1
|
Chen B, Li Y, He Y, Zhang J, Wang X, Yin L, Du Q, Pi X, Zhang Y, Li Y, Zhou H. Metal framework functionalized with nitro groups and chitosan composite adsorption of Congo red. Int J Biol Macromol 2025; 305:141140. [PMID: 39961560 DOI: 10.1016/j.ijbiomac.2025.141140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Dye pollution is a significant global environmental issue. To address this problem, various adsorbents have been employed, but traditional adsorbents often suffer from poor reusability and limited adsorption efficiency. Metal-organic frameworks (MOFs), which have emerged in recent years, have excellent physicochemical properties, but their application in wastewater treatment is limited by their polycrystalline, powdered state. In this paper, nitro functional groups were added to MIL-88B. The specific surface area of MIL-88B-NO2 obtained after the treatment was 660.98 m2/g, which was enhanced by 80 % compared with MIL-88B, with more excellent physicochemical properties. Subsequently, MIL-88B-NO2 was combined with chitosan to form the MIL-88B-NO2/CS aerogel, which addressed the problem of difficult separation of MOFs from water. The maximum adsorption amount of the aerogel for Congo Red (CR) was 878.8 mg/g. The adsorption process of CR by the adsorbent designed in this paper is consistent with the pseudo-second-order kinetic model and the Sips model, indicating that it is a complex physicochemical process. The adsorption mechanism is mainly synergistic with the effects of π-π conjugation, electrostatic attraction and hydrogen bonding. MIL-88B-NO2/CS aerogel demonstrated excellent reusability, maintaining a CR removal rate of 80 % after five adsorption-desorption cycles, indicating its promising application in dye removal.
Collapse
Affiliation(s)
- Botong Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Yan He
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jie Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lianwei Yin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yinxiao Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yichen Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Haitong Zhou
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
2
|
Salahshoori I, Yazdanbakhsh A, Namayandeh Jorabchi M, Kazemabadi FZ, Khonakdar HA, Mohammadi AH. Recent advances and applications of stimuli-responsive nanomaterials for water treatment: A comprehensive review. Adv Colloid Interface Sci 2024; 333:103304. [PMID: 39357211 DOI: 10.1016/j.cis.2024.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The development of stimuli-responsive nanomaterials holds immense promise for enhancing the efficiency and effectiveness of water treatment processes. These smart materials exhibit a remarkable ability to respond to specific external stimuli, such as light, pH, or magnetic fields, and trigger the controlled release of encapsulated pollutants. By precisely regulating the release kinetics, these nanomaterials can effectively target and eliminate contaminants without compromising the integrity of the water system. This review article provides a comprehensive overview of the advancements in light-activated and pH-sensitive nanomaterials for controlled pollutant release in water treatment. It delves into the fundamental principles underlying these materials' stimuli-responsive behaviour, exploring the design strategies and applications in various water treatment scenarios. In particular, the article indicates how integrating stimuli-responsive nanomaterials into existing water treatment technologies can significantly enhance their performance, leading to more sustainable and cost-effective solutions. The synergy between these advanced materials and traditional treatment methods could pave the way for innovative approaches to water purification, offering enhanced selectivity and efficiency. Furthermore, the review highlights the critical challenges and future directions in this rapidly evolving field, emphasizing the need for further research and development to fully realize the potential of these materials in addressing the pressing challenges of water purification.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amirhosein Yazdanbakhsh
- Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Fatemeh Zare Kazemabadi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Amir H Mohammadi
- Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| |
Collapse
|
3
|
Yan Z, Jiang S, Meng L, Lou Y, Xi J, Xiao H, Wu W. Self-supporting and hierarchical porous membrane of bacterial nanocellulose@metal-organic framework for ultra-high adsorption of Congo red. Int J Biol Macromol 2024; 277:134277. [PMID: 39089537 DOI: 10.1016/j.ijbiomac.2024.134277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The widespread use of synthetic dyes has serious implications for both the environment and human health. Therefore, there is an urgent need for the development of novel, high-efficiency adsorbents for these dyes. In this study, a Zirconium-based metal-organic framework (MOF) with controllable morphology was in-situ grown on bacterial nanocellulose (BC) via a solvothermal method. The resulting BC@MOF composite nanofibers have a high specific surface area of 651 m2/g and can be assembled into a self-supported porous membrane (BMMCa) through vacuum filtration with the assistance of calcium ions. The addition of Ca(II) significantly enhanced the mechanical properties of the membrane through dispersion effect and electrostatic interactions, as well as enhancing its adsorption performance through the salting-out effect. The BMMCa membrane, with its hierarchical porous structure and high flux, exhibits high selectivity for Congo red (CR) with an ultra-high adsorption capacity of 3518.6 mg/g. Furthermore, the self-supporting membrane achieved rapid and convenient removal of CR through circulating filtration adsorption. The adsorption mechanism and selectivity were verified through the molecular dynamics simulation calculations by Materials Studio (MS) software. This membrane-based adsorbent, with its ultra-high adsorption capacity, good selectivity, and recycling ability, has great potential for practical wastewater treatment applications.
Collapse
Affiliation(s)
- Zifei Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shan Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Liucheng Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yanling Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Li S, Liu Z, Ouyang H, Pang J, Deng C, Xiao Z, Tan R. Photoswitchable Metal-Organic Framework as a Smart Nanoreactor for Ultraviolet Light-Enhanced Confined Catalysis. Inorg Chem 2024; 63:18110-18119. [PMID: 39288269 DOI: 10.1021/acs.inorgchem.4c02883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Confined catalysis, where a chemical reaction is accommodated within a nanoscale host, provides an effective approach to control the pathways and outcomes of catalytic transformations. However, the confinement effect is typically limited to a fixed rate and/or selectivity once the nanohost is chosen. Herein, we developed a photoresponsive metal-organic framework (MOF) as a "smart" nanohost to realize ultraviolet (UV) light-enhanced confined catalysis of Knoevenagel condensation. Photoresponsive MOF of Zn-ADA was thus prepared by solvothermal strategy where azobenzene-4,4'-dicarboxylic acid (ADA) was used as the photoactive linker to coordinate with zinc nitrate. Characterization results suggested that UV light could decrease the pore size of Zn-ADA due to suppressed bending of the azobenzene-containing ADA linker in Zn-ADA. It enforced the proximity between substrates and catalytic groups within the confined space, and thus enhanced the confinement effect on Knoevenagel condensation. The UV light-enhanced confined catalysis enabled the translation of light stimulus into chemical signal, which may open up new control on the basis of the specific reaction field.
Collapse
Affiliation(s)
- Shiye Li
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
| | - Zewei Liu
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
| | - Huan Ouyang
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
| | - Jun Pang
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
| | - Chengzhang Deng
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
| | - Zhisheng Xiao
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, 410081, PR China
| | - Rong Tan
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, 410081, PR China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha, 410081, PR China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
5
|
Manganyi MC, Dikobe TB, Maseme MR. Exploring the Potential of Endophytic Microorganisms and Nanoparticles for Enhanced Water Remediation. Molecules 2024; 29:2858. [PMID: 38930923 PMCID: PMC11206248 DOI: 10.3390/molecules29122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Endophytic microorganisms contribute significantly to water bioremediation by enhancing pollutant degradation and supporting aquatic plant health and resilience by releasing bioactive compounds and enzymes. These microorganisms inhabit plant tissues without causing disease or any noticeable symptoms. Endophytes effectively aid in eliminating contaminants from water systems. Nanoparticles serve as potent enhancers in bioremediation processes, augmenting the efficiency of pollutant degradation by increasing surface area and bioavailability, thereby improving the efficacy and rate of remediation. Their controlled nutrient release and ability to stabilize endophytic colonization further contribute to the enhanced and sustainable elimination of contaminated environments. The synergistic effect of endophytes and nanoparticles in water remediation has been widely explored in recent studies, revealing compelling outcomes. Water pollution poses significant threats to human health, ecosystems, and economies; hence, the sixth global goal of the Sustainable Development Agenda 2030 of the United Nations aims to ensure the availability and sustainable management of water resources, recognizing their crucial importance for current and future generations. Conventional methods for addressing water pollution exhibit several limitations, including high costs, energy-intensive processes, the production of hazardous by-products, and insufficient effectiveness in mitigating emerging pollutants such as pharmaceuticals and microplastics. Noticeably, there is an inability to effectively remove various types of pollutants, thus resulting in incomplete purification cycles. Nanoparticle-enhanced water bioremediation offers an innovative, eco-friendly alternative for degrading contaminants. A growing body of research has shown that integrating endophytic microorganisms with nanoparticles for water bioremediation is a potent and viable alternative. This review examines the potential of using endophytic microorganisms and nanoparticles to enhance water remediation, exploring their combined effects and applications in water purification. The paper also provides an overview of synthetic methods for producing endophyte-nanoparticle composites to optimize their remediation capabilities in aqueous environments. The final section of the review highlights the constraints related to integrating endophytes with nanoparticles.
Collapse
Affiliation(s)
- Madira Coutlyne Manganyi
- Department of Biological and Environmental sciences, Sefako Makgatho Health Sciences University, P.O. Box 139, Medunsa 0204, South Africa
| | - Tshegofatso Bridget Dikobe
- Unit for Environmental Sciences and Management, Department of Botany, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mametsi Rahab Maseme
- Department of Chemical and Physical Sciences, Walter Sisulu University, Private Bag XI, Mthatha 5117, South Africa
| |
Collapse
|
6
|
Di Martino M, Sessa L, Diana R, Piotto S, Concilio S. Recent Progress in Photoresponsive Biomaterials. Molecules 2023; 28:molecules28093712. [PMID: 37175122 PMCID: PMC10180172 DOI: 10.3390/molecules28093712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Photoresponsive biomaterials have garnered increasing attention recently due to their ability to dynamically regulate biological interactions and cellular behaviors in response to light. This review provides an overview of recent advances in the design, synthesis, and applications of photoresponsive biomaterials, including photochromic molecules, photocleavable linkers, and photoreactive polymers. We highlight the various approaches used to control the photoresponsive behavior of these materials, including modulation of light intensity, wavelength, and duration. Additionally, we discuss the applications of photoresponsive biomaterials in various fields, including drug delivery, tissue engineering, biosensing, and optical storage. A selection of significant cutting-edge articles collected in recent years has been discussed based on the structural pattern and light-responsive performance, focusing mainly on the photoactivity of azobenzene, hydrazone, diarylethenes, and spiropyrans, and the design of smart materials as the most targeted and desirable application. Overall, this review highlights the potential of photoresponsive biomaterials to enable spatiotemporal control of biological processes and opens up exciting opportunities for developing advanced biomaterials with enhanced functionality.
Collapse
Affiliation(s)
- Miriam Di Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Bionam Research Centre for Biomaterials, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Bionam Research Centre for Biomaterials, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Bionam Research Centre for Biomaterials, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
7
|
Tang Y, Lu XM, Yang G, Wang YY. Paddle-Wheel-Shaped Porous Cu(II)-Organic Framework with Two Different Channels as an Absorbent for Methylene Blue. Inorg Chem 2023; 62:1735-1743. [PMID: 36656916 DOI: 10.1021/acs.inorgchem.2c04350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The destruction of the ecological environment caused by human activity and modern industrial development is so severe that the water environment has become seriously polluted. Therefore, the exploration of high-efficiency absorbents has become one of the hot topics to solve this issue. Herein, a porous metal-organic framework [Cu(L)]·2.5H2O·0.5DMF (1, DMF = N,N-dimethylformamide) was successfully constructed using a rigid N-heterocyclic 5-(4-(1H,3,4-triazol-1-yl)phenyl)isophthalic acid (H2L) ligand. In particular, its structure includes the classical paddle-wheel-shaped secondary building units and two 1D channels with diameters of 7.2 and 3.2 Å, respectively. Complex 1 shows great sorption performance for methylene blue (MB) with a maximum capacity of 589 mg·g-1. The various influence factors, including the time, dye concentration, adsorbent dosage, and the pH of the solution, are investigated respectively. Also, the adsorption process is more in line with the first-order kinetics and the Langmuir isothermal adsorption model. The strong electrostatic force and intermolecular forces are primarily responsible for the remarkable adsorption ability of MB.
Collapse
Affiliation(s)
- Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Xiang-Mei Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| |
Collapse
|
8
|
Akpomie KG, Conradie J. Efficient adsorptive removal of paracetamol and thiazolyl blue from polluted water onto biosynthesized copper oxide nanoparticles. Sci Rep 2023; 13:859. [PMID: 36650260 PMCID: PMC9845337 DOI: 10.1038/s41598-023-28122-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Copper oxide nanoparticles (CuONPs) have received tremendous attention as efficient adsorbents owing to their low cost, desirable surface area, abundant active sites, potent textural characteristics and high adsorption capacities. However, CuONPs have not been employed to decontaminate water laden with increasing environmental contaminants such as thiazolyl blue and paracetamol. Herein, the adsorption of thiazolyl blue and paracetamol onto green synthesized CuONPs prepared from the aqueous leaf extract of Platanus occidentalis was studied. The BET, SEM, FTIR, XRD, EDX and pH point of zero charge showed the successful synthesis of CuONPs having desirable surface properties with a surface area of 58.76 m2/g and an average size of 82.13 nm. The maximum monolayer adsorption capacities of 72.46 mg/g and 64.52 mg/g were obtained for thiazolyl blue and paracetamol, respectively. The Freundlich, pseudo-second-order and intraparticle diffusion models were well fitted to the adsorption of both pollutants. The pH studies suggested the predominance of electrostatic and weaker intermolecular interactions in the adsorption of the thiazolyl blue and paracetamol, respectively. Spontaneous, physical, endothermic and random adsorption of the pollutants on CuONPs was obtained from the thermodynamic consideration. The biosynthesized CuONPs were found to be highly reusable and efficient for the adsorption of thiazolyl blue and paracetamol from water.
Collapse
Affiliation(s)
- Kovo G Akpomie
- Physical Chemistry Unit, Department of Chemistry, University of the Free State, Bloemfontein, South Africa. .,Industrial/Physical Chemistry Unit, Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria.
| | - Jeanet Conradie
- Physical Chemistry Unit, Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
9
|
Thaggard GC, Haimerl J, Park KC, Lim J, Fischer RA, Maldeni Kankanamalage BKP, Yarbrough BJ, Wilson GR, Shustova NB. Metal-Photoswitch Friendship: From Photochromic Complexes to Functional Materials. J Am Chem Soc 2022; 144:23249-23263. [PMID: 36512744 DOI: 10.1021/jacs.2c09879] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cooperative metal-photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal-photoswitch interplay can be utilized as a tool to modulate a system's physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal-organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal-photoswitch interactions can occur, and progresses toward functional materials. In particular, we explore the role of the metal-photoswitch relationship for gaining fundamental knowledge of switchable electronic and magnetic properties, as well as in the design of stimuli-responsive sensors, optically gated memory devices, catalysts, and photodynamic therapeutic agents. The abundance of stimuli-responsive systems in the natural world only foreshadows the creative directions that will uncover the full potential of metal-photoswitch interactions in the coming years.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States.,Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Roland A Fischer
- Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
10
|
Thomas P, Lai CW, Johan MR. Design of multifunctional C@Fe 3O 4-MoO 3 binary nanocomposite for applications in triphenylmethane textile dye amelioration via ultrasonic adsorption and electrochemical energy storage. CHEMOSPHERE 2022; 308:136214. [PMID: 36057345 DOI: 10.1016/j.chemosphere.2022.136214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/07/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this paper, we present the synthesis of C@Fe3O4-MoO3 binary composite were prepared through the facile hydrothermal process. The ultrasonic aided adsorption efficacy was evaluated by studying triphenylmethane dye's adsorption potential. The ultrasonic aided adsorption capacity towards crystal violet was 993.6 mg/g, which is remarkably higher and best fitted with the Langmuir isotherm model and followed pseudo-second-order kinetics. The electrochemical studies working electrode have been prepared with 80 wt% active material, 10 wt% carbon black, and 10% polyvinylidene difluoride to evaluate energy storage characteristics. The C@Fe3O4-MoO3 demonstrated an excellent specific capacitance of 40.94 F/g with better retention and stability, making it a potential cathode material for next-generation electrochemical energy storage devices.
Collapse
Affiliation(s)
- Paul Thomas
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Level 3, Block A, 50603, Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Level 3, Block A, 50603, Kuala Lumpur, Malaysia.
| | - Mohd Rafie Johan
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Level 3, Block A, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Bazan-Wozniak A, Cielecka-Piontek J, Nosal-Wiercińska A, Pietrzak R. Adsorption of Organic Compounds on Adsorbents Obtained with the Use of Microwave Heating. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165664. [PMID: 36013801 PMCID: PMC9415288 DOI: 10.3390/ma15165664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/04/2023]
Abstract
Activated carbons were obtained by physical and chemical activation of the residue of supercritical extraction of green tea leaves. All the adsorbents obtained were characterized by: elemental analysis, low-temperature nitrogen adsorption, and the contents of acidic and basic oxygen functional groups on the surface of activated carbons by the Boehm method. The activated carbons were micro- or micro-mesoporous with well-developed surface area ranging from 520 to 1085 m2/g and total pore volume from 0.62 to 0.64 cm3/g. The physical activation of the precursor led to the strongly basic character of the surface. Chemical activation with 50% solution of H3PO4 of the residue of supercritical extraction of green tea leaves promoted the generation of acidic functional groups. All adsorbents were used for methylene blue and methyl red adsorption from the liquid phase. The influence of the activation method, pH of the dye solution, contact time of adsorbent with adsorbate, the temperature of adsorption, and rate of sample agitation on the effectiveness of organic dyes removal was evaluated and optimized. In the process of methylene blue adsorption on adsorbents, an increase in the sorption capacity was observed with increasing pH of the adsorbate, while in the process of methyl red adsorption, the relation was quite the reverse. The adsorption data were analyzed assuming the Langmuir or Freundlich isotherm models. The Langmuir model better described the experimental results, and the maximum sorption capacity calculated for this model varied from 144.93 to 250.00 mg/g. The results of the kinetic analysis showed that the adsorption of organic dyes on activated carbon was following the pseudo-second-order model. The negative values of the Gibbs free energy indicate the spontaneous character of the process.
Collapse
Affiliation(s)
- Aleksandra Bazan-Wozniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Agnieszka Nosal-Wiercińska
- Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska 3, 20-031 Lublin, Poland
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
12
|
Song R, Yao J, Yang M, Ye Z. Insights into High-Performance and Selective Elimination of Cationic Dye from Multicomponent Systems by Using Fe-Based Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9400-9409. [PMID: 35862139 DOI: 10.1021/acs.langmuir.2c01354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs), especially Fe-MOFs, have shown prospective application in eliminating organic dyes from wastewater due to their well-developed pores, water stability, easy preparation, and economy. Herein, we synthesized four types of Fe-MOFs (such as MIL-88A, MIL-88B, MIL-100, and MIL-101) using the hydrothermal method. The products were analyzed with several methods. By comparing the adsorption effect of those four types of Fe-MOFs on three kinds of dyes, it has been shown that MIL-100 owns the best adsorption efficiency on cationic organic dyes methylene blue (MB) and Rhodamine B (RhB) in 180 min, while all MOFs have slight removal capacity on methyl orange (MO). MIL-100, as an adsorbent, was studied under various research conditions, and the maximum removal efficiencies to MB, RhB, and MO were found to be up to 97.36%, 88.75%, and 13.00%, respectively. Furthermore, cationic dye MB's removal by MIL-100 was fitted with a pseudo-second-order model and Langmuir isotherm model (Qm = 411.041 mg/g) by adsorption kinetics and isotherms research, and MIL-100 could rapidly and selectively divide MB from a binary complex aqueous solution of MB and MO. The as-fabricated MIL-100 also exhibited excellent recyclability after four adsorption-desorption recycles and can be treated as a potential substance with high removal efficiency of cationic organic dye-containing industrial effluents.
Collapse
Affiliation(s)
- Rutong Song
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Jun Yao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Mei Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- China Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zhongbin Ye
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
- Chengdu Technological University, Chengdu 611730, China
| |
Collapse
|
13
|
Mogale R, Akpomie KG, Conradie J, Langner EH. Isoreticular Aluminium-based Metal-Organic Frameworks with structurally similar organic linkers as highly efficient dye adsorbents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Ti(IV)-Exchanged Nano-ZIF-8 and Nano-ZIF-67 for Enhanced Photocatalytic Oxidation of Hydroquinone. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Naim MM, Al-harby NF, El Batouti M, Elewa MM. Macro-Reticular Ion Exchange Resins for Recovery of Direct Dyes from Spent Dyeing and Soaping Liquors. Molecules 2022; 27:molecules27051593. [PMID: 35268695 PMCID: PMC8912055 DOI: 10.3390/molecules27051593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/07/2022] Open
Abstract
Dyes are a major class of organic pollutants that are well-known for their harmful impact on aquatic life and humans. Several new strategies for removing colours from industrial and residential effluents have recently emerged, with adsorption being the best option. The current study looked at the recovery of direct dyes from aqueous streams for reuse using macro-reticular ion exchange resins (IERs). The investigation includes dyeing single jersey cotton grey textiles with direct dyes from the Isma dye Company in Kafr El Dawar, Egypt. After centrifuging and separating the supernatant liquid, solutions from thirteen different dyes, produced at an average concentration between the wasted and soaping liquor concentrations, were calculated spectrophotometrically from the first dyeing trials. Kinetic data were well fitted with pseudo-second-order rate kinetics. The amounts of dye retained by the anion exchangers increased with a rise in temperature in the case of Strong Base Resin (SBR) and vice versa for Weak Base Resin (WBR). Batch adsorption experiments with SBR and WBR were conducted for each dye, and both Freundlich and Langmuir isotherms were constructed. It was found that adsorption obeyed both isotherms, that monolayer adsorption took place, and that the dye molecular weight, structure, and solubility, as well as the type of anionic resin used, had varying effects on the extent of absorption. The monolayer sorption capacities Q0 determined from the Langmuir isotherm model for the strongly and weakly basic anion exchangers were found to be 537.6 and 692 mg/g for Direct Yellow RL, respectively. As a result, Yellow RL exhibited the greatest adsorption on both SBR and WBR. Orange GRLL, Blue 3B, and Congo Red, on the other hand, were the poorest colours absorbed by the IERs, whereas Blue RL demonstrated good adsorption by SBR and accelerated adsorption by WBR. Most of the dyes may be recovered and reused in this manner.
Collapse
Affiliation(s)
- Mona M. Naim
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21526, Egypt;
| | - Nouf F. Al-harby
- Department of Chemistry, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (N.F.A.-h.); (M.E.B.)
| | - Mervette El Batouti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
- Correspondence: (N.F.A.-h.); (M.E.B.)
| | - Mahmoud M. Elewa
- Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt;
| |
Collapse
|
16
|
Mogale R, Conradie J, Langner EHG. Trans-Cis Kinetic Study of Azobenzene-4,4'-dicarboxylic Acid and Aluminium and Zirconium Based Azobenzene-4,4'-dicarboxylate MOFs. Molecules 2022; 27:molecules27041370. [PMID: 35209160 PMCID: PMC8875176 DOI: 10.3390/molecules27041370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Metal organic frameworks (MOFs) are porous hybrid crystalline materials that consist of organic linkers coordinated to metal centres. The trans–cis isomerisation kinetics of the azobenzene-4,4′-dicarboxylic acid (AZB(COOH)2) precursor, as well as the Al3+ (Al-AZB)- and Zr4+ (Zr-AZB)-based MOFs with azobenzene-4,4′-dicarboxylate linkers, are presented. The photo-isomerization in the MOFs originates from singly bound azobenzene moieties on the surface of the MOF. The type of solvent used had a slight effect on the rate of isomerization and half-life, while the band gap energies were not significantly affected by the solvents. Photo-responsive MOFs can be classified as smart materials with possible applications in sensing, drug delivery, magnetism, and molecular recognition. In this study, the MOFs were applied in the dye adsorption of congo red (CR) in contaminated water. For both MOFs, the UV-irradiated cis isomer exhibited a slightly higher CR uptake than the ambient-light exposed trans isomer. Al-AZB displayed a dye adsorption capacity of over 95% for both the UV-irradiated and ambient light samples. The ambient light exposed Zr-AZB, and the UV irradiated Zr-AZB had 39.1% and 44.6% dye removal, respectively.
Collapse
Affiliation(s)
- Refilwe Mogale
- Chemistry Department, University of the Free State, Bloemfontein 9300, South Africa; (R.M.); (J.C.)
| | - Jeanet Conradie
- Chemistry Department, University of the Free State, Bloemfontein 9300, South Africa; (R.M.); (J.C.)
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ernst H. G. Langner
- Chemistry Department, University of the Free State, Bloemfontein 9300, South Africa; (R.M.); (J.C.)
- Correspondence:
| |
Collapse
|