1
|
Yang R, Shoji O, Lin Y, Wang F, Che H, Xu J. Construction of P450 scaffold biocatalysts for the biodegradation of five chloroanilines. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137305. [PMID: 39854990 DOI: 10.1016/j.jhazmat.2025.137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Chloroanilines represent a class of persistent and highly toxic environmental pollutants, posing significant challenges for green remediation strategies. While P450BM3 monooxygenases are renowned for their ability to catalyze the monooxidation of inert C-H bonds, costly NAD(P)H and complex electron transport systems required for P450BM3 catalysis limit their practical applications. This study pioneers the development of innovative artificial biocatalysts by strategically engineering the active site of P450BM3. Specifically, the substitution of the highly conserved threonine 268 with aspartic acid effectively induces peroxygenase activity, allowing for enhanced catalytic efficiency. Remarkably, the engineered P450BM3 mutants achieved degradation rates of 98.38-99.18 % for five chloroanilines (4-chloroaniline, 2-chloroaniline, 2,4-dichloroaniline, 3,4-dichloroaniline, and 3,5-dichloroaniline) in just 10-15 min, all without the need for NAD(P)H or dual-functional small molecules. Comprehensive degradation mechanism analysis via UPLC-MS corroborated the remarkable performance of these biocatalysts. This research not only demonstrates a novel approach for engineering P450 monooxygenases to exhibit peroxygenase activity but also significantly broadens their potential applications in synthetic chemistry and synthetic biology, paving the way for greener and more sustainable remediation technologies.
Collapse
Affiliation(s)
- Ridong Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266071, China; College of Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yingwu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Fang Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Hongxia Che
- College of Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jiakun Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266071, China.
| |
Collapse
|
2
|
Bo Y, Niu Y, Zhu M, Wang Y, Wang Y, Su Y, Liu Q, Wang G, Wang Y. Elucidating the co-metabolism mechanism of 4-chlorophenol and 4-chloroaniline degradation by Rhodococcus through genomics and transcriptomics. ENVIRONMENTAL RESEARCH 2025; 274:121362. [PMID: 40073925 DOI: 10.1016/j.envres.2025.121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Co-metabolism is an effective strategy for the removal of refractory pollutants during biodegradation. This study reports that Rhodococcus DCB-5 can utilize 4-chlorophenol as a growth substrate to initiate the co-metabolic degradation of 4-chloroaniline. Comprehensive analyses of the genome, transcriptome, enzymes, and intermediate products identified key genes and a putative co-metabolic degradation pathway involved in the degradation process by Rhodococcus. Under optimal co-metabolic degradation conditions of pH 7 and 35°C, strain DCB-5 completely degraded 4-chlorophenol at an initial concentration of 50 mg/L, and achieved a 65.82% degradation rate for 4-chloroaniline at an initial concentration of 100 mg/L. Genome analysis indicated that the strain has the potential to degrade chlorinated aromatic compounds. The genes gpx, ygjG, ugpE, afuB, tfdB, catB, catA, and glnA were identified as core genes involved in the co-metabolic degradation process. Analysis of degradation intermediates revealed that 4-chlorophenol promotes the expression of the aniline dioxygenase-related gene glnA, facilitating the metabolism of 4-chloroaniline. A potential co-metabolic degradation pathway for strain DCB-5 is proposed. These findings may have implications for sites co-contaminated with chlorophenols and chloramines.
Collapse
Affiliation(s)
- Yonglin Bo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yixue Niu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yu Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Gang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Yongqiang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| |
Collapse
|
3
|
Mun H, Wang D, Zheng J, Ahmad S, Ri M, Ri C, Tang J. Complete 2,4,6-trichlorophenol degradation by anaerobic sludge acclimated with 4-chlorophenol: Synergetic effect of nZVI@BMPC and sodium lactate as an external nutrient. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135063. [PMID: 38954853 DOI: 10.1016/j.jhazmat.2024.135063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Ball-milled plastic char supported nano zero-valent iron (nZVI@BMPC) and their application combined with anaerobic sludge for microbial dechlorination of 2,4,6-trichlorophenol (2,4,6-TCP) were investigated. The XRD and FTIR analysis proved composition of zero valent states of iron, and the BET and SEM analysis showed that nZVI was uniformly distributed on the surface of BMPC. Successive addition of 1000 mg/L sodium lactate and nZVI@BMPC enhanced the acclamation of anaerobic sludge and resulted in the degradation of 4-CP within 80 days. The acclimated consortium with nZVI@BMPC completely degraded 2,4,6-TCP into CH4 and CO2, and the key dechlorination route was through 4-CP dechlorinaion and mineralization. The degradation rate of 2,4,6-TCP with nZVI@BMPC was 0.22/d, greater than that without nZVI@BMPC. The dechlorination efficiency was enhanced in the Fe2+/Fe3+ system controlled by nZVI@BMPC and iron-reducing bacteria. Metagenomic analysis result showed that the dominant de-chlorinators were Chloroflexi sp., Desulfovibrio, and Pseudomonas, which could directly degrade 2,4,6-TCP to 4-CP, especially, Chloroflexi bacterium could concurrently be used to mineralize 4-CP. The relative abundance of the functional genes cprA, acoA, acoB, and tfdB increased significantly in the presence of the nZVI@BMPC. This study provides a new strategy can be a good alternative for possible application in groundwater remediation.
Collapse
Affiliation(s)
- Hyokchol Mun
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Natural Energy Research, State Academy of Sciences, Pyongyang, North Korea
| | - Dong Wang
- Environmental Protection institute, SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China.
| | - Jin Zheng
- State Key Lab of Petroleum Pollution Control, CNPC Research Institute of Safety & Environmental Technology, Beijing 102206, China
| | - Shakeel Ahmad
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Myongson Ri
- Institute of Natural Energy Research, State Academy of Sciences, Pyongyang, North Korea
| | - Cholnam Ri
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Microbiology, State Academy of Sciences, Pyongyang, North Korea
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Semwal N, Mahar D, Chatti M, Kumar R, Arya MC. Ni-Zn/CeO 2 nanocomposites for enhanced adsorptive removal of 4-chlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51934-51953. [PMID: 39134794 DOI: 10.1007/s11356-024-34669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Chlorophenols are one of the major organic pollutants responsible for the contamination of water bodies. This study explores the application of Ni-Zn/CeO2 nanocomposites, synthesized via the aqueous co-precipitation method, as effective adsorbents for the 4-chlorophenol removal from aqueous solutions. The nanocomposites' chemical and structural characteristics were assessed using different physical characterization methods, viz. X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, zeta potential, using a Box-Behnken design within response surface methodology, optimal conditions of pH 3, temperature 20 °C, contact time 120 min, adsorbent dosage 0.05 g, and 4-chlorophenol concentration 50 ppm are identified. Among the nanocomposites tested, NZC 20:10:70, with 20% Ni and 10% Zn, achieves enhanced performance, removing 99.1% of 4-chlorophenol within 2 h. Adsorption kinetics follow the pseudo-second-order model and equilibrium data fit the Freundlich isotherm. Thermodynamic analysis indicates an exothermic and spontaneous process. The adsorption capacity of NZC 20:10:70 shows significant enhancement, growing from 19.85 mg/g at 10 ppm to 96.33 mg/g at 50 ppm initial concentration. Physical characterization confirms NZC 20:10:70's superior properties, including a high surface area of 118.471 m2/g. Evaluating economic viability, NZC 20:10:70 demonstrates robust reusability, retaining 85% efficiency over eight regeneration cycles. These results highlight NZC 20:10:70 as a promising adsorbent for effective and sustainable chlorophenol removal in water treatment.
Collapse
Affiliation(s)
- Nitish Semwal
- Department of Chemistry, DSB Campus, Kumaun University, Nainital, Uttarakhand, 263002, India
| | - Divya Mahar
- Department of Chemistry, DSB Campus, Kumaun University, Nainital, Uttarakhand, 263002, India
| | - Manjunath Chatti
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Rajesh Kumar
- Department of Chemistry, SSJ Campus, SSJ University, Almora, Uttarakhand, India
| | - Mahesh Chandra Arya
- Department of Chemistry, DSB Campus, Kumaun University, Nainital, Uttarakhand, 263002, India.
| |
Collapse
|
5
|
Cheng Z, Zhang P, Wang X, Song X, Dai X, Gao L, Zhang X, Zhang G, Lu Y. Drag reduction and degradation by sodium alginate in turbulent flow. Sci Rep 2024; 14:16854. [PMID: 39039150 PMCID: PMC11263538 DOI: 10.1038/s41598-024-67873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
The utilization of drag-reducing polymers has long been hindered by their irritancy, corrosiveness, and toxicity across various domains. In this investigation, we explored sodium alginate, a natural drag reducer, for its efficacy in reducing drag and its resilience to shear in millimeter-scale pipelines. Initially, an experimental setup was devised to assess the drag reduction capabilities of sodium alginate at varying concentrations and flow rates using Response Surface Methodology (RSM). The relationship between drag reduction (DR), concentration (C), and flow rate (Q) was established by analyzing the experimental data. Subsequently, variance analysis was employed to validate the data accuracy, with a comparison between predicted and experimental DR values revealing an error margin within ± 20%. Analysis of cyclic shear testing of sodium alginate solution in tubes demonstrated its effectiveness as a shear flow drag reducer. Furthermore, results from laser particle size analysis indicated minimal molecular breakage of sodium alginate during cyclic shear.
Collapse
Affiliation(s)
- Zhensong Cheng
- College of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, 257061, Shandong, People's Republic of China.
| | - Panpan Zhang
- Dongying Vocational Institute, Dongying, 257091, Shandong, People's Republic of China
| | - Xudong Wang
- College of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, 257061, Shandong, People's Republic of China.
| | - Xinwang Song
- College of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, 257061, Shandong, People's Republic of China.
| | - Xiaodong Dai
- College of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, 257061, Shandong, People's Republic of China
| | - Liang Gao
- College of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, 257061, Shandong, People's Republic of China
| | - Xin Zhang
- College of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, 257061, Shandong, People's Republic of China.
| | - Guoxin Zhang
- CNOOC (Tianjin) Oilfield Chemical Co., Ltd, Tianjin, China
| | - Yuan Lu
- CNOOC (Tianjin) Oilfield Chemical Co., Ltd, Tianjin, China
| |
Collapse
|
6
|
Wang ZL, Lao J, Xie ZN, He W, Zhong C, Zhang SH, Jin J. Fermentation of Polygonati Rhizoma aqueous extract using Lactiplantibacillus plantarum under the condition of eutrophication. Arch Microbiol 2024; 206:359. [PMID: 39033087 DOI: 10.1007/s00203-024-04082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
In this experiment, the eutrophication system was established by adding sucrose and yeast powder, and the pH and dissolved oxygen were measured in a bioreactor in real time to study the effect of aerobic environment on the fermentation process of Polygonati Rhizoma extract by Lactiplantibacillus plantarum. To further analyze metabolic changes, UPLC-Q-Exactive MS was used for metabolomic analysis and metabolic profiling. Multivariate analysis was performed using principal component analysis and Orthogonal projections to latent structures discriminant analysis. Finally, 313 differential metabolites were selected, 196 of which were annotated through database matching. After fermentation, the content of short-chain fatty acids, lactic acid, and their derivatives increased significantly, and there were 13 kinds and 4 kinds, respectively. Both compounds and their derivatives are beneficial to the intestinal flora. Consequently, incorporating L. plantarum into the aerobic fermentation process of Polygonati Rhizoma extract within the eutrophic system is potentially advantageous in enhancing the impact of its fermentation solution on the gut microbiota and its effects on human health. Our findings for this kind of edible and medicinal material research and development offer useful insights.
Collapse
Affiliation(s)
- Zi-Ling Wang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jia Lao
- Resgreen Group International Inc., Changsha, 410329, China
| | - Zhen-Ni Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Wei He
- Resgreen Group International Inc., Changsha, 410329, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
- Hunan Shenzhou Chinese Medicine Inc., Zhangjiajie, 427200, China
| | - Shui-Han Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China.
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
7
|
Taheri E, Fatehizadeh A, Hadi S, Amin MM, Khiadani M, Ghasemian M, Rafiei N, Rezakazemi M, Aminabhavi TM. Mesoporous bimetallic S-doped nanoparticles prepared via hydrothermal method for enhanced photodegradation of 4-chlorophenol. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119460. [PMID: 37939471 DOI: 10.1016/j.jenvman.2023.119460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/18/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Magnesium oxides (MgO) have gained shown significant promise for a variety of applications, which can be modified by ions doping. In this study, bimetallic Ag-doped S-MgO nanoparticles were prepared by hydrothermal method and used for photocatalytic degradation of 4-chlorophenl (4-CP). EDX suggested the presence of no impurities, which mainly contained Mg, Ag, and S elements, suggesting that S and Ag were incorporated into the lattice of MgO as a result of successful doping. Estimated bandgap of Ag-doped S-MgO nanoparticles was 3.7 eV, lower than MgO (7.8 eV), but useful to improve optical characteristics and photocatalytic efficiency to degrade 4-CP up to a maximum of 99.60 ± 0.50%. The synergetic parameter during photocatalysis of 4-CP was 6.91, confirming the degradation of 4-CP. Quenching experiments proved the presence of hydroxyl radicals (•OH) and singlet dioxygen (1O2) that were critical in 4-CP degradation. The kinetics rate constant was increased by 24.8% from 0.086 ± 0.004 to 0.108 ± 0.005 min-1 by the addition of sulfate in the reaction medium. The work proposes a new synthetic method for preparing catalysts that are capable of producing in-situ •OH radicals and 1O2 to decompose the organic contaminants.
Collapse
Affiliation(s)
- Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sousan Hadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Mohammad Ghasemian
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nasim Rafiei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India.
| |
Collapse
|
8
|
Mukherjee J, Lodh BK, Sharma R, Mahata N, Shah MP, Mandal S, Ghanta S, Bhunia B. Advanced oxidation process for the treatment of industrial wastewater: A review on strategies, mechanisms, bottlenecks and prospects. CHEMOSPHERE 2023; 345:140473. [PMID: 37866496 DOI: 10.1016/j.chemosphere.2023.140473] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Due to its complex and, often, highly contaminated nature, treating industrial wastewater poses a significant environmental problem. Many of the persistent pollutants found in industrial effluents cannot be effectively removed by conventional treatment procedures. Advanced Oxidation Processes (AOPs) have emerged as a promising solution, offering versatile and effective means of pollutant removal and mineralization. This comprehensive review explores the application of various AOP strategies in industrial wastewater treatment, focusing on their mechanisms and effectiveness. Ozonation (O3): Ozonation, leveraging ozone (O3), represents a well-established AOP for industrial waste water treatment. Ozone's formidable oxidative potential enables the breakdown of a broad spectrum of organic and inorganic contaminants. This paper provides an in-depth examination of ozone reactions, practical applications, and considerations involved in implementing ozonation. UV/Hydrogen Peroxide (UV/H2O2): The combination of ultraviolet (UV) light and hydrogen peroxide (H2O2) has gained prominence as an AOP due to its ability to generate hydroxyl radicals (ȮH), highly efficient in pollutant degradation. The review explores factors influencing the efficiency of UV/H2O2 processes, including H2O2 dosage and UV radiation intensity. Fenton and Photo-Fenton Processes: Fenton's reagent and Photo-Fenton processes employ iron ions and hydrogen peroxide to generate hydroxyl radicals for pollutant oxidation. The paper delves into the mechanisms, catalyst selection, and the role of photoactivation in enhancing degradation rates within the context of industrial wastewater treatment. Electrochemical Advanced Oxidation Processes (EAOPs): EAOPs encompass a range of techniques, such as electro-Fenton and anodic oxidation, which employ electrode reactions to produce ȮH radicals. This review explores the electrochemical principles, electrode materials, and operational parameters critical for optimizing EAOPs in industrial wastewater treatment. TiO2 Photocatalysis (UV/TiO2): Titanium dioxide (TiO2) photocatalysis, driven by UV light, is examined for its potential in industrial wastewater treatment. The review investigates TiO2 catalyst properties, reaction mechanisms, and the influence of parameters like catalyst loading and UV intensity on pollutant removal. Sonolysis (Ultrasonic Irradiation): High-frequency ultrasound-induced sonolysis represents a unique AOP, generating ȮH radicals during the formation and collapse of cavitation bubbles. This paper delves into the physics of cavitation, sonolytic reactions, and optimization strategies for industrial wastewater treatment. This review offers a critical assessment of the applicability, advantages, and limitations of these AOP strategies in addressing the diverse challenges posed by industrial wastewater. It emphasizes the importance of selecting AOPs tailored to the specific characteristics of industrial effluents and outlines potential directions for future research and practical implementation. The integrated use of these AOPs, when appropriately adapted, holds the potential to achieve sustainable and efficient treatment of industrial wastewater, contributing significantly to environmental preservation and regulatory compliance.
Collapse
Affiliation(s)
- Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Affiliated to Jawaharlal Nehru Technological University Hyderabad, Hyderabad, Telangana, 501401, India.
| | - Bibhab Kumar Lodh
- Department of Chemical Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Ramesh Sharma
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| | - Maulin P Shah
- Industrial Wastewater Research Lab, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India.
| | - Subhasis Mandal
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, 673 601, India.
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Agartala, 799046, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| |
Collapse
|
9
|
Majumdar R, Mishra U, Mahata N, Shah MP, Mondal A, Bhunia B. Preparation, characterization, and performance evaluation of composite films of polyvinyl alcohol/ cellulose nanofiber extracted from Imperata cylindrica. CHEMOSPHERE 2023:139370. [PMID: 37402426 DOI: 10.1016/j.chemosphere.2023.139370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
In recent years, production of cellulose nanofiber (CNF) from waste materials has achieved great interest owing to their renewable nature, biodegradability, high mechanical properties, economic value, and low density. Because Polyvinyl alcohol (PVA) is a synthetic biopolymer with good water solubility and biocompatibility, the composite material formed of CNF and PVA, is a sustainable way of monetizing to address environmental and economic issues. In this work pure PVA, PVA/CNF0.5, PVA/CNF1.0, PVA/CNF1.5, and PVA/CNF2.0 nanocomposite films were produced using the solvent casting approach with the addition of 0, 0.5, 1.0, 1.5, and 2.0 wt% of CNF concentrations respectively. The strongest water absorption behaviour was found as 25.82% for pure PVA membrane, followed by PVA/CNF0.5 (20.71%), PVA/CNF1.0 (10.26%), PVA/CNF1.5 (9.63%), and PVA/CNF2.0 (4.35%). The water contact angle of 53.1°, 47.8°, 43.4°, 37.7°, and 32.3° was formed between water droplet and the solid-liquid interface of pure PVA, PVA/CNF0.5, PVA/CNF1.0, PVA/CNF1.5, PVA/CNF2.0 composite films respectively. The SEM image clearly shows that a network structure like a tree form at the PVA/CNF0.5 composite film, where the sizes and number of pores are apparent. XRD analysis suggested that unique peaks found at 2θ = 17.5°, 28.1°, 33.4°, and 38° for nanocomposites indicating new crystal plane generated upon cross-linking in presence of malic acid. The maximum loss rate temperature (Td,max) for PVA/CNF0.5, PVA/CNF1.0, PVA/CNF1.5 was determined by TG analysis to be around 273.4 °C. FTIR studies suggested that PVA/CNF0.5 composite film showed the highest peak at 1428 cm-1 as compared to other PVA/CNF composite films representing the presence of higher crystalline band in the composite film matrix. PVA/CNF0.5 composite film was found to have a surface porosity and mean pore size of 27.35% and 0.19 μm respectively, classifying it in the MF membrane category. The maximum tensile strength (TS) of 5.27 MPa was found for PVA/CNF0.5, followed by PVA/CNF1.0, PVA/CNF1.5, pure PVA, and PVA/CNF2.0. The maximum young's modulus (111 MPa) was found for PVA/CNF1.0, followed by PVA/CNF0.5, PVA/CNF2.0, PVA/CNF1.5, and pure PVA, which could be attributed to the cyclization of the molecular structures by cross-linking. PVA/CNF0.5 exhibits greater elongation at break (21.7) than the other polymers, indicating a material's ability to undergo significant deformation before failure. Performance evaluation of the PVA/CNF0.5 composite film showed that 46.3% and 92.8% yield were found in the retentate for 200 mg/L of BSA, and 5 × 107 CFU/mL respectively. However, more than 90% E. coli was retained by PVA/CNF0.5 composite film, therefore absolute rating of this membrane is 0.22 μm. The size of this composite film may be therefore considered in the range of MF.
Collapse
Affiliation(s)
- Ria Majumdar
- Department of Civil Engineering, National Institute of Technology Agartala, Jirania, 799046, India.
| | - Umesh Mishra
- Department of Civil Engineering, National Institute of Technology Agartala, Jirania, 799046, India.
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| | - Maulin P Shah
- Industrial Wastewater Research Lab, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India.
| | - Abhijit Mondal
- Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, 823215, India.
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania, 799046, India.
| |
Collapse
|
10
|
Sun S, Wang Y, Xu C, Qiao C, Chen S, Zhao C, Liu Q, Zhang X. Reconstruction of microbiome and functionality accelerated crude oil biodegradation of 2,4-DCP-oil-contaminated soil systems using composite microbial agent B-Cl. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130808. [PMID: 36669400 DOI: 10.1016/j.jhazmat.2023.130808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Biodegradation is one of the safest and most economical methods for the elimination of toxic chlorophenols and crude oil from the environment. In this study, aerobic degradation of the aforementioned compounds by composite microbial agent B-Cl, which consisted of Bacillus B1 and B2 in a 3:2 ratio, was analyzed. The biodegradation mechanism of B-Cl was assessed based on whole genome sequencing, Fourier transform infrared spectroscopy and gas chromatographic analyses. B-Cl was most effective at reducing Cl- concentrations (65.17%) and crude oil biodegradation (59.18%) at 7 d, which was when the content of alkanes ≤ C30 showed the greatest decrease. Furthermore, adding B-Cl solution to soil significantly decreased the 2,4-DCP and oil content to below the detection limit and by 80.68%, respectively, and reconstructed of the soil microbial into a system containing more CPs-degrading (exaA, frmA, L-2-HAD, dehH, ALDH, catABE), aromatic compounds-degrading (pcaGH, catAE, benA-xylX, paaHF) and alkane- and fatty acid-degrading (alkB, atoB, fadANJ) microorganisms. Moreover, the presence of 2,4-DCP was the main hinder of the observed effects. This study demonstrates the importance of adding B-Cl solution to determine the interplay of CPs with microbes and accelerating oil degradation, which can be used for in-situ bioremediation of CPs and oil-contaminated soil.
Collapse
Affiliation(s)
- Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Chenfei Xu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Chenlu Qiao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Shuiquan Chen
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China.
| | - Xiuxia Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| |
Collapse
|
11
|
Wang Z, Lao J, Kang X, Xie Z, He W, Liu X, Zhong C, Zhang S, Jin J. Insights into the metabolic profiling of Polygonati Rhizoma fermented by Lactiplantibacillus plantarum under aerobic and anaerobic conditions using a UHPLC-QE-MS/MS system. Front Nutr 2023; 10:1093761. [PMID: 36776612 PMCID: PMC9908587 DOI: 10.3389/fnut.2023.1093761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Polygonati Rhizoma is a multi-purpose food with medicinal uses. Fermentation of Polygonati Rhizoma by lactic acid bacteria could provide new insights into the development of Polygonati Rhizoma products. Methods In this study, Lactiplantibacillus plantarum was fermented with Polygonati Rhizoma extracts in a bioreactor under aerobic and anaerobic conditions with pH and DO real-time detection. Metabolic profiling was determined by UHPLC-QE-MS/MS system. Principal component analysis and orthogonal partial least-squares discriminant analysis were used to perform multivariate analysis. Results A total of 98 differential metabolites were identified in broth after fermentation, and 36 were identified between fermentation under aerobic and anaerobic conditions. The main metabolic pathways in the fermentation process are ABC transport and amino acid biosynthesis. Most of the compounds such as L-arginine, L-aspartic acid, leucine, L-lysine, citrate, inosine, carnitine, betaine, and thiamine were significantly increased during fermentation, playing a role in enhancing food flavor. Compared with anaerobic fermentation, aerobic conditions led to a significant rise in the levels of some compounds such as valine, isoleucine, and glutamate; this increase was mainly related to branched-chain amino acid transaminase, isocitrate dehydrogenase, and glutamate dehydrogenase. Discussion Aerobic fermentation is more beneficial for the fermentation of Polygonati Rhizoma by L. plantarum to produce flavor and functional substances. This study is the first report on the fermentation of Polygonati Rhizoma by L. plantarum and provides insights that would be applicable in the development of Polygonati Rhizoma fermented products.
Collapse
Affiliation(s)
- ZiLing Wang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jia Lao
- Resgreen Group International Inc., Changsha, China
| | - XingYi Kang
- College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, Hunan, China
| | - ZhenNi Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Wei He
- Resgreen Group International Inc., Changsha, China
| | - XiaoLiu Liu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - ShuiHan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China,*Correspondence: Jian Jin,
| |
Collapse
|
12
|
Microbial degradation of quinoline by immobilized bacillus subtilis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Kinetic Study of 4-Chlorophenol Biodegradation by Acclimated Sludge in a Packed Bed Reactor. Processes (Basel) 2022. [DOI: 10.3390/pr10102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, batch experiments were conducted to evaluate the degradation of 4-CP using acclimated sludge. The Monod and Haldane models were employed to fit the specific growth rate with various initial 4-CP concentrations of 67–412 mg/L in the batch experiments. Haldane kinetics showed a better fit to experimental results than Monod kinetics. The kinetic parameters were obtained from a comparison of Monod and Haldane kinetics with batch experimental data. The values of μm and KS were found to be 0.691 d−1 and 5.62 mg/L, respectively, for Monod kinetics. In contrast, the values of μm, KS, and KI were 1.30 d−1, 8.38 mg/L, and 279.4 mg/L, respectively, for Haldane kinetics. The kinetic parameters in Haldane kinetics were used as input parameters for the kinetic model system of the packed bed reactor (PBR). The continuous flow PBR was conducted to validate the kinetic model system. The model-simulated results agreed well with experimental data in the PBR performance operation. At the steady-state stage, the removal efficiency of 4-CP was 70.8–96.1%, while the hydraulic retention time (HRT) was 2.5 to 12.4 h. The corresponding removal of 4-CP was assessed to be 94.6 and 96.1% when the inlet 4-CP loading rate was increased from 0.11 to 0.51 kg/m3-d. The approaches of kinetic models and experiments presented in this study can be applied to design a PBR for 4-CP treatment in wastewater from the effluents of various industries.
Collapse
|
14
|
Patel N, Srivastav AL, Patel A, Singh A, Singh SK, Chaudhary VK, Singh PK, Bhunia B. Nitrate contamination in water resources, human health risks and its remediation through adsorption: a focused review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69137-69152. [PMID: 35947260 DOI: 10.1007/s11356-022-22377-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The level of nitrate in water has been increasing considerably all around the world due to vast application of inorganic nitrogen fertiliser and animal manure. Because of nitrate's high solubility in water, human beings are getting exposed to it mainly through various routes including water, food etc. Various regulations have been set for nitrate (45-50 mgNO3-/L) in drinking water to protect health of the infants from the methemoglobinemia, birth defects, thyroid disease, risk of specific cancers, i.e. colorectal, breast and bladder cancer caused due to nitrate poisoning. Different methods like ion exchange, adsorption, biological denitrification etc. have the ability to eliminate the nitrate from the aqueous medium. However, adsorption process got preference over the other approaches because of its simple design and satisfactory results especially with surface modified adsorbents or with mineral-based adsorbents. Different types of adsorbents have been used for this purpose; however, adsorbents derived from the biomass wastes have great adsorption capacities for nitrate such as tea waste-based adsorbents (136.43 mg/g), carbon nanotube (142.86 mg/g), chitosan beads (104 mg/g) and cetyltrimethylammonium bromide modified rice husk (278 mg/g). Therefore, a thorough literature survey has been carried out to formulate this review paper to understand various sources of nitrate pollution, route of exposure to the human beings, ill effects along with discussing the key developments as well as the new advancements reported in procuring low-cost efficient adsorbents for water purification.
Collapse
Affiliation(s)
- Naveen Patel
- Department of Civil Engineering, IET, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
- Department of Environmental Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Akansha Patel
- Department of Environmental Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Anurag Singh
- Department of Mechanical Engineering, IET, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Shailendra Kumar Singh
- Department of Applied Sciences, IET, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Vinod Kumar Chaudhary
- Department of Environmental Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Prabhat Kumar Singh
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Biswanath Bhunia
- Department of Biotechnology, National Institute of Technology, Agartala, Tripura, India
| |
Collapse
|
15
|
An Evaluation of the Kinetic Properties Controlling the Combined Chemical and Biological Treatment of Toxic Recalcitrant Organic Compounds from Aqueous Solution. Catalysts 2022. [DOI: 10.3390/catal12090965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Due to their high toxicity, propensity for cancer, teratogenicity, mutagenicity, and genotoxicity, hazardous water-soluble phenolic compounds must be controlled immediately. In this study, a model was created to simulate the degradation of harmful recalcitrant organic compounds in a combined chemical and biological treatment system. The parameter estimations with inhibition coefficient (Haldane model) and without inhibition coefficient (Michaelis-Menten model) were assessed over a wide range of initial concentrations using the Monod-like model. The kinetic parameters were optimized using AQUASIM 2.0 software. At a 50 mgL−1 feed concentration of 4-chlorophenol, removal efficiencies of more than 98% were attained under these circumstances. The primary kinetic parameters were identified and their values models were validated using the fitted parameter values that reached a good degree of agreement (R2 = 0.998). We may better comprehend and make use of the complex phenolic compounds’ biodegradation processes, such as progress optimization and scale-up, by understanding the mechanisms of substrate interaction and the new kinetic models that have been provided in this work.
Collapse
|
16
|
Silambarasan S, Cornejo P, Vangnai AS. Biodegradation of 4-nitroaniline by novel isolate Bacillus sp. strain AVPP64 in the presence of pesticides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119453. [PMID: 35569624 DOI: 10.1016/j.envpol.2022.119453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
In this study, Bacillus sp. strain AVPP64 was isolated from diuron-contaminated soil. It showed 4-nitroaniline (4-NA) degradation, pesticide tolerance, and self-nutrient integration via nitrogen (N)-fixation and phosphate (P)-solubilization. The rate constant (k) and half-life period (t1/2) of 4-NA degradation in the aqueous medium inoculated with strain AVPP64 were observed to be 0.445 d-1 and 1.55 d, respectively. Nevertheless, in the presence of chlorpyrifos, profenofos, atrazine and diuron pesticides, strain AVPP64 degraded 4-NA with t1/2 values of 2.55 d, 2.26 d, 2.31 d and 3.54 d, respectively. The strain AVPP64 fixed 140 μg mL-1 of N and solubilized 103 μg mL-1 of P during the presence of 4-NA. In addition, strain AVPP64 produced significant amounts of plant growth-promoting metabolites like indole 3-acetic acid, siderophores, exo-polysaccharides and ammonia. In the presence of 4-NA and various pesticides, strain AVPP64 greatly increased the growth and biomass of Vigna radiata and Crotalaria juncea plants. These results revealed that Bacillus sp. strain AVPP64 can be used as an inoculum for bioremediation of 4-NA contaminated soil and sustainable crop production even when pesticides are present.
Collapse
Affiliation(s)
- Sivagnanam Silambarasan
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| | - Alisa S Vangnai
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10300, Thailand.
| |
Collapse
|
17
|
Wang W, Gong T, Li H, Liu Y, Dong Q, Zan R, Wu Y. The multi-process reaction model and underlying mechanisms of 2,4,6-trichlorophenol removal in lab-scale biochar-microorganism augmented ZVI PRBs and field-scale PRBs performance. WATER RESEARCH 2022; 217:118422. [PMID: 35413559 DOI: 10.1016/j.watres.2022.118422] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
This work developed calcium alginate (CA) embedded zero-valent iron (ZVI@CA) and CA embedded biochar (BC) immobilized microorganism (BC&Cell@CA) gel beads as alternative to conventional Fe0 permeable reactive barriers for treating groundwater contaminated with 2,4,6-trichlorophenol (2,4,6-TCP). Lab-scale and field-scale biochar-microorganism augmented PRBs (Bio-PRBs) were constructed and tested. The underlying mechanisms were revealed by a multi-source data calibrated multi-process reaction model, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-throughput sequencing. Moreover, calibrated advection-dispersion (a) coupled with the two-site sorption (Kd) and chemical-biological multi-process reaction (λ) model were used for revealing 2,4,6-TCP transport behavior and optimizing Bio-PRBs. Compared to that in the ZVI@CA (0.004 h-1) system, the reaction rate (0.011 h-1) of 2,4,6-TCP increased by 175% in the combined chemical-biological batch system. Moreover, chemical-biological augmentation significantly improved the retardation effect of Bio-PRBs for 2,4,6-TCP. It came from that chemical-biological augmentation significantly decreased the dispersivity a (0.53 to 0.20 cm), and increased the distribution coefficient Kd (2.20 to 19.00 cm3 mg-1), the reaction rate λ (2.40 to 3.60 day-1), and the fraction (30% to 80%) of first-order kinetic sorption of 2,4,6-TCP in the lab-scale one-dimensional Bio-PRBs. Moreover, versatile functional bacteria Desulfitobacterium was crucial in the transformation of Fe (III) iron oxides. The diversity and richness of archaea in the reaction solution were improved by ZVI@CA gel beads addition. Furthermore, the field-scale reaction system was designed to remediate the chlorinated organic compounds and Benzene Toluene Ethylbenzene & Xylene contaminated groundwater in a pesticide factory site. The field test results demonstrated it is a promising technology to construct vertical reaction columns or horizontal Bio-PRBs for the efficient remediation of actually contaminated groundwater.
Collapse
Affiliation(s)
- Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yiming Liu
- Department of Geography, McGill University, Montreal, QC H3A 0G4, Canada
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Rixia Zan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Yulin Wu
- Shanghai Geotechnical Investigations and Design Institute (SGIDI) Engineering Consulting (Group) Co. Ltd., China
| |
Collapse
|
18
|
Biodegradation Kinetics of Phenol and 4-Chlorophenol in the Presence of Sodium Salicylate in Batch and Chemostat Systems. Processes (Basel) 2022. [DOI: 10.3390/pr10040694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The biodegradation of phenol, sodium salicylate (SA), and 4-chlorophenol (4-CP) by Pseudomonas putida (P. putida) was evaluated by batch and chemostat experiments in single and binary substrate systems. The Haldane kinetics model for cell growth was chosen to describe the batch kinetic behavior to determine kinetic parameters in the single or binary substrates system. In the single phenol and SA system, the kinetic constants of μm,P = 0.423 h−1, μm,A = 0.247 h−1, KS,P = 48.1 mg/L, KS,A = 71.7 mg/L, KI,P = 272.5 mg/L, and KI,A = 3178.2 mg/L were evaluated. Experimental results indicate that SA was degraded more rapidly by P. putida cells compared to phenol because SA has a much larger KI value than phenol, which makes the cells less sensitive to substrate inhibition even though the μm,P value is larger compared to μm,A. The ratio of inhibition of phenol degradation due to the presence of SA (IA1) to the inhibition of SA degradation due to the presence of phenol (IA2) is 2.3, indicating that SA has a higher uncompetitive inhibition on phenol biodegradation compared to that of phenol on SA biodegradation in the binary substrate system. In the ternary substrate system, the time required for the complete degradation of SA and phenol was 14 and 11.5 d and an approximately 90% removal efficiency for 4-CP was achieved within 14 d. In the chemostat system, the removal rates of phenol and SA were 96.6 and 97.0%, while those of SA and 4-CP were 91.4% and 95.2%, respectively. The model prediction agreed satisfactorily with the experimental results of the chemostat system.
Collapse
|
19
|
Maity D, Kundu P, Adhikari S. Isolation and characterization of 4-chlorophenol degrading bacterial strain from pharmaceutical xenobiotic compounds contaminated soil using enrichment technique. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|