1
|
Yang R, Zhou J, Meng X, Lu H, Dong A, Qi L, Yang X, Mei C, Xia C, Li J. Preparation of straw/PLA composites with excellent flame retardancy based on deep eutectic solvent sulfonation. Int J Biol Macromol 2024; 279:135238. [PMID: 39218186 DOI: 10.1016/j.ijbiomac.2024.135238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
There have been numerous studies on flame retardant modification of natural fiber/PLA composite materials due to the demand for applications. However, the existing flame retardant modification methods mostly involve adding flame retardants, which have a negative impact on the mechanical properties. Based on this, this study aims to introduce sulfonic groups into the cellulose of straw fibers via modification with a sulfamic acid-based deep eutectic solvent (SDES), thereby achieving flame retardance without affecting the inherent mechanical properties of the composite material. The performance enhancement of DS/PLA is manifested in the following specific aspects: the LOI reaches 36.53 %, the thermal stability is improved from 7.8 % of the residual carbon of PS/PLA to 38.4 %, and the tensile modulus is increased by 69.5 %. The preparation scheme for straw/PLA composite materials in this study is simple, economical, and efficient, and the flame retardant performance of the composite material is excellent, providing valuable references for flame retardant modification of natural fiber/plastic composite materials.
Collapse
Affiliation(s)
- Rui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China.
| | - Jing Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiangzhen Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Haiyang Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Anran Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Linghui Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaoqi Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changtong Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China
| | - Jianzhang Li
- Beijing Forestry University, Beijing 100091, China
| |
Collapse
|
2
|
Zhou Z, Xu J, Zou L, Wang X, Chen Y, Sun P, Zhu X, Sheng L, Lu N. Removal of sulfonamide antibiotics by constructed wetland substrate with NaOH-modified corn straw biochar under different operating conditions. BIORESOURCE TECHNOLOGY 2024; 410:131274. [PMID: 39147106 DOI: 10.1016/j.biortech.2024.131274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
This study examined the elimination of sulfonamide antibiotics (SAs) by constructed wetland substrates with NaOH-modified corn straw biochar and assessed the impact of environmental conditions on the effectiveness of SAs removal. The study demonstrated that the constructed wetland substrate with NaOH-modified biochar significantly eliminated eight SAs, with a removal rate of over 94 %. During the removal process, the intermediates will undergo regeneration of the parent compounds under low DO concentrations. This was based on the linear stepwise regression analysis and Geodetector models. The results showed that SA types COD, NH4+-N, TN, and DO had a stronger influence. The dominant bacteria in the constructed wetland system were mainly affected by antibiotic concentration, DO, NH4+-N and NO3--N, which affected the removal of antibiotics. Overall, the constructed wetland substrate with NaOH-modified corn straw biochar can be effectively employed as an ecological method for eliminating SAs from the environment.
Collapse
Affiliation(s)
- Zegang Zhou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China; Laboratory for Coastal Marine Eco-Environment Process and Carbon, Sink of Hainan Province/Yazhou Bay Innovation Institute/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China; JiLin Agricultural Science and Technology University, No. 77 Hanlin Road, Jilin Economic and Technological Development Zone, Jilin 132101, China.
| | - Li Zou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Xinyu Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Yue Chen
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Peng Sun
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Xiaoguang Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China.
| | - Nan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| |
Collapse
|
3
|
Kundu S, Khandaker T, Anik MAAM, Hasan MK, Dhar PK, Dutta SK, Latif MA, Hossain MS. A comprehensive review of enhanced CO 2 capture using activated carbon derived from biomass feedstock. RSC Adv 2024; 14:29693-29736. [PMID: 39297049 PMCID: PMC11409178 DOI: 10.1039/d4ra04537h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
The increasing level of atmospheric CO2 requires the urgent development of effective capture technologies. This comprehensive review thoroughly examines various methods for the synthesis of carbon materials, modification techniques for converting biomass feedstock into carbon materials and pivotal factors impacting their properties. The novel aspect of this review is its in-depth comparison of how these modifications specifically affect the pore structure and surface area together with the exploration of the mechanism underlying the enhancement of CO2 adsorption performance. Additionally, this review addresses research gaps and provides recommendations for future studies concerning the advantages and drawbacks of CO2 adsorbents and their prospects for commercialization and economic feasibility. This article revealed that among the various strategies, template carbonization offers a viable option for providing control of the material pore diameter and structure without additional modification treatments. Optimizing the pore structure of activated carbons, particularly those activated with agents such as KOH and ZnCl2, together with synthesizing hybrid activated carbons using multiple activating agents, is crucial for enhancing their CO2 capture performance. Cost-benefit analysis suggests that biomass-derived activated carbons can significantly meet the escalating demand for CO2 capture materials, offering economic advantages and supporting sustainable waste management.
Collapse
Affiliation(s)
- Shreyase Kundu
- Chemistry Discipline, Khulna University Khulna-9208 Bangladesh
| | - Tasmina Khandaker
- Department of Chemistry, Bangladesh Army University of Engineering & Technology (BAUET) Qadirabad Cantonment Natore-6431 Bangladesh
| | | | - Md Kamrul Hasan
- Chemistry Discipline, Khulna University Khulna-9208 Bangladesh
| | | | | | - M Abdul Latif
- Department of Chemistry, Begum Rokeya University Rangpur-5404 Bangladesh
| | | |
Collapse
|
4
|
Deng W, Kuang X, Xu Z, Li D, Li Y, Zhang Y. Adsorption of Cadmium and Lead Capacity and Environmental Stability of Magnesium-Modified High-Sulfur Hydrochar: Greenly Utilizing Chicken Feather. TOXICS 2024; 12:356. [PMID: 38787135 PMCID: PMC11126130 DOI: 10.3390/toxics12050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Chicken feathers represent a viable material for producing biochar adsorbents. Traditional slow pyrolysis methods often result in sulfur element losses from chicken feathers, whereas hydrothermal reactions generate substantial amounts of nutrient-rich hydrothermal liquor. Magnesium-modified high-sulfur hydrochar MWF was synthesized through magnesium modification, achieving a S content of 3.68%. The maximum equilibrium adsorption amounts of MWF for Cd2+ and Pb2+ were 25.12 mg·g-1 and 70.41 mg·g-1, respectively, representing 4.00 times and 2.75 times of WF. Magnesium modification elevated the sulfur content, pH, ash content, and electronegativity of MWF. The primary mechanisms behind MWF's adsorption of Cd2+ and Pb2+ involve magnesium ion exchange and complexation with C=O/O=C-O, quaternary N, and S functional groups. MWF maintains robust stability and antioxidative properties, even with low aromaticity levels. Given the lower energy consumption during hydrochar production, MWF offers notable carbon sequestration benefits. The hydrothermal solution derived from MWF is nutrient-rich. Following supplementation with inorganic fertilizer, the hydrothermal solution of MWF significantly enhanced bok choy growth compared to the control group. In general, adopting magnesium-modified hydrothermal reactions to produce hydrochar and converting the resultant hydrothermal solution into water-soluble fertilizer proves a viable strategy for the eco-friendly utilization of chicken feathers. This approach carries substantial value for heavy metal remediation and agricultural practices.
Collapse
Affiliation(s)
- Weiqi Deng
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
- WENS Foodstuff Group Co., Ltd., Yunfu 527400, China
| | - Xubin Kuang
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Xu
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Deyun Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Yongtao Li
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yulong Zhang
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
- WENS Foodstuff Group Co., Ltd., Yunfu 527400, China
| |
Collapse
|
5
|
Fahim R, Cheng L, Mishra S. Structural and functional perspectives of carbon filter media in constructed wetlands for pollutants abatement from wastewater. CHEMOSPHERE 2023; 345:140514. [PMID: 37879377 DOI: 10.1016/j.chemosphere.2023.140514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Constructed wetlands (CWs) represent the most viable artificial wastewater treatment system that works on the principles of natural wetlands. Filter media are integrally linked to CWs and have substantial impacts on their performance for pollutant removal. Carbon-derived substrates have been in the spotlight for decades due to their abundance, sustainability, reusability, and potential to treat complex contaminants. However, the efficiency and feasibility of carbon substrates have not been fully explored, and there are only a few studies that have rigorously analyzed their performance for wastewater treatment. This critical synthesis of the literature review offers comprehensive insights into the utilization of carbon-derived substrates in the context of pollutant removal, intending to enhance the efficiency and sustainability of CWs. It also compares several carbon-based substrates with non-carbon substrates with respect to physiochemical properties, pollutant removal efficiency, and cost-benefit analysis. Furthermore, it addresses the concerns and possible remedies about carbon filtration materials such as configuration, clogging minimization, modification, and reusability to improve the efficacy of substrates and CWs. Recommendations made to address these challenges include pretreatment of wastewater, use of a substrate with smaller pore size, incorporation of multiple filter media, the introduction of earthworms, and cultivation of plants. A current scientific scenario has been presented for identifying the research gaps to investigate the functional mechanisms of modified carbon substrates and their interaction with other CW components.
Collapse
Affiliation(s)
- Raana Fahim
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Liu Cheng
- Key Laboratory of Integrated Regulation and Resource Development Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Saurabh Mishra
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
6
|
Zhang Y, Zang L, Zhao Y, Wei Q, Han J. Removal of Pb from Contaminated Kaolin by Pulsed Electrochemical Treatment Coupled with a Permeable Reactive Barrier: Tuning Removal Efficiency and Energy Consumption. TOXICS 2023; 11:961. [PMID: 38133362 PMCID: PMC10747039 DOI: 10.3390/toxics11120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Lead contamination in soil has emerged as a significant environmental concern. Recently, pulse electrochemical treatment (PECT) has garnered substantial attention as an effective method for mitigating lead ions in low-permeability soils. However, the impact of varying pulse time gradients, ranging from seconds to hours, under the same pulse duty cycle on lead removal efficiency (LRE) and energy consumption in PECT has not been thoroughly investigated. In this study, a novel, modified PECT method is proposed, which couples PECT with a permeable reaction barrier (PRB) and adds acetic acid to the catholyte. A comprehensive analysis of LRE and energy consumption is conducted by transforming pulse time. The results show that the LREs achieved in these experiments were as follows: PCb-3 s (89.5%), PCb-1 m (91%), PCb-30 m (92.9%), and PCb-6 h (91.9%). Importantly, these experiments resulted in significant reductions in energy consumption, with decreases of 68.5%, 64.9%, 51.8%, and 47.4% compared to constant voltage treatments, respectively. It was observed that LRE improved with an increase in both pulse duration and voltage gradient, albeit with a corresponding rise in energy consumption. The results also revealed that corn straw biochar as a PRB could enhance LRE by 6.1% while adsorbing migrating lead ions. Taken together, the present data highlights the potential of modified PECT technology for remediation of lead-contaminated soil, which provides an optimal approach to achieve high LRE while minimizing energy consumption.
Collapse
Affiliation(s)
| | - Libin Zang
- College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China; (Y.Z.); (J.H.)
| | | | | | | |
Collapse
|
7
|
Wang H, Sheng L, Zang S. Study on H 2SO 4-modified corn straw biochar as substrate material of constructed wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115556-115570. [PMID: 37884719 DOI: 10.1007/s11356-023-30569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
The high value resource utilization of corn straw is a long-term problem at present and in the future. Biochar preparation is an important utilization way of corn straw. The research on city tail water treated by constructed wetland (CW) with biochar was carried out to further increase the wastewater treatment capacity of the CW. Surface characterization, structural characteristics, and adsorption of straw biochar modified by different acids were measured. The study found that the ability of H2SO4 to remove ash from biochar was stronger than other acids and H2SO4-biochar was easy to be cleaned without H2SO4 residue. The performance of biochar modified by H2SO4 was obviously better than other acids, and the biochar adsorption was enhanced. The modification of biochar substrate modified by H2SO4 in CW reduced the change of electrical conductivity (EC) and promoted denitrification. H2SO4-modified biochar promoted the absorption of N and P by Iris pseudacorus L. The compound modification effect of straw biochar was obvious. The results revealed the acid modification characteristics of straw biochar, which were beneficial for increasing the wastewater treatment rate by CW. This study will promote the sustainable development of CW.
Collapse
Affiliation(s)
- Hanxi Wang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
8
|
Wang H, Zang S, Xu J, Sheng L. Dynamic simulation analysis of city tail water treatment by constructed wetland with biochar substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108582-108595. [PMID: 37752393 DOI: 10.1007/s11356-023-30002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Constructed wetland (CW) is an important method of ecological water treatment, and CW has obvious advantage in treating low-pollution water. In order to improve the treatment efficiency of CW, the first-order and second-order kinetics simulations of pollutant removal in CW were carried out to optimize operating conditions. The experimental study of city tail water treatment under unmodified biochar (different additions) or different modified biochar conditions showed that the first-order kinetic equation relatively accurately reflect the removal of pollutants by substrate. The relatively optimal range of biochar addition (2.21-3.79%) in the first-order kinetic analysis covered the relatively optimal mass ratio (2.95%). The first-order kinetic equation fitting showed that the half-life of ammonia nitrogen removal by NaOH (0.1 mol·L-1)-modified biochar was reduced by about 10% without plant. The half-life of total phosphorus removal by KMnO4 (0.1 mol·L-1) modified biochar was reduced by about 50%. The half-life of chemical oxygen demand removal by H2SO4 (0.75 mol·L-1) + 8 freeze-thaw cycles modified biochar was reduced by about 9.0%. When the half-life was small, the pollutant removal rate was high. The results of this study further confirmed the effectiveness of the simulation results of pollutant removal in CW with biochar by the first-order kinetic equation. This study further optimized the CW operating conditions and improved the treatment efficiency of nitrogen and phosphorus in the CW.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, China Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, China Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, China Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| |
Collapse
|
9
|
Liu X, Sun Y, Tang Y, Wang M, Xiao B. Woody and herbaceous wastes for the remediation of polluted waters of wetlands. CHEMOSPHERE 2023:139132. [PMID: 37285982 DOI: 10.1016/j.chemosphere.2023.139132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Plants wastes play an important role during water remediation in wetlands. Plant waste is made into biochar, which is usually used directly or as a water biofilter to remove pollutants. While, the water remediation effect of combination for biochar from woody and herbaceous wastes coupling with substrate types in CWs have not been fully explored. To explore the water remediation effect of combination for biochar coupling with substrate on pH, Turbidity, COD, NH4+-N, TN and TP, four plant configuration modes combining seven woody plants and eight herbaceous plants (Plants A, Plants B, Plants C, Plants D) were coupled with three substrate types (Substrate 1, Substrate 2, Substrate 3) as 12 experiment groups, using water detection methods and significant differences test (LSD) to analyze. Results showed: (1) Compared to Substrate 3, Substrate 1 and Substrate 2 removed significantly higher in pollutants concentration (p < 0.05); (2) NH4+-N final concentration in Plants C and Plants D were both significantly lower than Plants A and Plants B coupling with Substrate 1 and Substrate 2 (p < 0.05). The TN final concentration of Plants C was significantly lower than Plants A in Substrate 1 (p < 0.05), and Plants A's turbidity was significantly lower than Plants C and Plants D's in Substrate 2 (p < 0.05); (3) The pollutants removal of group A1, A2, B1, B2, C1, C2, D1 and D2 were significantly higher than other experiment groups (p < 0.05). Group A2, B2, C1 and D1 had the best water remediation effect and better stability of plant community. Findings in this study will be beneficial for remediating polluted water and building sustainable wetlands.
Collapse
Affiliation(s)
- Xiaodong Liu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Innovative and Design, City University of Macau, Macau, 999078 China.
| | - Yerong Sun
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yueting Tang
- Huizhou Engineering Vocational College, Huizhou, 516001, China
| | - Min Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Bing Xiao
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| |
Collapse
|
10
|
Khan HIUH, Mehta N, Zhang X, Rousseau DPL, Ronsse F. Assessment of the properties of aging biochar used as a substrate in constructed wetlands. CHEMOSPHERE 2023; 334:138999. [PMID: 37217009 DOI: 10.1016/j.chemosphere.2023.138999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Biochar has gained global recognition as an effective tool for environmental remediation, and is increasingly being used as an alternative substrate in constructed wetlands (CWs). While, most studies have focused on the positive effects of biochar for the pollutant removal in CWs, less is known about aging and longevity of the embedded biochar. This study investigated the aging and stability of biochar embedded in CWs post-treating the effluent of a municipal and an industrial wastewater treatment plant. Litter bags containing biochar were inserted into two aerated horizontal subsurface flow CWs (350 m2 each), and retrieved on several dates (8-775 days after burial) for assessment of weight loss/gain and changes in biochar characteristics. Additionally, a 525-day laboratory incubation test was conducted to analyze biochar mineralization. The results showed that there was no significant biochar weight loss over time, but a slight increase in weight (2.3-3.0%) was observed at the end, likely due to mineral sorption. Biochar pH remained stable except for a sudden drop at the beginning (8.6-8.1), while the electrical conductivity continued to increase (96-256 μS cm-1) throughout the experiment. The sorption capacity of the aged biochar for methylene blue significantly increased (1.0-1.7 mg g-1), and a change in the biochar's elemental composition was also noted, with O-content increasing by 13-61% and C content decreasing by 4-7%. Despite these changes, the biochar remained stable according to the criteria of the European Biochar Foundation and International Biochar Initiative. The incubation test also showed negligible biochar mass loss (<0.02%), further validating the stability of the biochar. This study provides important insights into the evolution of biochar characteristics in CWs.
Collapse
Affiliation(s)
- Hafiz Ihsan Ul-Haq Khan
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, B-8500, Kortrijk, Belgium.
| | - Nisarg Mehta
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland
| | - Xian Zhang
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, B-8500, Kortrijk, Belgium
| | - Diederik P L Rousseau
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, B-8500, Kortrijk, Belgium
| | - Frederik Ronsse
- Thermochemical Conversion of Biomass (TCCB), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Coupure Links 653, 9000, Gent, Belgium
| |
Collapse
|
11
|
Guo X, Xie H, Pan W, Li P, Du L, Zou G, Wei D. Enhanced nitrogen removal via biochar-mediated nitrification, denitrification, and electron transfer in constructed wetland microcosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27557-2. [PMID: 37178302 DOI: 10.1007/s11356-023-27557-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
This study investigated the effect of biochar on real domestic wastewater treatment by constructed wetlands (CWs). To evaluate the role of biochar as a substrate and electron transfer medium on nitrogen transformation, three treatments of CW microcosms were established: conventional substrate (T1), biochar substrate (T2), and biochar-mediated electron transfer (T3). Nitrogen removal increased from 74% in T1 to 77.4% in T2 and 82.1% in T3. Nitrate generation increased in T2 (up to 2 mg/L) but decreased in T3 (lower than 0.8 mg/L), and the nitrification genes (amoA, Hao, and nxrA) in T2 and T3 increased by 132-164% and 129-217%, respectively, compared with T1 (1.56 × 104- 2.34 × 107 copies/g). The nitrifying Nitrosomonas, denitrifying Dechloromonas, and denitrification genes (narL, nirK, norC, and nosZ) in the anode and cathode of T3 were significantly higher than those of the other treatments (increased by 60-fold, 35-fold, and 19-38%). The genus Geobacter, related to electron transfer, increased in T3 (by 48-fold), and stable voltage (~150 mV) and power density (~9 uW/m2) were achieved. These results highlight the biochar-mediated enhancement of nitrogen removal in constructed wetlands via nitrification, denitrification, and electron transfer, and provide a promising approach for enhanced nitrogen removal by constructed wetland technology.
Collapse
Affiliation(s)
- Xuan Guo
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| | - Huimin Xie
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Weiliang Pan
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Peng Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| | - Lianfeng Du
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Dan Wei
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
12
|
Wang H, Zang S, Teng H, Wang X, Xu J, Sheng L. Characteristic of KMnO 4-modified corn straw biochar and its application in constructed wetland to treat city tail water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49948-49962. [PMID: 36787063 DOI: 10.1007/s11356-023-25856-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Biochar prepared from straw as constructed wetland (CW) substrate reduces straw pollution and simultaneously promotes the wastewater treatment efficiency of CW. In order to further analyze the pollutant removal mechanism of KMnO4-modified biochar substrate, the KMnO4-modified biochar was characterized. The experiment on city tail water treatment by CW with biochar was analyzed. The research showed that the surface property improvement on KMnO4 (0.1 mol/L)-modified biochar was the most obvious. The biochar modified by 0.1 mol/L KMnO4 increased the SSA and the number of oxygen functional groups and alcohol hydroxyl. KMnO4-modified biochar improved the removal efficiency of NO3--N in CW. KMnO4-modified biochar substrate with plants improved the TP removal efficiency (about 45%). KMnO4 as modifier reduced the influence of biochar on electrical conductivity tracing experiment. This study will improve the utilization value of straw and the removal efficiency of CW.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Institute of Grassland Science, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.,Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Haowen Teng
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Xinyu Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Institute of Grassland Science, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Institute of Grassland Science, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Institute of Grassland Science, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| |
Collapse
|
13
|
Jiang BN, Lu MB, Zhang ZY, Xie BL, Song HL. Quantifying biochar-induced greenhouse gases emission reduction effects in constructed wetlands and its heterogeneity: A multi-level meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158688. [PMID: 36108836 DOI: 10.1016/j.scitotenv.2022.158688] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Zero-waste biochar is an emerging tool for carbon neutralization, but the role of biochar in reducing greenhouse gases (GHGs) emissions from CWs were controversy and uncertainty. Yet, no previous study has integrated multiple research systems to quantitatively examine biochar-mediated GHGs emission reduction potential in CWs. Here we synthesized 114 studies to quantify biochar-induced declines ability of GHGs in the CWs by using the multi-level meta-analysis, reveal the variation of GHGs emission effect in different biochar-CWs and its response relationship with biochar, and identify the moderating variables that had a strong explanatory effect on the emission reduction effect of biochar. We showed that biochar remarkably affect CO2 mitigation (p < 0.05), but has insignificant and heterogeneous effects on CH4 and N2O. Pyrolysis time, influent dissolved oxygen (DO), influent NO3--N concentration, hydraulic retention time (HRT) and wetland type can significantly affect the effect of biochar on CH4 emission reduction. Particularly, the importance of HRT and wetland type was 0.89 and 0.85, respectively. Specially, the surface batch CWs modified by biochar could significantly promote the emission of CH4 (p < 0.001), and the effect size was up to 89.59. For N2O, biochar diameter, biochar addition ratio, influent COD/TN ratio, plant name, and removal efficiency of NO3--N/TN/COD were significant moderators. Among them, influent COD/TN ratio and plant name showed a stronger explanation. Planting Cyperus alternifolius L. significantly enhanced the N2O emission reduction capacity by biochar (p < 0.001), and effect size was as low as -24.32. 700-900 °C biochar can promote CH4 flux but inhibit N2O flux. This study provides an important theoretical basis and valuable strategic guidance for more accurate estimation and improvement of synergistic emission reduction benefits between CH4 and N2O of biochar in CWs.
Collapse
Affiliation(s)
- Bi-Ni Jiang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, PR China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing 210014, PR China
| | - Min-Bo Lu
- CCDI(Suzhou) Exploration & Design Consultant Co., Ltd., Suzhou 215123, PR China
| | - Zhi-Yong Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing 210014, PR China
| | - Bo-Lun Xie
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, PR China.
| |
Collapse
|
14
|
Chu TTH, Nguyen MV. Improved Cr (VI) adsorption performance in wastewater and groundwater by synthesized magnetic adsorbent derived from Fe 3O 4 loaded corn straw biochar. ENVIRONMENTAL RESEARCH 2023; 216:114764. [PMID: 36395861 DOI: 10.1016/j.envres.2022.114764] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
This work developed an easy method to utilize corn straw (CS) waste for sustainable development and reduce the volume of waste volume as well as bring value-added. The magnetic adsorbent was prepared by loading Fe3O4 onto biochar derived from corn straw (Fe@CSBC), then used for capturing Cr (VI) in groundwater and wastewater samples. The characterization of adsorbents showed that Fe3O4 was successfully loaded on corn straw biochar (CSBC) and contributed to the improvement of the surface area, and surface functional groups like Fe-O, Fe-OOH, CO, and O-H. The presence of iron oxide was further confirmed by XPS and XRD analysis and a magnetization value of 35.6 emu/g was obtained for Fe@CSBC. The highest uptake capacity of Cr (VI) onto Fe@CSBC and CSBC by monolayer were 138.8 and 90.6 mg/g, respectively. By applying magnetic adsorbent Fe@CSBC for the treatment of groundwater and wastewater samples, the chromium could be removed up to 90.3 and 72.6%, respectively. The remaining efficiency of Cr (VI) was found to be 84.5% after four times reused Fe@CSBC, demonstrating the great recyclable ability of the adsorbent. In addition, several interactions between Cr (VI) and Fe@CSBC like ion exchange, complexation, and reduction reaction were discussed in the proposed adsorption mechanism. This study brings an efficient method to turn corn straw biomass into an effective magnetic adsorbent with high adsorption performance and good reusability of Cr (VI) in groundwater as well as in wastewater.
Collapse
Affiliation(s)
- Thi Thu Hien Chu
- Department of Chemistry, Faculty of Building Materials, Ha Noi University of Civil Engineering (HUCE), Giai Phong, Hai Ba Trung, Hanoi, 10000, Vietnam.
| | - Minh Viet Nguyen
- VNU Key Laboratory of Advanced Material for Green Growth, Faculty of Chemistry, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam
| |
Collapse
|
15
|
Saravanan A, Kumar PS. Biochar derived carbonaceous material for various environmental applications: Systematic review. ENVIRONMENTAL RESEARCH 2022; 214:113857. [PMID: 35835170 DOI: 10.1016/j.envres.2022.113857] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Biochar is the solid material produced from the carbonization of organic feedstock biomass. This material has several unique characteristics such as greater carbon content, good electrical conductivity, high stability and large surface area, which can be applied in several research areas such as generation of power and wastewater treatment. In connection with this, recently, the investigations on biochar significantly focus on the removal of toxic heavy metals since the biochar material is easily available and environmentally friendly. According to an environmental analytical device, biochar-derived carbonaceous material has been additionally applied to the synthesis of an effective, sensitive, and low-cost electrochemical sensor. Biochar with an assessment of electrochemical properties has engaged with different redox reactions in water. In this survey, electrochemical ways of behaving of biochar in light of the electrochemical structures were analytically compiled as well as the impact from biomass sources and manufacturing process including carbonization strategies, pre-treatment/changed techniques. This review emphasizes the various synthesis methods of biochar form organic feedstock, properties and different modulations of biochar for the bioremediation of heavy metals. This review study emphasizes the utilization of biochar as sensing platform and supercapacitor for electrode fabrication in electrochemical biosensor to enhance the remediation of toxic contaminants from water streams and by switching the less ecological traditional materials. Brief information on the techniques employed for packaging biochar as carbon electrode is summarized. Scope in the aspect of environmental concern of biochar, future challenges and prospects are proposed in detail.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India.
| |
Collapse
|
16
|
Lin H, Yang Y, Shang Z, Li Q, Niu X, Ma Y, Liu A. Study on the Enhanced Remediation of Petroleum-Contaminated Soil by Biochar/g-C3N4 Composites. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148290. [PMID: 35886143 PMCID: PMC9321450 DOI: 10.3390/ijerph19148290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023]
Abstract
This work developed an environmentally-friendly soil remediation method based on BC and g-C3N4, and demonstrated the technical feasibility of remediating petroleum-contaminated soil with biochar/graphite carbon nitride (BC/g-C3N4). The synthesis of BC/g-C3N4 composites was used for the removal of TPH in soil via adsorption and photocatalysis. BC, g-C3N4, and BC/g-C3N4 have been characterized by scanning electron microscopy (SEM), Brunauer–Emmett–Teller surface area analyzer (BET), FT-IR, and X-ray diffraction (XRD). BC/g-C3N4 facilitates the degradation due to reducing recombination and better electron-hole pair separation. BC, g-C3N4, and BC/g-C3N4 were tested for their adsorption and photocatalytic degradation capacities. Excellent and promising results are brought out by an apparent synergism between adsorption and photocatalysis. The optimum doping ratio of 1:3 between BC and g-C3N4 was determined by single-factor experiments. The removal rate of total petroleum hydrocarbons (TPH) by BC/g-C3N4 reached 54.5% by adding BC/g-C3N4 at a dosing rate of 0.08 g/g in a neutral soil with 10% moisture content, which was 2.12 and 1.95 times of BC and g-C3N4, respectively. The removal process of TPH by BC/g-C3N4 conformed to the pseudo-second-order kinetic model. In addition, the removal rates of different petroleum components in soil were analyzed in terms of gas chromatography–mass spectrometry (GC-MS), and the removal rates of nC13-nC35 were above 90% with the contaminated soil treated by BC/g-C3N4. The radical scavenger experiments indicated that superoxide radical played the major role in the photocatalytic degradation of TPH. This work definitely demonstrates that the BC/g-C3N4 composites have great potential for application in the remediation of organic pollutant contaminated soil.
Collapse
Affiliation(s)
- Hongyang Lin
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (H.L.); (Y.Y.)
| | - Yang Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (H.L.); (Y.Y.)
| | - Zhenxiao Shang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China; (Z.S.); (X.N.)
| | - Qiuhong Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China;
| | - Xiaoyin Niu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China; (Z.S.); (X.N.)
| | - Yanfei Ma
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China; (Z.S.); (X.N.)
- Correspondence: (Y.M.); (A.L.)
| | - Aiju Liu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China; (Z.S.); (X.N.)
- Correspondence: (Y.M.); (A.L.)
| |
Collapse
|
17
|
Wang H, Wang X, Teng H, Xu J, Sheng L. Purification mechanism of city tail water by constructed wetland substrate with NaOH-modified corn straw biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113597. [PMID: 35533448 DOI: 10.1016/j.ecoenv.2022.113597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The pollution of corn straw to the environment had attracted much attention. The preparation and alkali modification of corn straw biochar as the constructed wetland (CW) substrate was conducive to solving the environment pollution caused by straw and improving the purification effect of CW. The NaOH modification mechanism of corn straw biochar was analyzed by measuring the surface morphology, element content, specific surface area (SSA), pore volume, crystal structure, surface functional groups and CO2 adsorption. Biochar prepared under relatively optimal NaOH-modified conditions was used as the vertical flow CW substrate to treat city tail water. The results showed that controlling the modification condition of NaOH (< 1.0 mol·L-1, ≤ 24 h) was conducive to prevent the biochar structure destruction and C element reduction. The SSA and pore volume of NaOH (0.1 mol·L-1) modified biochar are 360 m2·g-1 and 0.109 cm3·g-1, respectively. The biochar adsorption for CO2 conformed to the Langmuir and Freundlich isothermal adsorption theoretical model (R2 > 0.9). The maximum adsorption capacity of CO2 by modified biochar with NaOH (0.1 mol·L-1) was 64.516 cm3·g-1 and increased by 10.3%. The city tail water treated by CW with plants showed that the removal rates of ammonia nitrogen, total nitrogen and nitrate nitrogen reached about 90%. The research results improved the utilization value of straw, realized straw carbon sequestration and promoted the progress of CW technology.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun 130017, China; Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China.
| | - Xinyu Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun 130017, China.
| | - Haowen Teng
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China.
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun 130017, China; Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Northeast Normal University, Renmin Street 5268, Changchun, 130024 Jilin, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun 130017, China; Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Northeast Normal University, Renmin Street 5268, Changchun, 130024 Jilin, China.
| |
Collapse
|