1
|
Tu X, Yin B, Kang J, Wu Z, Guo Y, Ao G, Sun Y, Ge J, Ping W. Potassium persulfate enhances humification of chicken manure and straw composting: The perspective of rare and abundant microbial community structure and ecological interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175162. [PMID: 39084372 DOI: 10.1016/j.scitotenv.2024.175162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Improper disposal of organic solid waste results in serious environmental pollution. Aerobic composting provides an environmentally friendly treatment method, but improving humification of raw materials remains a challenge. This study revealed the effect of different concentrations of potassium persulfate (PP) on humification of chicken manure and straw aerobic composting and the underlying microbial mechanisms. The results showed that when 0.6 % PP was added (PPH group), humus and the degree of polymerization were 80.77 mg/g and 2.52, respectively, which were significantly higher than those in 0.3 % PP (PPL group). As the concentration of PP was increased, the composition of rare taxa (RT) changed and improved in evenness, while abundant taxa (AT) was unaffected. Additionally, the density (0.037), edges (3278), and average degree (15.21) in the co-occurrence network decreased compared to PPL, while the average path (4.021) and modularity increased in PPH. This resulted in facilitating the turnover of matter, information, and energy among the microbes. Interestingly, cooperative behavior between microorganisms during the maturation period (24-60 d) occurred in PPH, but competitive relationships dominated in PPL. Cooperative behavior was positively correlated with humus (p < 0.05). Because the indices, such as higher degree, betweenness centrality, eigenvector centrality, and closeness centrality of the AT, were located in the microbial network center compared to RT, they were unaffected by the concentration of PP. The abundance of carbohydrate and amino acid metabolic pathways, which play an important role in humification, were higher in PPH. These findings contribute to understanding the relative importance of composition, interactions, and metabolic functionality of RT and AT on humification during chicken manure and straw aerobic composting under different concentrations of PP, as well as provide a basic reference for use of various conditioning agents to promote humification of organic solid waste.
Collapse
Affiliation(s)
- Xiujun Tu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bo Yin
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zhenchao Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yuhao Guo
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Guoxu Ao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
2
|
Yang L, Chen Y, Wang S, Lin S, Huang G, Wang Z, Yu Z, Zeng L. Arsenic-contaminated soil remediation with hyperthermophilic compost: Effects on arsenic bioavailability, soil fertility and bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122774. [PMID: 39388821 DOI: 10.1016/j.jenvman.2024.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Soil arsenic (As) contamination has posed a significant global environmental challenge seriously threatening human health. Compost has attracted broad interests as a kind of eco-friendly and versatile amendment. However, hyperthermophilic compost (HTC), which is newly-developed and more advantageous to environment, has not yet been widely utilized to remediate As-contaminated soil, and its effectiveness remains unclear. Herein, the effects of HTC amendment on soil fertility, As bioavailability, plant growth and soil bacterial community were investigated. After amended with HTC, soil nutrient content and enzyme activity were improved. Concurrently, the content of both total As and available As in soil was reduced, partially due to the formation of organo-As complex with the presence of humic acid and fulvic acid in HTC. Notably, Chinese white cabbage (Brassica campestris L. ssp. chinensis Makino) cultivated in HTC-treated soil exhibited better growth and less As uptake, but showed enhanced translocation of As from the below-ground part to the above-ground part. In particular, the lowest HTC addition ratio (HTC:Soil = 1:10, v:v) proved to be the most optimal, increasing the height, width and biomass of Chinese white cabbage from 9.92 ± 0.72 cm, 6.76 ± 0.31 cm and 4.43 ± 0.49 g, to 21.29 ± 0.48 cm, 19.3 ± 1.44 cm and 23.27 ± 2.45 g, respectively. The results of soil bacterial community analysis revealed that HTC amendment stimulated the growth and metabolism of soil microbes, augmenting the richness and diversity of bacteria related to the methylation and volatilization of As and plant growth. This work suggests that HTC can serve as an effective amendment for As-contaminated soil remediation, and a superior alternative to compound fertilizer for plant cultivation, displaying promising potential for agricultural applications.
Collapse
Affiliation(s)
- Liu Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Yingle Chen
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Song Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Shu Lin
- Guangzhou Rongxin Technology Development Co., Ltd., Guangzhou, 510507, China
| | - Guowen Huang
- Foshan Shunzhinong Machinery Equipment Co., Ltd., Foshan, 528399, China
| | - Zhihong Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Lei Zeng
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
3
|
Zhang S, Wang L, Zhou B, Zhang D, Tang G, Guo L. Characteristics of humification, functional enzymes and bacterial community metabolism during manganese dioxide-added composting of municipal sludge. ENVIRONMENTAL RESEARCH 2024; 252:119151. [PMID: 38754608 DOI: 10.1016/j.envres.2024.119151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
The aim of this study was to assess effects of MnO2 addition (CK-0%, T1-2% and T2-5%) on humification and bacterial community during municipal sludge (MS) composting. The results suggested that MnO2 addition inhibited the growth of Nitrospira but stimulated Nonomuraea, Actinomadura, Streptomyces and Thermopolyspora, facilitating the lignocellulose degradation and humification with the increase in organic matter degradation by 13.8%-19.2% and humic acid content by 10.9%-20.6%. Compared to CK, the abundances of exoglucanase (EC:3.2.1.91), endo-1,4-beta-xylanase (EC:3.2.1.136) and endomannanase (EC:3.2.1.78) increased by 88-99, 52-66 and 4-15 folds, respectively. However, 5%-MnO2 induced the enrichment of Mizugakiibacter that harms the environment of agricultural production. The addition of 2%-MnO2 was recommended for MS composting. Furthermore, metabolic function analysis indicated that MnO2 addition altered amino acid and carbohydrate metabolism, especially enhancing propanoate metabolism and butanoate metabolism but inhibiting citrate cycle. Structural equation modeling revealed that Nonomuraea and Actinomadura were the main drivers for lignocellulose degradation. This study provided theoretical guidance in regulating humification via MnO2 for MS composting.
Collapse
Affiliation(s)
- Shihua Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China.
| | - Liujian Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| | - Bingjie Zhou
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| | - Dewei Zhang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Gang Tang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| | - Lina Guo
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| |
Collapse
|
4
|
Yan B, Lan T, Lv Y, Xing C, Liang Y, Wang H, Wu Q, Guo L, Guo WQ. Enhancing simultaneous nitrogen and phosphorus availability through biochar addition during Chinese medicinal herbal residues composting: Synergism of microbes and humus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172515. [PMID: 38642759 DOI: 10.1016/j.scitotenv.2024.172515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.
Collapse
Affiliation(s)
- Bo Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tian Lan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lv
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuanming Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongqi Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liang Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Zhu L, Wang X, Liu L, Le B, Tan C, Dong C, Yao X, Hu B. Fungi play a crucial role in sustaining microbial networks and accelerating organic matter mineralization and humification during thermophilic phase of composting. ENVIRONMENTAL RESEARCH 2024; 254:119155. [PMID: 38754614 DOI: 10.1016/j.envres.2024.119155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Fungi play an important role in the mineralization and humification of refractory organic matter such as lignocellulose during composting. However, limited research on the ecological role of fungi in composting system hindered the development of efficient microbial agents. In this study, six groups of lab-scale composting experiments were conducted to reveal the role of fungal community in composting ecosystems by comparing them with bacterial community. The findings showed that the thermophilic phase was crucial for organic matter degradation and humic acid formation. The Richness index of the fungal community peaked at 1165 during this phase. PCoA analysis revealed a robust thermal stability in the fungal community. Despite temperature fluctuations, the community structure, predominantly governed by Pichia and Candida, remained largely unaltered. The stability of fungal community and the complexity of ecological networks were 1.26 times and 5.15 times higher than those observed in bacterial community, respectively. Fungi-bacteria interdomain interaction markedly enhanced network complexity, contributing to maintain microbial ecological functions. The core fungal species belonging to the family Saccharomycetaceae drove interdomain interaction during thermophilic phase. This study demonstrated the key role of fungi in the composting system, which would provide theoretical guidance for the development of high efficiency composting agents to strengthen the mineralization and humification of organic matter.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohan Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liyuan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Boyi Le
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunxu Tan
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chifei Dong
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
6
|
Mandal M, Roy A, Das S, Rakwal R, Agrawal GK, Singh P, Awasthi A, Sarkar A. Food waste-based bio-fertilizers production by bio-based fermenters and their potential impact on the environment. CHEMOSPHERE 2024; 353:141539. [PMID: 38417498 DOI: 10.1016/j.chemosphere.2024.141539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Increasing food waste is creating a global waste (and management) crisis. Globally, ∼1.6 billion tons of food is wasted annually, worth ∼$1.2 trillion. By reducing this waste or by turning it into valuable products, numerous economic advantages can be realized, including improved food security, lower production costs, biodegradable products, environmental sustainability, and cleaner solutions to the growing world's waste and garbage management. The appropriate handling of these detrimental materials can significantly reduce the risks to human health. Food waste is available in biodegradable forms and, with the potential to speed up microbial metabolism effectively, has immense potential in improving bio-based fertilizer generation. Synthetic inorganic fertilizers severely affect human health, the environment, and soil fertility, thus requiring immediate consideration. To address these problems, agricultural farming is moving towards manufacturing bio-based fertilizers via utilizing natural bioresources. Food waste-based bio-fertilizers could help increase yields, nutrients, and organic matter and mitigate synthetic fertilizers' adverse effects. These are presented and discussed in the review.
Collapse
Affiliation(s)
- Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, 732 103, West Bengal, India
| | - Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, 732 103, West Bengal, India
| | - Sujit Das
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, 732 103, West Bengal, India
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, Global Sport Innovation Bldg., Room 403, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan; GRADE Academy (Pvt.) Ltd., Birgunj, Nepal
| | | | - Pardeep Singh
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, 110065, India
| | - Amit Awasthi
- Department of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, 732 103, West Bengal, India.
| |
Collapse
|
7
|
Song T, Zhang F, Chen Q, Tao Y, Chang W, Xia W, Ding W, Jin J. Acceleration of the biodegradation of cationic polyacrylamide by the coupling effect of thermophilic microorganisms and high temperature in hyperthermophilic composting. Bioprocess Biosyst Eng 2024; 47:403-415. [PMID: 38421394 DOI: 10.1007/s00449-024-02972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
As a flocculant of sewage sludge, cationic polyacrylamide (CPAM) enters the environment with sludge and exists for a long time, posing serious threats to the environment. Due to the environmental friendliness and high efficiency in the process of organic solid waste treatment, hyperthermophilic composting (HTC) has received increasing attention. However, it is still unclear whether the HTC process can effectively remove CPAM from sludge. In this study, the effects of HTC and conventional thermophilic composting (CTC) on CPAM in sludge were compared and analyzed. At the end of HTC and CTC, the concentrations of CPAM were 278.96 mg kg-1 and 533.89 mg kg-1, respectively, and the removal rates were 72.17% and 46.61%, respectively. The coupling effect of thermophilic microorganisms and high temperature improved the efficiency of HTC and accelerated the biodegradation of CPAM. The diversity and composition of microbial community changed dramatically during HTC. Geobacillus, Thermobispora, Pseudomonas, Brevundimonas, and Bacillus were the dominant bacteria responsible for the high HTC efficiency. To our knowledge, this is the first study in which CPAM-containing sludge is treated using HTC. The ideal performance and the presence of key microorganisms revealed that HTC is feasible for the treatment of CPAM-containing sludge.
Collapse
Affiliation(s)
- Tianwen Song
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China.
| | - Fan Zhang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Qu Chen
- Medical College, Qingdao Binhai University, Qingdao, 266555, China
| | - Yinglu Tao
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Wei Chang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Wenxiang Xia
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China.
| | - Wande Ding
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Jiafeng Jin
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China
| |
Collapse
|
8
|
Yu W, Zheng T, Guo B, Tao Y, Liu L, Yan N, Zheng X. Coupling of polyhydroxybutyrate and zero-valent iron for enhanced treatment of nitrate pollution within the Permeable Reactive Barrier and its downgradient aquifer. WATER RESEARCH 2024; 250:121060. [PMID: 38181646 DOI: 10.1016/j.watres.2023.121060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Permeable Reactive Barriers (PRBs) have been utilized for mitigating nitrate pollution in groundwater systems through the use of solid carbon and iron fillers that release diverse nutrients to enhance denitrification efficiency. We conduct laboratory column tests to evaluate the effectiveness of PRBs in remediating nitrate pollution both within the PRB and in the downgradient aquifer. We use an iron-carbon hydrogel (ICH) as PRB filler, which has different weight ratios of polyhydroxybutyrate (PHB) and microscale zero-valent iron (mZVI). Results reveal that denitrification in the downgradient aquifer accounts for at least 19.5 % to 32.5 % of the total nitrate removal. In the ICH, a higher ratio of PHB to mZVI leads to higher contribution of the downgradient aquifer to nitrate removal, while a lower ratio results in smaller contribution. Microbial community analysis further reveals that heterotrophic and mixotrophic bacteria dominate in the downgradient aquifer of the PRB, and their relative abundance increases with a higher ratio of PHB to mZVI in the ICH. Within the PRB, autotrophic and iron-reducing bacteria are more prevalent, and their abundance increases as the ratio of PHB to mZVI in the ICH decreases. These findings emphasize the downgradient aquifer's substantial role in nitrate removal, particularly driven by dissolved organic carbon provided by PHB. This research holds significant implications for nutrient waste management, including the prevention of secondary pollution, and the development of cost-effective PRBs.
Collapse
Affiliation(s)
- Wenhao Yu
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Tianyuan Zheng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| | - Bo Guo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA.
| | - Yiheng Tao
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544, USA
| | - Lecheng Liu
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Ni Yan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Xilai Zheng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
9
|
Xing CM, He ZL, Lan T, Yan B, Zhao Q, Wu QL, Wang HZ, Wang CX, Guo WQ. Enhanced humus synthesis from Chinese medicine residues composting by lignocellulose-degrading bacteria stimulation: Upregulation of key enzyme activity and neglected indirect effects on humus formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167754. [PMID: 37879479 DOI: 10.1016/j.scitotenv.2023.167754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Chinese medicine residues (CMHRs) resource is attracting widespread attention, as it is expected to be produced into Humus-rich fertilizer for soil application. This study aimed to promote effective humus (HS) production through lignocellulose-degrading bacteria (LDB) addition and explore the biological regulation mechanism of LDB affecting lignocellulose-to-humus conversion. The results showed higher HS production was achieved, with 109.73 and 111.44 g·kg-1, and HA/FA was raised by 12.70-16.02 % in compost products by LDB addition stimulation. Significant upregulation of β-glucanase and xylanase activities catalyzed higher decomposition of lignocellulose toward more HS potential precursors supply. Furthermore, exogenous LDB intervention induced microbial community restructure and microbial network establishment via enriching synergism functional bacteria, i.e., Thermobifida, Paenibacillus, Nonomuraea, etc. Mantel test results showed that it was variation of cellulose, hemicellulose and HS that affected microbial community succession (p < 0.01, r > 0.6), which represented the positive action of LDB addition stimulation on HS synthesis upregulation. Further exploration suggested LDB had an indirect effect on HS formation by enhanced lignin and hemicellulose conversion based on the Random Forest model and Partial least-squares path modeling results. This research provides new insights into the trigger effects of LDB introduction on upregulating HS synthesis and is expected to propose new perspectives for HS efficient production in CMHRs composting.
Collapse
Affiliation(s)
- Chuan-Ming Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Lin He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tian Lan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bo Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Cai-Xia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Ma S, Shen Y, Ding J, Cheng H, Zhou H, Ge M, Wang J, Cheng Q, Zhang D, Zhang Y, Xu P, Zhang P. Effects of biochar and volcanic rock addition on humification and microbial community during aerobic composting of cow manure. BIORESOURCE TECHNOLOGY 2024; 391:129973. [PMID: 37931759 DOI: 10.1016/j.biortech.2023.129973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Additives are important for accelerating humification during aerobic composting. The impacts of porous additives biochar and volcanic rock on the physicochemical parameters, maturity indicators, microbial communities, and bacterial functional metabolism during the aerobic composting of cow manure were investigated in this study. The results showed that the biochar addition decreased the E4/E6 value by 10.42% and increased the abundance of Geobacillus (1.69 times), and volcanic rock addition decreased the E4/E6 value by 11.31% and increased the abundance of Thermobacillus (1.29 times) and Paenibacillus (1.72 times). The network analysis demonstrated that biochar promoted maturity by reducing the abundance of Pseudomonas and increasing the abundance of genes related to the metabolism of other amino acids, while volcanic rock promoted maturity by reducing the abundance of genes related to nucleotide metabolism. These results provided data and theoretical justification for the selection of porous additives for composting.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yujun Shen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jingtao Ding
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Hongsheng Cheng
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Haibin Zhou
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Mianshen Ge
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jian Wang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qiongyi Cheng
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Dongli Zhang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yun Zhang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Pengxiang Xu
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Pengyue Zhang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| |
Collapse
|
11
|
Zhou SP, Tang SQ, Ke X, Zhou HY, Zou SP, Xue YP, Zheng YG. Hyperthermophilic pretreatment significantly accelerates thermophilic composting humification through improving bacterial communities and promoting microbial cooperation. BIORESOURCE TECHNOLOGY 2023:129467. [PMID: 37429549 DOI: 10.1016/j.biortech.2023.129467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Thermophilic composting (TC) can effectively shorten maturity period with satisfactory sanitation. However, the higher energy consumption and lower composts quality limited its widespread application. In this study, hyperthermophilic pretreatment (HP) was introduced as a novel approach within TC, and its effects on humification process and bacterial community during food waste TC was investigated from multiple perspectives. Results showed that a 4-hour pretreatment at 90 °C increased the germination index and humic acid/fulvic acid by 25.52% and 83.08%. Microbial analysis demonstrated that HP stimulated the potential functional thermophilic microbes, and significantly up-regulated the genes related to amino acid biosynthesis. Further network and correlation analysis suggested that pH was the key factor affecting bacterial communities, and higher HP temperatures help to restore bacterial cooperation and showed higher humification degree. In summary, this study contributed to a better understanding of the mechanism towards the accelerated humification by HP.
Collapse
Affiliation(s)
- Shi-Peng Zhou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su-Qin Tang
- Hangzhou Environmental Group Company Limited, Hangzhou 310022, China
| | - Xia Ke
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hai-Yan Zhou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shu-Ping Zou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
12
|
Liu Y, Zhang Y, Wang M, Wang L, Zheng W, Zeng Q, Wang K. Comparison of the basic processes of aerobic, anaerobic, and aerobic-anaerobic coupling composting of Chinese medicinal herbal residues. BIORESOURCE TECHNOLOGY 2023; 379:128996. [PMID: 37011845 DOI: 10.1016/j.biortech.2023.128996] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Chinese medicinal herbal residues (CMHRs) are waste generated after extracting Chinese medicinal materials, and they can be used as a renewable bioresource. This study aimed to evaluate the potential of aerobic composting (AC), anaerobic digestion (AD), and aerobic-anaerobic coupling composting (AACC) for the treatment of CMHRs. CMHRs were mixed with sheep manure and biochar, and composted separately under AC, AD, and AACC conditions for 42 days. Physicochemical indices, enzyme activities, and bacterial communities were monitored during composting. Results showed that AACC- and AC-treated CMHRs were well-rotted, with the latter exhibiting the lowest C/N ratio and maximal germination index (GI) values. Higher phosphatase and peroxidase activities were detected during the AACC and AC treatments. Better humification was observed under AACC based on the higher catalase activities and lower E4/E6. AC treatment was effective in reducing compost toxicity. This study provides new insights into biomass resource utilisation.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Minghuan Wang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510130, China
| | - Lisheng Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Wanting Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Qiannuo Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Kui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
13
|
Long X, Lu Y, Guo H, Tang Y. Recent Advances in Solid Residues Resource Utilization in Traditional Chinese Medicine. ChemistrySelect 2023. [DOI: 10.1002/slct.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Xu Long
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Ying‐Lei Lu
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Hui Guo
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Yu‐Ping Tang
- Shaanxi Qinling Chinese Herbal Medicine Application Development Engineering Technology Research Center Shaanxi University of Chinese Medicine Xianyang 712046 China
| |
Collapse
|
14
|
Wu X, Amanze C, Yu Z, Li J, Liu Y, Shen L, Yu R, Wu X, Xu X, Tan S, Zeng W. Evaluation of fungal community assembly and function during food waste composting with Aneurinibacillus sp. LD3 inoculant. BIORESOURCE TECHNOLOGY 2022; 363:127923. [PMID: 36096323 DOI: 10.1016/j.biortech.2022.127923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The objective of this work was to evaluate the fungal community assembly and function during food waste composting with Aneurinibacillus sp. LD3 (LD3) inoculant. Inoculation reduced the content of total organic carbon, moisture content, nitrate nitrogen, and nitrite nitrogen. The LD3 inoculant was able to drive the changes in the assembly of the fungal community. In particular, inoculation with LD3 not only increased the relative abundance of Ascomycota and Trichocomaceae_unclassified for lignocellulose degradation at the mesophilic and cooling stages but also reduced the relative abundances of the opportunistic human pathogen Candida. Saprotroph was the predominant fungal trophic mode in composting, and inoculation with LD3 has a better inactivation effect on animal and plant pathogenic fungi during composting. Furthermore, the variation of the fungal community after inoculation with LD3 was the largest explained by temperature (30.64%). These results implied that LD3 significantly regulated fungal composition and function of food waste composting.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Zhaojing Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xuewen Xu
- Hunan Tevos Ecological Technology Co, Ltd, Changsha 410083, China; Hunan Biological Fertilizer Engineering Technology Research Center, Changsha 410083, China
| | - Shiyong Tan
- Hunan Tevos Ecological Technology Co, Ltd, Changsha 410083, China; Hunan Biological Fertilizer Engineering Technology Research Center, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
15
|
Chen X, Kong Q, Zhao X, Zhao C, Hao P, Irshad I, Lei H, Kulyar MFEA, Bhutta ZA, Ashfaq H, Sha Q, Li K, Wu Y. Sodium acetate/sodium butyrate alleviates lipopolysaccharide-induced diarrhea in mice via regulating the gut microbiota, inflammatory cytokines, antioxidant levels, and NLRP3/Caspase-1 signaling. Front Microbiol 2022; 13:1036042. [PMID: 36386709 PMCID: PMC9664939 DOI: 10.3389/fmicb.2022.1036042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Diarrhea is a word-widely severe disease coupled with gastrointestinal dysfunction, especially in cattle causing huge economic losses. However, the effects of currently implemented measures are still not enough to prevent diarrhea. Previously we found that dropped short-chain fatty acids in diarrhea yaks, and butyrate is commonly known to be related to the epithelial barrier function and intestinal inflammation. However, it is still unknown whether sodium acetate/sodium butyrate could alleviate diarrhea in animals. The present study is carried out to explore the potential effects of sodium acetate/sodium butyrate on lipopolysaccharide-induced diarrhea in mice. Fifty ICR mice were randomly divided into control (C), LPS-induced (L), and sodium acetate/sodium butyrate (D, B, A)-treated groups. Serum and intestine samples were collected to examine inflammatory cytokines, antioxidant levels, relative gene expressions via real-time PCR assay, and gut microbiota changes through high-throughput sequencing. Results indicated that LPS decreased the villus height (p < 0.0001), increased the crypt depth (p < 0.05), and lowered the villus height to crypt depth ratio (p < 0.0001), while sodium acetate/sodium butyrate supplementation caused a significant increase in the villus height (p < 0.001), decrease in the crypt depth (p < 0.01), and increase in the villus height to crypt depth ratio (p < 0.001), especially. In mice treated with LPS, it was found that the serum level of IL-1β, TNF-α (p < 0.001), and MDA (p < 0.01) was significantly higher; however, sodium acetate/sodium butyrate supplementation significantly reduced IL-1β (p < 0.001), TNF-α (p < 0.01), and MDA (p < 0.01), respectively. A total of 19 genera were detected among mouse groups; LPS challenge decreased the abundance of Lactobacillus, unidentified F16, unidentified_S24-7, Adlercreutzia, Ruminococcus, unclassified Pseudomonadales, [Ruminococcus], Acetobacter, cc 1, Rhodococcus, unclassified Comamonadaceae, Faecalibacterium, and Cupriavidus, while increased Shigella, Rhodococcus, unclassified Comamonadaceae, and unclassified Pseudomonadales in group L. Interestingly, sodium acetate/sodium butyrate supplementation increased Lactobacillus, unidentified F16, Adlercreutzia, Ruminococcus, [Ruminococcus], unidentified F16, cc 115, Acetobacter, Faecalibacterium, and Cupriavidus, while decreased Shigella, unclassified Enterobacteriaceae, unclassified Pseudomonadales, Rhodococcus, and unclassified Comamonadaceae. LPS treatment upregulated the expressions of ZO-1 (p < 0.01) and NLRP3 (p < 0.0001) genes in mice; however, sodium acetate/sodium butyrate solution supplementation downregulated the expressions of ZO-1 (p < 0.05) and NLRP3 (p < 0.05) genes in treated mice. Also, the LPS challenge clearly downregulated the expression of Occludin (p < 0.001), Claudin (p < 0.0001), and Caspase-1 (p < 0.0001) genes, while sodium acetate/sodium butyrate solution supplementation upregulated those gene expressions in treated groups. The present study revealed that sodium acetate/sodium butyrate supplementation alleviated LPS-induced diarrhea in mice via enriching beneficial bacterium and decreasing pathogens, which could regulate oxidative damages and inflammatory responses via NLRP3/Caspase-1 signaling. The current results may give insights into the prevention and treatment of diarrhea.
Collapse
Affiliation(s)
- Xiushuang Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qinghui Kong
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | - Xiaoxiao Zhao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenxi Zhao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pin Hao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Irfan Irshad
- Institute of Continuing Education and Extension, University of Veterinary Animal Sciences, Lahore, Pakistan
| | - Hongjun Lei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Fakhar-e-Alam Kulyar
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zeeshan Ahmad Bhutta
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Hassan Ashfaq
- Institute of Continuing Education and Extension, University of Veterinary Animal Sciences, Lahore, Pakistan
| | - Qiang Sha
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Kun Li,
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yi Wu,
| |
Collapse
|