1
|
Zhao J, Han Y, Liu J, Li B, Li J, Li W, Shi P, Pan Y, Li A. Occurrence, distribution and potential environmental risks of pollutants in aquaculture ponds during pond cleaning in Taihu Lake Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173610. [PMID: 38815821 DOI: 10.1016/j.scitotenv.2024.173610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
During the process of cleaning aquaculture ponds, the drainage contributes significantly to antibiotic pollution in the surrounding water environment. Therefore, we conducted a study on the distribution of 26 antibiotics in 57 ponds within the Taihu Lake basin. The results revealed that the detection frequency of antibiotics ranged from 1.75 % to 80.7 %, with the overall detection concentrations ranging from 3.27 to 708.72 ng/L. Among them, the detection rate of 8 antibiotics exceeded 50 %. Regarding the spatial distribution, the concentration of antibiotics was relatively high in aquaculture ponds located in the Changzhou area, with the highest concentration reaching 708.72 ng/L. This observation is likely due to the large size and intensive breeding practices in Changzhou. Fish ponds exhibited a significantly higher total antibiotic concentration of 3.27 to 445.57 ng/L compared to crab ponds (13.01 to 206.30 ng/L) and shrimp ponds (23.17 to 107.40 ng/L). Quinolones and sulfonamides were the predominant antibiotic classes found in fish ponds, accounting for 51.49 % of the total antibiotic concentration. Notably, sulfamethoxazole (SMX) and enrofloxacin (ENR) exhibited the highest antibiotic concentrations. Risk assessments demonstrated that SMX, ENR, and ofloxacin (OFX) contributed significantly to ecological risks. Furthermore, the study found that the tertiary constructed wetland treatment process achieved a remarkable removal rate of 92.44 % for antibiotics in aquaculture wastewater, while other treatment processes displayed limited effectiveness in removing antibiotics. This study addresses the knowledge gap concerning antibiotic pollution during the cleaning process of aquaculture ponds within the Taihu Lake basin.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuze Han
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Junzhao Liu
- Nanjing Huachuang Institute of Environmental Technology Co., Ltd, Nanjing 210023, PR China
| | - Baoju Li
- Nanjing Huachuang Institute of Environmental Technology Co., Ltd, Nanjing 210023, PR China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Nanjing University, Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 224000, PR China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362008, PR China.
| |
Collapse
|
2
|
Zhu W, Kunz J, Brunson E, Barnhart C, Brown H, McMurray S, Roberts AD, Shulse C, Trauth K, Wang B, Steevens JA, Deng B. Impacts of acute and chronic suspended solids exposure on juvenile freshwater mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167606. [PMID: 37802351 DOI: 10.1016/j.scitotenv.2023.167606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Construction activities may affect adjacent water systems by introducing increased levels of suspended solids into the water body and may subsequently affect the survival and growth of freshwater mussels. We tested three sediment types from sites in Missouri, including Spring River sediment (SRS), Osage River bank clay soil (ORC), and quarried limestone from Columbia (LMT). We prepared series of suspensions of each sediment with total suspended solids concentrations ranging from 0 to 5000 mg/L. Juveniles from three mussel species, Fatmucket (Lampsilis siliquoidea), Arkansas Brokenray (Lampsilis reeveiana), and Washboard (Megalonaias nervosa) were exposed to these suspensions in both acute (96-h) and chronic (28-d) tests. No clear impact on survival was observed from the acute or chronic exposures, but chronic test showed that juvenile mussels' growth was strongly affected. Interestingly, growth was enhanced at lower levels of SRS and ORC (≤500 mg/L, p < 0.05), and the juvenile mussels exposed to 500 mg/L SRS exhibited approximately 60 % more dry weight than those reared in the control. LMT did not enhance growth. Growth was slowed by high concentrations (>1000 mg/L) of all three sediments, implying that high suspended solids levels could reduce survival in the long term. Our findings may help to inform regulations and guidelines for construction activities to minimize adverse effects on juvenile mussels.
Collapse
Affiliation(s)
- Wenyu Zhu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, United States of America.
| | - James Kunz
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States of America
| | - Eric Brunson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States of America
| | - Chris Barnhart
- Missouri State University, Springfield, MO, United States of America
| | - Henry Brown
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, United States of America
| | - Stephen McMurray
- Missouri Department of Conservation, Columbia, MO, United States of America
| | - Andrew D Roberts
- U.S. Fish and Wildlife Service, Missouri Ecological Services Field Office, Columbia, MO, United States of America
| | - Christopher Shulse
- Missouri Department of Transportation, Jefferson City, MO, United States of America
| | - Kathleen Trauth
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, United States of America
| | - Binbin Wang
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, United States of America
| | - Jeffery A Steevens
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States of America
| | - Baolin Deng
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
3
|
Keiz K, Ulrich S, Wenderlein J, Keferloher P, Wiesinger A, Neuhaus K, Lagkouvardos I, Wedekind H, Straubinger RK. The Development of the Bacterial Community of Brown Trout ( Salmo trutta) during Ontogeny. Microorganisms 2023; 11:211. [PMID: 36677503 PMCID: PMC9863972 DOI: 10.3390/microorganisms11010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Brown trout (Salmo trutta) is an important aquaculture species in Germany, but its production faces challenges due to global warming and a high embryo mortality. Climate factors might influence the fish's bacterial community (BC) and thus increase embryo mortality. Yet, knowledge of the physiological BC during ontogeny in general is scarce. In this project, the BC of brown trout has been investigated in a period from unfertilized egg to 95 days post fertilization (dpf) using 16S rRNA gene amplicon sequencing. Developmental changes differed between early and late ontogeny and major differences in BC occurred especially during early developmental stages. Thus, analysis was conducted separately for 0 to 67 dpf and from 67 to 95 dpf. All analyzed stages were sampled in toto to avoid bias due to different sampling methods in different developmental stages. The most abundant phylum in the BC of all developmental stages was Pseudomonadota, while only two families (Comamonadaceae and Moraxellaceae) occurred in all developmental stages. The early developmental stages until 67 dpf displayed greater shifts in their BC regarding bacterial richness, microbial diversity, and taxonomic composition. Thereafter, in the fry stages, the BC seemed to stabilize and changes were moderate. In future studies, a reduction in the sampling time frames during early development, an increase in sampling numbers, and an attempt for biological reproduction in order to characterize the causes of these variations is recommended.
Collapse
Affiliation(s)
- Katharina Keiz
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Sebastian Ulrich
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Jasmin Wenderlein
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Patrick Keferloher
- Bavarian State Research Center for Agriculture (LfL), Institute for Fisheries (IFI), Weilheimer Straße 8, 82319 Starnberg, Germany
| | - Anna Wiesinger
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL—Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Ilias Lagkouvardos
- Core Facility Microbiome, ZIEL—Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology and Aquaculture (IMBBC), 715 00 Heraklion, Greece
| | - Helmut Wedekind
- Bavarian State Research Center for Agriculture (LfL), Institute for Fisheries (IFI), Weilheimer Straße 8, 82319 Starnberg, Germany
| | - Reinhard K. Straubinger
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| |
Collapse
|
4
|
Jin J, Tian X, Liu G, Huang J, Zhu H, Qiu S, Fu X, Wu Y, Bing H. Novel ecological ditch system for nutrient removal from farmland drainage in plain area: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115638. [PMID: 35949090 DOI: 10.1016/j.jenvman.2022.115638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The loading of nitrogen (N) and phosphorus (P) from agricultural drainage as the non-point sources is a worldwide environmental issue for aquatic ecosystem. However, how to remove these nutrients effectively from agricultural drainage remains a big challenge with increasing cemented ditches for better management. Here, we designed a novel ecological ditch system which integrated an earth ditch and a cemented ditch with iron-loaded biochar in the Chengdu Plain to reduce the loss of N and P from farmland. After a two-year monitoring, the removal efficiency of total N and total P reached 24.9% and 36.1% by the earth ditch and 30.7% and 57.8% by the integrated ditch system, respectively. The water quality was evidently improved after passing through the ditch system with the marked decrease in the concentrations of N and P. Dissolved organic N, nitrate, and particulate P became the dominant fractions of N and P loss. Rainfall soon after fertilization increased the concentrations of N and P in the ditch system and markedly affected their removal efficiency. The iron-loaded biochar effectively removed N and P from the drainage, especially at the high concentrations, which was mainly attributed to its high adsorption of the dissolved N and P fractions and the interception of the particulate nutrients. Our results indicate that the designed ecological ditch system has a high potential for alleviating agricultural non-point source pollution in the plain area and can be extended to other lowland agricultural ecosystems.
Collapse
Affiliation(s)
- Jiyuan Jin
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xin Tian
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanglong Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiacong Huang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 210008, China
| | - He Zhu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Shaojun Qiu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Fu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yanhong Wu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Haijian Bing
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
5
|
Activated Carbon Preparation from Sugarcane Leaf via a Low Temperature Hydrothermal Process for Aquaponic Treatment. MATERIALS 2022; 15:ma15062133. [PMID: 35329584 PMCID: PMC8955935 DOI: 10.3390/ma15062133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
The effects of hydrothermal treatment, 0–5% KMnO4 content, and 300–400 °C pyrolysis temperature, were studied for activated carbon preparation from sugar cane leaves in comparison with non-hydrothermal treatment. The percent yield of activated carbon prepared by the hydrothermal method (20.33–36.23%) was higher than that prepared by the non-hydrothermal method (16.40–36.50%) and was higher with conditions employing the same content of KMnO4 (22.08–42.14%). The hydrothermal and pyrolysis temperatures have the effect of increasing the carbon content and aromatic nature of the synthesized activated carbons. In addition, KMnO4 utilization increased the O/C ratio and the content of C-O, Mn-OH, O-Mn-O, and Mn-O surface functional groups. KMnO4 also decreases zeta potential values throughout the pH range of 3 to 11 and the surface area and porosity of the pre-hydrothermal activated carbons. The use of the pre-hydrothermal activated carbon prepared with 3% KMnO4 and pyrolyzed at 350 °C as a filter in an aquaponic system could improve the quality of water with pH of 7.2–7.4, DO of 9.6–13.3 mg/L, and the turbidity of 2.35–2.90 NTU. It could also reduce the content of ammonia, nitrite, and phosphate with relative removal rates of 86.84%, 73.17%, and 53.33%, respectively. These results promoted a good growth of catfish and red oak lettuce.
Collapse
|
6
|
Pollution and Release Characteristics of Nitrogen, Phosphorus and Organic Carbon in Pond Sediments in a Typical Polder Area of the Lake Taihu Basin. WATER 2022. [DOI: 10.3390/w14050820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is currently a lack of knowledge on the release characteristics of nutrients from artificial pond sediments in polder areas, resulting in problems in future management of such environments, including converting polders to lakes. In this study, sediment samples were taken from a fish pond and a lotus pond in a typical polder area of the Lake Taihu Basin in China. The total nitrogen (TN, 1760–1810 mg/kg), total phosphorus (TP, 1370–1463 mg/kg) and total organic carbon (TOC, 10.1–21.2 g/kg) contents were significantly higher than those found in sediments from the adjacent aquatic system, which indicates that the legacy of agricultural activities has had an obvious cumulative effect on pond sediment nutrients. The release behavior of TN, TP and TOC varied significantly, not only under disturbed and static conditions, but also from sediments sampled at different ponds and depths. During the disturbing condition, there were continuous releases of carbon and nutrients in the lotus pond sediments, while the fish pond sediments showed a higher release at the beginning. Under static release conditions, the release of TP in the surface and bottom sediments of the fish pond increased first, then decreased and stabilized within 24 h, while the release of the lotus pond showed a slow upward trend. Despite the lower concentration of nutrients and TOC, the lotus pond sediment showed a higher release rate. The results suggested that it is necessary to adopt different strategies for different types of ponds in the project of returning polders to lakes; it is especially important to pay attention to the release of nutrients from the bottom sediments of lotus ponds in the project management.
Collapse
|