1
|
Ma T, Liu N, Li Y, Ye Z, Chen Z, Cheng S, Campos LC, Li Z. Effects of Polyethylene Terephthalate Microplastics on Anaerobic Mono-Digestion and Co-Digestion of Fecal Sludge from Septic Tank. Molecules 2024; 29:4692. [PMID: 39407619 PMCID: PMC11478245 DOI: 10.3390/molecules29194692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Anaerobic digestion (AD) is one of the most significant processes for treating fecal sludge. However, a substantial amount of microplastics (MPs) have been identified in septic tanks, and it remains unclear whether they impact the resource treatment of feces. To investigate this, polyethylene terephthalate (PET) was used as an indicator of MPs to study their effect on the anaerobic digestion of fecal sludge (FS). Two digestion systems were developed: FS mono-digestion and FS co-digestion with anaerobic granular sludge. The results indicated that the effects of PET varied between the two systems. PET inhibited volatile fatty acid synthesis in both systems, but the inhibition period differed. During mono-digestion, PET slightly increased gas and methane production, in contrast to the co-digestion system, where PET reduced methane production by 75.18%. Furthermore, in the mono-digestion system, PET increased soluble chemical oxygen demand and ammonia nitrogen concentrations while blocking phosphorus release, whereas the co-digestion system showed the opposite effects. Ultimately, the choice of digestion method is crucial for the resource utilization of septic tank sludge, and the impact of MPs on AD cannot be ignored.
Collapse
Affiliation(s)
- Tingting Ma
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Nana Liu
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Yuxuan Li
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK; (Y.L.); (L.C.C.)
| | - Ziwang Ye
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Zhengxian Chen
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Shikun Cheng
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| | - Luiza C. Campos
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK; (Y.L.); (L.C.C.)
| | - Zifu Li
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Beijing 100083, China; (T.M.); (Z.Y.); (Z.C.); (Z.L.)
| |
Collapse
|
2
|
Ribarova I, Vasilaki V, Katsou E. Review of linear and circular approaches to on-site domestic wastewater treatment: Analysis of research achievements, trends and distance to target. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121951. [PMID: 39079496 DOI: 10.1016/j.jenvman.2024.121951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
This comprehensive review critically assesses traditional and emerging technologies for domestic wastewater treatment and reuse, focusing on the transition from conventional centralised systems to innovative decentralised approaches. Through an extensive literature search on domestic wastewater systems serving a population equivalent of less than or equal to 10, the study juxtaposes linear and circular methods and highlights their impact on urban water management and the environment. The papers reviewed were classified into five categories: Environmental studies, economic studies, social studies, technological studies, and reviews and policy papers. The analysis was carried out separately for linear and circular approaches within each category. In addition, the maturity of the technology (lab/pilot or full-scale application) was taken into account in the analysis. The research landscape is shown to be evolving towards circular methods that promise sustainability through resource recovery, despite the dominance of linear perspectives. The lack of clear progress in decentralised technologies, the scarcity of circularity assessments and the challenges of urban integration are highlighted. Operational reliability, regulatory compliance and policy support are identified as key barriers to the adoption of decentralised systems. While conventional pollutants and their environmental impacts are well addressed for linear systems, the study of emerging pollutants is in its infancy. Conclusions on the impact of these hazardous pollutants are tentative and cautious. Social and economic studies are mainly based on virtual scenarios, which are useful research tools for achieving sustainability goals. The conceptual frameworks for assessing the social dimension need further refinement to be effective. The paper argues for a balanced integration of centralisation and decentralisation, proposing a dual strategy that emphasizes the development of interoperable technologies. It calls for further research, policy development and widespread implementation to promote decentralised solutions in urban water management and pave the way for sustainable urban ecosystems.
Collapse
Affiliation(s)
- Irina Ribarova
- University of Architecture, Civil Engineering and Geodezy, 1 Chr. Smirnensku Blvd., 1046, Sofia, Centre of Competence "Clean&Circle", Bulgaria.
| | - Vasileia Vasilaki
- Department of Civil and Environmental Engineering, Imperial College London, Skempton Building, South Kensington, London, SW7 2AZ, United Kingdom.
| | - Evina Katsou
- Department of Civil and Environmental Engineering, Imperial College London, Skempton Building, South Kensington, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
3
|
Wei X, Liang J, Ning T, Zhang C, Wang J, Tan L, Shen F. Response of soil microbial community structure and function to the sewage leakage: A case study of a 25-year-old cesspool. CHEMOSPHERE 2024; 363:142753. [PMID: 38971439 DOI: 10.1016/j.chemosphere.2024.142753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Providing many millions of rural households with decentralized sanitation facilities remains challenging. In undeveloped areas, cesspools have still been widely used due to technologically simple and low-cost. However, the influence of cesspools on the surrounding soil remains unclear. In this study, we investigated the influence of a 25-year-old household cesspool on soil physicochemical factors, microbial community composition and function, pathogens and antibiotic resistance genes (ARGs). Soil at the depth around the sewage liquid level (D70) was mostly disturbed where TOC, NO3-N and TP was increased to 16.8 g/kg, 18.2 mg/kg and 1.02 mg/kg respectively. Correspondingly, the element cycling genes of carbon fixation, methanotrophy, nitrogen fixation, ammonia oxidation, and nitrate reduction etc., were increased at D70. Notably, human derived pathogens such as Enterobacter, Salmonella, Pseudomonas aeruginosa, Klebsiella pneumoniae, Prevotella, and Vibrio were highly enriched by 5-10 folders in D70, indicating the potential health risk to human. Mantel tests suggested that EC, TP, pH, NH3-N and particularly NO3-N are important factors that influence the microbial community and element cycling genes in cesspool-affected soil. Overall, this study revealed the impact of household cesspool leakage on the surrounding soil and provided information for the selection and construction of basic sanitation facilities in poor regions.
Collapse
Affiliation(s)
- Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Jiayin Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Tianyang Ning
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Jiarui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China.
| | - Feng Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China.
| |
Collapse
|
4
|
Robas M, Presa J, Arranz-Herrero J, Yildiz S, Rius-Rocabert S, Llinares-Pinel F, Probanza A, Schmolke M, Jiménez PA, Nistal-Villan E. Influenza A virus infection alters the resistance profile of gut microbiota to clinically relevant antibiotics. Microbiol Spectr 2024; 12:e0363522. [PMID: 38051056 PMCID: PMC10783141 DOI: 10.1128/spectrum.03635-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Influenza virus infection affects both lung and intestinal bacterial community composition. Most of the published analyses focus on the characterization of the microbiota composition changes. Here we assess functional alterations of gut microbiota such as nutrient and antibiotic resistance changes during an acute respiratory tract infection. Upon influenza A virus (IAV) infection, cecal microbiota drops accompanied by a decrease in the ability to metabolize some common nutrients under aerobic conditions. At the same time, the cecal community presents an increase in resistance against clinically relevant antibiotics, particularly cephalosporins. Functional characterization of complex communities presents an additional and necessary element of analysis that nowadays is mainly limited to taxonomic description. The consequences of these functional alterations could affect treatment strategies, especially in multimicrobial infections.
Collapse
Affiliation(s)
- Marina Robas
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Jesús Presa
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Javier Arranz-Herrero
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, Madrid, Spain
| | - Soner Yildiz
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sergio Rius-Rocabert
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, Madrid, Spain
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Francisco Llinares-Pinel
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Agustin Probanza
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
- Geneva Center of Inflammation Research, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Pedro A. Jiménez
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Estanislao Nistal-Villan
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| |
Collapse
|
5
|
Almansa X, Starostka R, Raskin L, Zeeman G, De Los Reyes F, Waechter J, Yeh D, Radu T. Anaerobic Digestion as a Core Technology in Addressing the Global Sanitation Crisis: Challenges and Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19078-19087. [PMID: 37956995 PMCID: PMC10702437 DOI: 10.1021/acs.est.3c05291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Successfully addressing the complex global sanitation problem is a massive undertaking. Anaerobic digestion (AD), coupled with post-treatment, has been identified as a promising technology to contribute to meeting this goal. It offers multiple benefits to the end users, such as the potential inactivation of pathogenic microorganisms in waste and the recovery of resources, including renewable energy and nutrients. This feature article provides an overview of the most frequently applied AD systems for decentralized communities and low- and lower-middle-income countries with an emphasis on sanitation, including technologies for which pathogen inactivation was considered during the design. Challenges to AD use are then identified, such as experience, economics, knowledge/training of personnel and users, and stakeholder analysis. Finally, accelerators for AD implementation are noted, such as the inclusion of field studies in academic journals, analysis of emerging contaminants, the use of sanitation toolboxes and life cycle assessment in design, incorporation of artificial intelligence in monitoring, and expansion of undergraduate and graduate curricula focused on Water, Sanitation, and Hygiene (WASH).
Collapse
Affiliation(s)
| | - Renata Starostka
- Department
of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lutgarde Raskin
- Department
of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Grietje Zeeman
- Wageningen
University & Research, Wageningen, 6708PB, The Netherlands
| | - Francis De Los Reyes
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695-7908, United
States
| | | | - Daniel Yeh
- Department
of Civil and Environmental Engineering, University of South Florida, Florida 33620, United States
| | - Tanja Radu
- School
of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, United
Kingdom
| |
Collapse
|
6
|
Li H, Tan L, Zhang C, Wei X, Wang Q, Li Q, Zheng X, Xu Y. Spatial distribution of bacterial resistance towards antibiotics of rural sanitation system in China and its potential link with diseases incidence. J Environ Sci (China) 2023; 127:361-374. [PMID: 36522068 DOI: 10.1016/j.jes.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 06/17/2023]
Abstract
Chinese government is vigorously promoting toilet renovation in rural areas to reduce the risk of human feces exposure, which would cause infectious diseases, especially antibiotic resistance genes (ARGs) and pathogens. However, the distribution of ARGs in human feces from different regions of China remained ill-defined. It is not yet known how the survival of ARGs after toilet treatment is associated with the regional infection rates. Here, we investigated the prevalence of ARGs in human feces in rural areas of China and their potential relationship with infectious diseases for the first large-scale. The results showed that there were still high ARGs residues in human feces after rural toilet treatment, especially tetM-01 and ermB with average relative abundance as high as 1.21 × 10-1 (Eastern) and 1.56 × 10-1 (Northern), respectively. At a large regional scale, the significant differences in human feces resistomes were mainly shaped by the toilet types, TN, NH3-N, and the bacterial community. A critical finding was that toilets still cannot effectively decrease the pathogenicity risk in human feces. The significant positive relationship (P<0.05) between infectious diseases and ARGs can infer that ARGs in human feces exposure might be a critical path for enhancing the incidence of diseases, as these ARGs hinder the effectiveness of antibiotics.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qian Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
7
|
Liu N, Cheng S, Wang X, Li Z, Zheng L, Lyu Y, Ao X, Wu H. Characterization of microplastics in the septic tank via laser direct infrared spectroscopy. WATER RESEARCH 2022; 226:119293. [PMID: 36323216 DOI: 10.1016/j.watres.2022.119293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are emerging pollutants that have been widely detected in the atmosphere, hydrosphere, lithosphere, and biosphere. Such wide spread of MPs indicates that the effective control in different environmental sectors is in an urgent need, and the first step in meeting this need is to identify the occurrence of MPs in the relevant environment. However, research on MPs in septic tanks has not been reported so far. This study investigated the distribution characteristics of MPs in septic tanks with a size detection limit of as low as 20 μm detected by laser direct infrared spectroscopy. Results showed that the number of MPs in the septic tank was reached 2803 (1489-4816) particles/g dry sludge, and the amount detected in the sediments was one order of magnitude higher than that in the scums. A total of 36 types of MPs were found in the septic tank, and 26 types were found in both sediments and scums, but the type in the scums was 21% higher than that in the sediments. The size was mostly 20-100 μm, accounting for 86.3% and 91.2% in the sediments and scums, respectively. Four shapes of MPs were detected in the septic tank, namely, fiber, bead, granule, and fragment. Our study revealed that septic tanks are both sinks and sources of MPs, which are reflected in the fact that MPs are not only large in number but also abundant in types. Thus, significant attention should be paid to septic tank-based microplastic pollution, which may lead to environmental and health risks without proper control and management.
Collapse
Affiliation(s)
- Nana Liu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Shikun Cheng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Xuemei Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lei Zheng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yaping Lyu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiuwei Ao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiwen Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
8
|
Xu Y, Li H, Li Y, Zheng X, Zhang C, Gao Y, Chen P, Li Q, Tan L. Systematically assess the advancing and limiting factors of using the multi-soil-layering system for treating rural sewage in China: From the economic, social, and environmental perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114912. [PMID: 35306420 DOI: 10.1016/j.jenvman.2022.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Solving the problem of rural sewage is considered an essential task in China's rural revitalization strategy. Based on the yearbook data of sewage treatment in rural areas between 2014 and 2019, although the rate of sewage treatment in rural areas of China showed an upward trend, it was still below 35%, mainly due to the lack of suitable sewage treatment technologies. Here, we discuss the multi-soil-layering (MSL) system, which is an emerging technology suitable for rural sewage treatment. It was deemed to overcome the shortcomings of current biological and ecological treatment technologies, such as complex operation, large area, and high operating costs. We used system dynamics to evaluate the advancing and limiting factors of MSL application for rural sewage treatment from the social, environmental, and economic dimensions. The results illustrated a complete causal loop diagram in which essential variables and relationships were concentrated in the technology, operation and maintenance, and satisfaction of farmers. The efficiency of MSL is the key variable affecting the final decision of the MSL application. Overall, using MSL to treat rural sewage could be an option to improve the rural environment in China. However, the scientific technological model for MSL should be further explored. This review provides guidance on how to promote MSL systems in rural areas.
Collapse
Affiliation(s)
- Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Ye Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yi Gao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Qian Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
9
|
Pulicharla R, Proulx F, Behmel S, Sérodes JB, Rodriguez MJ. Spatial and temporal variability of contaminants of emerging concern in a drinking water source. RSC Adv 2022; 12:20876-20885. [PMID: 35919150 PMCID: PMC9301962 DOI: 10.1039/d2ra02962f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 12/07/2022] Open
Abstract
The spatial–temporal behaviour of contaminants of emerging concern (CECs) are not well-documented in drinking water sources, including in Quebec, Canada.
Collapse
Affiliation(s)
- Rama Pulicharla
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Francois Proulx
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
| | | | - Jean-B. Sérodes
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
- Département de Génie civil et génie des eaux, Pavillon Pouliot, Université Laval, Québec, QC G1V 0A6, Canada
| | - Manuel J. Rodriguez
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Effects of Partial Blackwater Substitution on Soil Potential NI-Trogen Leaching in a Summer Maize Field on the North China Plain. Life (Basel) 2021; 12:life12010053. [PMID: 35054446 PMCID: PMC8777822 DOI: 10.3390/life12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
In China, promoting harmless blackwater treatment and resource utilization in rural areas is a priority of the “toilet revolution”. Exploring the effects of blackwater application in arid areas on soil nitrogen losses can provide a basis for more effective water and fertilizer management. This study analyzed nitrogen leaching and maize yield under blackwater application in the summer maize season of 2020. A total of 5 treatments were used: no fertilizer, single chemical fertilizer application (CF), single blackwater application (HH), and combined chemical fertilizer and blackwater application ratios of 1:1 (CH1) and 2:1 (CH2). The total nitrogen leached from the fertilization treatments was 53.14–60.95 kg·ha−1 and the leached nitrate nitrogen was 34.10–40.62 kg·ha−1. Nitrate nitrogen accounted for 50–62% of the total leached nitrogen. Compared with blackwater treatments, nitrate nitrogen moved into deeper soil layers (80–100 cm depth) during the CF treatment. Compared with CF, HH significantly reduced the maize yield by 24.39%. The nitrogen surplus of HH was higher than that of other fertilizer treatments. Considering nitrogen leaching, maize yield, and economic benefits, the CH2 treatment presented the optimal results. These findings address knowledge gaps and assist in guiding policy-makers to effectively promote China’s “toilet revolution”.
Collapse
|