
Collapse
Affiliation(s)
- Albert Mariathankam Nizzy
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| | - Suruli Kannan
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| |
Collapse
|
16
|
Fang Z, Gao Y, Zhang F, Zhu K, Shen Z, Liang H, Xie Y, Yu C, Bao Y, Feng B, Bolan N, Wang H. The adsorption mechanisms of oriental plane tree biochar toward bisphenol S: A combined thermodynamic evidence, spectroscopic analysis and theoretical calculations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119819. [PMID: 35870525 DOI: 10.1016/j.envpol.2022.119819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/03/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Garden pruning waste is becoming a problem that intensifies the garbage siege. It is of great significance to purify polluted water using biochar prepared from garden pruning waste. Herein, the interaction mechanism between BPS and oriental plane tree biochar (TBC) with different surface functional groups was investigated by adsorption experiments, spectroscopic analysis and theoretical calculations. Adsorption kinetics and isotherm of BPS on TBC can be satisfactorily fitted into pseudo-second-order kinetic and Langmuir models, respectively. A rapid adsorption kinetic toward BPS was achieved by TBC in 15 min. As compared with TBC prepared at low temperature (300 °C) (LTBC), the maximum adsorption capacity of TBC prepared at high temperature (600 °C) (HTBC) can be significantly improved from 46.7 mg g-1 to 72.9 mg g-1. Besides, the microstructure and surface functional groups of HTBC were characterized using SEM, BET-N2, and XPS analysis. According to density functional theory (DFT) theoretical calculations, the higher adsorption energy of HTBC for BPS was mainly attributed to π-π interaction rather than hydrogen bonding, which was further supported by the analysis of FTIR and Raman spectra as well as the adsorption thermodynamic parameters. These findings suggested that by improving π-π interaction through high pyrolysis temperature, BPS could be removed and adsorbed by biochar with high efficacy, cost-efficiency, easy availability, and carbon-negative in nature, contributing to global carbon neutrality.
Collapse
Affiliation(s)
- Zheng Fang
- Biochar Engineering Technology Research Center of Guangdong Province, Physical Science Public Platform, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Green Technologies Co., Ltd., Foshan, 528100, China
| | - Yurong Gao
- Biochar Engineering Technology Research Center of Guangdong Province, Physical Science Public Platform, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Fangbin Zhang
- Biochar Engineering Technology Research Center of Guangdong Province, Physical Science Public Platform, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Kaipeng Zhu
- Biochar Engineering Technology Research Center of Guangdong Province, Physical Science Public Platform, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Zihan Shen
- Biochar Engineering Technology Research Center of Guangdong Province, Physical Science Public Platform, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Haixia Liang
- Biochar Engineering Technology Research Center of Guangdong Province, Physical Science Public Platform, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Yue Xie
- Biochar Engineering Technology Research Center of Guangdong Province, Physical Science Public Platform, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Chenglong Yu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanping Bao
- Biochar Engineering Technology Research Center of Guangdong Province, Physical Science Public Platform, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, Physical Science Public Platform, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Green Technologies Co., Ltd., Foshan, 528100, China.
| |
Collapse
|
17
|
Gęca M, Wiśniewska M, Nowicki P. Biochars and activated carbons as adsorbents of inorganic and organic compounds from multicomponent systems - A review. Adv Colloid Interface Sci 2022; 305:102687. [PMID: 35525090 DOI: 10.1016/j.cis.2022.102687] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Biochars are obtained by biomass pyrolysis, whereas activated carbon is a biochar that has undergone chemical or physical activation. Owing to the large surface area and easy surface modification both solids are widely applied as adsorbents. They are low-costs materials, they could be regenerated and their disposal is not troublesome. Adsorption of heavy metals, dyes, pharmaceuticals on the surface of biochars and activated carbons, from simple systems of adsorbate containing only one compound, are described extensively in the literature. The present paper provides an overview of reports on adsorption of inorganic and organic compounds onto these two types of adsorbents from the mixed adsorbate systems. The described adsorbate systems have been divided into those consisting of: two or more inorganic ions, two or more organic compounds and both of them (inorganic and organic ones). The research of this type is carried out much less frequently due to the more complicated description of interactions in the mixed adsorbate systems.
Collapse
|
18
|
Wang G, Kong Y, Yang Y, Ma R, Shen Y, Li G, Yuan J. Superphosphate, biochar, and a microbial inoculum regulate phytotoxicity and humification during chicken manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153958. [PMID: 35183623 DOI: 10.1016/j.scitotenv.2022.153958] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The germination index (GI) is the best index for evaluating compost phytotoxicity and maturity. In order to improve GI and reduce phytotoxicity of chicken manure compost, superphosphate, biochar, and a microbial inoculum were added in this study. Maturity indices (pH, electrical conductivity, and GI), water-soluble ion, organic matter, humic acid, humic precursor contents, and the bacteria community were analyzed during the experiment. NH4+, volatile fatty acids, and humic acid strongly affected the GI, which increased as the humic acid content increased and the volatile fatty acid and NH4+ contents decreased. The three additives affected compost maturity differently. Adding biochar decreased microbial diversity and complexity, but improved the GI mainly by affecting abiotic factors. Adding the microbial inoculum increased biotic activity and promoted humus and precursor formation. Superphosphate activated core functional bacteria and increased bacterial diversity and complexity, and 16 genera and 2 phyla (Gemmatimonadota and Chloroflexi) were found only in this composting pile. Superphosphate markedly accelerated humification and decreased the salt (NH4+ and NO3-) and heavy metal ion (Cu2+, Cd2+, Cr3+) contents, forming stable substances to reduce the key phytotoxic matters, which in turn decreased the compost phytotoxicity and improved the GI. These results provide a new sight for promoting maturity by functional material regulation in composting.
Collapse
Affiliation(s)
- Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yujun Shen
- Key Laboratory of Technology and Model for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Fang G, Li J, Zhang C, Qin F, Luo H, Huang C, Qin D, Ouyang Z. Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118939. [PMID: 35121015 DOI: 10.1016/j.envpol.2022.118939] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Developing efficient catalysts for oxytetracycline (OTC) degradation is an ideal strategy to tackle environmental pollution, and advanced oxidation processes (AOPs) have been widely used for its degradation. However, the studies on the activation of periodate (PI) by biochar and its composites in recent years have been scarcely reported. In this study, we focused on the degradation of OTC by PI activation with manganese oxide/biochar composites (MnxOy@BC). Experimental results showed that the OTC degradation rate of MnxOy@BC/PI system reached almost 98%, and the TOC removal efficiency reached 75%. Various characteristic analysis proved that PI could be activated efficiently by surface functional groups and manganese-active species (Mn(II), Mn(III), and Mn(IV)) on biochar, and various reactive species such as singlet oxygen (1O2), hydroxyl radical (∙OH), and superoxide radical (O2∙-) can be observed via radical quenching experiments. Based on this, three degradation pathways were proposed. Furthermore, MnxOy@BC and PI were combined to degrade environmental pollutants, which achieved excellent practical benefits and had great practical application potential. We hope that it can provide new ideas for advanced oxidation processes (AOPs) applying for wastewater treatment in the future.
Collapse
Affiliation(s)
- Guoge Fang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Jialing Li
- School of Design, Hunan University, Changsha, Hunan, 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Hanzhuo Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Cheng Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Deyu Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Zenglin Ouyang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
20
|
Wang W, Kang R, Yin Y, Tu S, Ye L. Two-step pyrolysis biochar derived from agro-waste for antibiotics removal: Mechanisms and stability. CHEMOSPHERE 2022; 292:133454. [PMID: 34971629 DOI: 10.1016/j.chemosphere.2021.133454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/12/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
This study used acetone washing biochar (BCA) and nitric-acid washing biochar (BCN) derived from bagasse to remove sulfamethoxazole (SMX) and tetracycline (TC) in water. Higher specific surface area (1119.53 m2 g-1) and graphitization degree can significantly improve decontamination efficacy, of which BCN has the highest SMX and TC sorption capacities (274.63 mg g-1 and 353.85 mg g-1). The kinetics, isotherms and characterization analysis indicated O-containing functional group complexation and π-π interaction were dominant mechanisms in the adsorption process. Adsorption stability experiment showed that BCA has better stability with the coexistence of anions and cations. Besides, the enhancement and competitive adsorption from the interaction between soluble organic matter and TC could facilitate TC decontamination. Therefore, bagasse biochar derived from agro-waste has a promising potential for antibiotic contaminants removal from multi-interference conditions and promotes the recycling of waste, thereby achieving harmony between materials and the ecological environment.
Collapse
Affiliation(s)
- Weitong Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Rui Kang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yingwu Yin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Song Tu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Liyi Ye
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|