1
|
Zhang J, Ge X, Qiu X, Liu L, Mulder J, Duan L. Estimation of carbon sequestration potential and air quality impacts of biochar production from straw in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125304. [PMID: 39537086 DOI: 10.1016/j.envpol.2024.125304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Aiming to optimize straw resource utilization and to reduce air pollutant and greenhouse gas emissions in China, the environmental benefits of biochar production using straw and utilization need to be assessed. Two biochar production scenarios were studied: centralized production scenario (CPS) utilizing an industrialized production method with advanced air pollution control devices, and decentralized production scenario (DPS) based on a distributed production method of biochar at the village level, compared to an open-burning scenario (OBS). The potential GHG emission reductions under DPS, including the benefit of soil biochar application, were evaluated as 680 Tg CO2-eq yr-1, which was lower than the reductions under CPS (780 Tg CO2-eq yr-1). Although the attentional centralized production method of biochar has more potential environmental benefits, at present the distributed production method is more practical in China due to its convenience, management ease, and lower costs. Modeling on air quality in China showed that in comparison with OBS, DPS could reduce the average monthly PM2.5 concentration of key regions by 19%, and about 190 Tg yr-1 biochar could be produced with 150 Tg C yr-1 sequestered in biochar. Our findings support widespread biochar use in China for improved air quality and climate neutrality.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaodong Ge
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xionghui Qiu
- School of Environment, Beijing Jiaotong University, Beijing, 100091, China.
| | - Lei Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jan Mulder
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Box 5003, NO-1432, Norway
| | - Lei Duan
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China.
| |
Collapse
|
2
|
Ahmed MMM, Liao CH, Venkatesan S, Liu YT, Tzou YM, Jien SH, Lin MC, Hsieh YC, Osman AI. Sulfur-functionalized sawdust biochar for enhanced cadmium adsorption and environmental remediation: A multidisciplinary approach and density functional theory insights. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123586. [PMID: 39672047 DOI: 10.1016/j.jenvman.2024.123586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/04/2024] [Accepted: 12/01/2024] [Indexed: 12/15/2024]
Abstract
Pristine biochar typically exhibits limited capacity for heavy metal adsorption due to its inadequate pore development and insufficient surface functionality. This study introduces an innovative chemical strategy to enhance the surface of sawdust biochar with sulfur-based functional groups (C=S, C-S, S-S, S2-, S-H, -SO32-, -SO42-) to significantly improve cadmium (Cd) adsorption. Sulfur-doping using H2SO4, Na2S, and Na2S2O3 markedly increased the sulfur content from 0.11% (pristine) to 2.81% (H2SO4), 0.57% (Na2S), and 13.27% (Na2S2O3). Characterization techniques such as SEM-EDS, FTIR, and XPS confirmed the successful incorporation of sulfur moieties and additional oxygen-containing groups, improving surface functionality. The Cd adsorption capacity of S-modified biochar increased by 4.8-9.0 times compared to pristine biochar, with peak values of 39.38, 20.84, and 34.14 mg g-1 for H2SO4, Na2S, and Na2S2O3-modified biochar, respectively. The equilibrium time was significantly reduced from 4 h (pristine) to 5-10 min (S-modified). The enhanced Cd adsorption was attributed to the synergistic interplay of electrostatic attraction, cadmium-π electron interactions, complexation, and ion exchange mechanisms, facilitated by the presence of oxygen and sulfur functional groups. Density Functional Theory (DFT) calculations showed that sulfur doping modulated the electronic properties of the biochar-Cd systems, narrowing the band gap and enhancing the Cd-O bonds, thereby improving the Cd adsorption performance. Additionally, the binding energies of the S-modified biochar-Cd complex were found to be more stable compared to those before Cd adsorption. This study demonstrates that both oxygen and sulfur-functionalized sawdust biochar is an effective and eco-friendly adsorbent for Cd removal, highlighting the significance of tailored surface modifications to augment biochar's reactivity and affinity towards specific contaminants. The developed material offers a sustainable and scalable solution for Cd removal from aqueous environments, contributing to advanced water treatment technologies and environmental remediation strategies.
Collapse
Affiliation(s)
- M M M Ahmed
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan
| | - Chih-Hao Liao
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan
| | - S Venkatesan
- Department of Chemistry, School of Science and Humanities, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, 522 213, India
| | - Yu-Ting Liu
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan.
| | - Shih-Hao Jien
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan.
| | - Ming-Chang Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yi-Cheng Hsieh
- Office of the Texas State Chemist, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX, 77843, USA
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
3
|
Wang J, Yang Y, Wu J, Zhao K, Zhang X. The interaction between biochar and earthworms: Revealing the potential ecological risks of biochar application and the feasibility of their co-application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175240. [PMID: 39111445 DOI: 10.1016/j.scitotenv.2024.175240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Biochar's interaction with soil-dwelling organisms, particularly earthworms, is crucial in ensuring the effective and secure utilization of biochar in the soil. This review introduces the application of biochar in soil, summarizes how earthworms respond to biochar-amended soil and the underlying factors that can influence their response, discusses the synergistic and antagonistic impacts of earthworm activity on the efficacy of biochar, and considers the feasibility of applying them together. A review of existing research has identified uncertainty in the effect of biochar exposure on earthworms, with biochar derived from animal wastes, produced at higher pyrolysis temperatures, and used at higher doses of biochar having more negative effects on earthworms. Habitat modification, toxicity release, particle effects, and contaminant immobilization are underlying factors in how biochar affects earthworm indicators. While biochar in contaminated soils may alleviate the stress of pollutants on earthworms by decreasing their bioaccumulation, this remedial effect is not always effective. Additionally, earthworm bioturbation can enhance the migration, fragmentation, and oxidation of biochar, while also stimulating extracellular enzymes that convert biochar into 'vermichar'. Earthworms and biochar can synergize well to improve soil fertility and remediate soil organic pollution, yet exhibit contrasting roles in soil C sequestration and immobilizing heavy metals in soil. These findings highlight both the advantages and risks of their co-application. Therefore, when considering the use of biochar alone or with earthworms, it is crucial to thoroughly assess its potential ecotoxicity on earthworms and other soil organisms, as well as the influence of bioturbation, such as that caused by earthworms, on the effectiveness of biochar.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxiang Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jizi Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Keli Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Callegari B, Misganaw BA, Bagherzadeh M. Paved with good intentions: From digitalization to carbon neutrality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122956. [PMID: 39426166 DOI: 10.1016/j.jenvman.2024.122956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Researchers and practitioners have promoted digitalization as a crucial tool for achieving carbon neutrality. In this paper, we argue that for digitalization to positively impact carbon neutrality, several essential supporting conditions are required. Using the Georgescu-Roegen/Daly ecological production function approach, we argue that digitalization alone a) will not necessarily lead to dematerialization, partly because it tends to economize on labor rather than other, less sustainable production factors, and partly because it requires a material- and energy-intensive infrastructure; b) will result in both quantitative and qualitative output expansion rather than substituting existing products and services with more sustainable alternatives; and c) will not promote carbon-conscious corporate governance practices. We suggest that a systemic perspective is necessary to analyze the complex relationships between digitalization and carbon neutrality.
Collapse
Affiliation(s)
- Beniamino Callegari
- School of Economics, Innovation and Technology, Kristiania University College, Oslo, Norway.
| | | | | |
Collapse
|
5
|
Mubarik MS, Kontoleon A, Shahbaz M. Beyond the hurdles: Exploring policy obstacles in the path to circular economy adoption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122667. [PMID: 39369529 DOI: 10.1016/j.jenvman.2024.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Affiliation(s)
| | | | - Muhammad Shahbaz
- Department of Land Economy University of Cambridge, UK; Department of International Trade and Finance School of Management and Economics Beijing Institute of Technology, Beijing, China; GUST Center for Sustainable Development (CSD) Gulf University for Science and Technology, Hawally, Kuwait.
| |
Collapse
|
6
|
Lentini M, Ciriello M, Rouphael Y, Carillo P, Fusco GM, Pagliaro L, Vaccari FP, De Pascale S. Mitigating Salt Stress with Biochar: Effects on Yield and Quality of Dwarf Tomato Irrigated with Brackish Water. PLANTS (BASEL, SWITZERLAND) 2024; 13:2801. [PMID: 39409671 PMCID: PMC11478744 DOI: 10.3390/plants13192801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
The increase in the frequency and magnitude of environmental stresses poses a significant risk to the stability of food supplies. In coastal areas of the Mediterranean, brackish water has long been considered a limitation on horticultural production. In this scenario, the use of biochar in agriculture could be considered a valuable tool to cope with the deleterious effects of salt stress. This work aimed to investigate, in a protected environment, the effects of different concentrations of biochar (0, 1, and 2% v/v) obtained from poplar (Populus L.) biomass on the yield and quality of dwarf San Marzano ecotype tomatoes irrigated with saline water at different concentrations of NaCl (0, 40 and 80 mM). The increase in salt concentration from 0 to 80 mM NaCl reduced the total yield (-63%) and the number of fruits (-25%), but improved the main quality parameters such as dry matter (+75%), total soluble solids (+56%), and polyphenol content (+43%). Compared to control conditions, biochar supplementation improved the total yield (+23%) and number of fruits (+26%) without altering the functional and organoleptic characteristics of the fruits. The promising results underscore the potential of biochar as a sustainable solution to amend soils in order to improve tomato production under unfavorable conditions such as high salinity. However, there is a need to clarify which adaptation mechanisms triggered by biochar amending improve production responses even and especially under suboptimal growing conditions.
Collapse
Affiliation(s)
- Matteo Lentini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.); (L.P.)
| | - Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.); (L.P.)
| | - Letizia Pagliaro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.); (L.P.)
| | - Francesco Primo Vaccari
- Institute of BioEconomy—Biology, Agriculture and Food Sciences Department, National Research Council of Italy, Via Caproni 8, 50144 Firenze, Italy;
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| |
Collapse
|
7
|
Bai J, Huang Y, Fan X, Cui J, Chen B, Chen Y, Guo L. Production of high calorific value hydrogen-rich combustible gas by supercritical water gasification of straw assisted by machine learning. BIORESOURCE TECHNOLOGY 2024; 410:131275. [PMID: 39151570 DOI: 10.1016/j.biortech.2024.131275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
This article reveals the basic laws of straw supercritical water gasification (SCWG) and provides basic experimental data for the effective utilization of straw. The paper studied the impact of three operational conditions on the production of high-calorific value hydrogen-rich combustible gases through SCWG of straw within a quartz tube reactor. The findings reveal that elevated reaction temperatures, extended residence times, and reduced feedstock concentrations favor the SCWG of straw. When combustible gas contains carbon dioxide, the maximum low heating value (LHV) of the gas is 21 MJ/Nm3. Upon removing carbon dioxide, the LHV of the gas reached 38 MJ/Nm3. Subsequently, a machine learning (ML) model was developed to forecast gas yield and LHV during the SCWG process. The results demonstrate that the model exhibits robust generalization capabilities. ML can be extensively applied to forecast biomass SCWG processes across various operational conditions.
Collapse
Affiliation(s)
- Jingui Bai
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an 710049, China
| | - Yong Huang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an 710049, China
| | - Xihang Fan
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an 710049, China
| | - Jinhua Cui
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an 710049, China
| | - Bin Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an 710049, China
| | - Yunan Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an 710049, China.
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an 710049, China
| |
Collapse
|
8
|
Zeng L, Ma J, Yang J, Yang J, Zeng X, Zhou Y. Ball milling nano-sized biochar: bibliometrics, preparation, and environmental application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52724-52739. [PMID: 39190254 DOI: 10.1007/s11356-024-34777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Nano-sized biochar, which is a small structure prepared from biochar by grinding, has surpassed traditional biochar in performance, showing enhanced effects and potential for a wide range of environmental applications. Firstly, this paper visualizes and analyzes the literature in this field by CiteSpace to clarify the development trend of nano-sized biochar. The review intuitively shows the most influential countries, the most productive institutions, and the most concerned hot spots in the field of nano-sized biochar. Secondly, these hotspots in environment management are summarized by keywords and clustering: (1) The application of ball milling is a modification scheme that researchers have paid attention to, and it is also a key method for preparing biochar nanomaterials. It has a more dispersed structure and can support more modified materials. (2) Nano-sized biochar in the comprehensive utilization of water, soil, and plants was discussed and is a small range of application modification methods. (3) The bidirectional effects of nano-sized biochar on plants were analyzed, and the challenges in its application were listed. Finally, the economic management of nano-sized biochar and the relationship between microorganisms are the focus of the next research.
Collapse
Affiliation(s)
- Lingfeng Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiezhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha City, 410013, Hunan Province, China
| | - Jie Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xiangzhou Zeng
- Huaihua Ecological Environment Bureau, Huaihua, 418000, Hunan Province, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
9
|
Pilipenets O, Kin Peng Hui F, Gunawardena T, Mendis P, Aye L. New circularity indicator for decision making in the stockpile management of construction and demolition waste: Perspectives of Australian practitioners. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121345. [PMID: 38852409 DOI: 10.1016/j.jenvman.2024.121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Despite the increasing popularity of the circular economy, there remains a lack of consensus on how to quantify circularity, a critical aspect of the practical implementation of this model. To address this gap, this article examines the industry's perspective and efforts toward implementing the circular economy in real-world scenarios. We conducted 40 interviews with engineers, project leaders, and top-level managers in the Australian construction sector. Using Saldaña's coding approach, we analysed their views on circular economy practices and efforts within their organisations. Our findings reveal while waste minimisation, reduction of greenhouse gas emissions, and cost considerations are widely regarded as essential indicators of a successful circular economy model, the significance of waste storage and long-term stockpiling while awaiting treatment has been overlooked or under-emphasised in industry practices and academic literature. Stockpiling of waste has often been seen as a staging process in waste treatment. However, based on industry insights, it accumulates to the point of mismanagement when it becomes a safety and environmental concern. Addressing this oversight, we propose a storage circularity indicator that allows incorporating waste storage and stockpiling in circular economy models. Our research contributes to various environmental and waste management aspects, supporting policies and strategies for solid waste management and excessive stockpile prevention. By emphasising the significance of storage circularity, we clarify waste prevention techniques and address socio-economic issues such as the urgent need to reduce long-term stockpiling of solid waste. This work highlights the importance of decision-support tools in waste management to facilitate the implementation of circular economy principles. Our proposed storage circularity indicator promotes industrial collaboration, aligning with the concept of industrial symbiosis to optimise resource use and minimise waste generation. By discussing these topics, we aim to contribute to the advancement of more robust waste management strategies and policies that promote sustainable production and consumption practices.
Collapse
Affiliation(s)
- Olga Pilipenets
- Department of Infrastructure Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, VIC, 3010, Australia
| | - Felix Kin Peng Hui
- Department of Infrastructure Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, VIC, 3010, Australia
| | - Tharaka Gunawardena
- Department of Infrastructure Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, VIC, 3010, Australia
| | - Priyan Mendis
- Department of Infrastructure Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, VIC, 3010, Australia
| | - Lu Aye
- Department of Infrastructure Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, VIC, 3010, Australia.
| |
Collapse
|
10
|
Kurniawan TA, Mohyuddin A, Othman MHD, Goh HH, Zhang D, Anouzla A, Aziz F, Casila JC, Ali I, Pasaribu B. Beyond surface: Unveiling ecological and economic ramifications of microplastic pollution in the oceans. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11070. [PMID: 39005104 DOI: 10.1002/wer.11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Every year, the global production of plastic waste reaches a staggering 400 million metric tons (Mt), precipitating adverse consequences for the environment, food safety, and biodiversity as it degrades into microplastics (MPs). The multifaceted nature of MP pollution, coupled with its intricate physiological impacts, underscores the pressing need for comprehensive policies and legislative frameworks. Such measures, alongside advancements in technology, hold promise in averting ecological catastrophe in the oceans. Mandated legislation represents a pivotal step towards restoring oceanic health and securing the well-being of the planet. This work offers an overview of the policy hurdles, legislative initiatives, and prospective strategies for addressing global pollution due to MP. Additionally, this work explores innovative approaches that yield fresh insights into combating plastic pollution across various sectors. Emphasizing the importance of a global plastics treaty, the article underscores its potential to galvanize collaborative efforts in mitigating MP pollution's deleterious effects on marine ecosystems. Successful implementation of such a treaty could revolutionize the plastics economy, steering it towards a circular, less polluting model operating within planetary boundaries. Failure to act decisively risks exacerbating the scourge of MP pollution and its attendant repercussions on both humanity and the environment. Central to this endeavor are the formulation, content, and execution of the treaty itself, which demand careful consideration. While recognizing that a global plastics treaty is not a panacea, it serves as a mechanism for enhancing plastics governance and elevating global ambitions towards achieving zero plastic pollution by 2040. Adopting a life cycle approach to plastic management allows for a nuanced understanding of possible trade-offs between environmental impact and economic growth, guiding the selection of optimal solutions with socio-economic implications in mind. By embracing a comprehensive strategy that integrates legislative measures and technological innovations, we can substantially reduce the influx of marine plastic litter at its sources, safeguarding the oceans for future generations.
Collapse
Affiliation(s)
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Dongdong Zhang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity and Climate Changes, Semlalia Faculty of Sciences, B.P. 2390, Cadi Ayyad University, Marrakech, Morocco
| | - Joan C Casila
- Land and Water Resources Engineering Division, Institute of Agricultural and Biosystems Engineering, College of Engineering and Agro-industrial Technology, University of the Philippines-Los Baños, Los Baños, Philippines
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Buntora Pasaribu
- Department of Marine Science, Faculty of Fisheries and Marine Science, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
11
|
Liu B, Qiu Z, Hu L, Hu D, Nai Y. How digital transformation facilitate synergy for pollution and carbon reduction: Evidence from China. ENVIRONMENTAL RESEARCH 2024; 251:118639. [PMID: 38508359 DOI: 10.1016/j.envres.2024.118639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Frontier studies have neglected the impact of digital transformation (DT) on the synergy for pollution and carbon reduction (SPCR) from the perspective of micro enterprises. This paper explores the SPCR effect of DT, as well as its mechanism at micro-firm level. The study found that: (1) DT significantly facilitates corporate SPCR. For every 10% increase in the level of DT, the ranking of SPCR will rise by about 2.3 places. This effect is more obvious in high-tech firms and non-heavy polluters, firms in the eastern region in China, and non-SOE. (2) DT creates innovation-driven and structure-optimizing effects, which enhance the corporate green innovation ability, optimize the business structure and capital allocation structure of enterprises, and then drive the SPCR. (3) External public environmental concerns (PEC) and internal corporate ESG governance act as "accelerators" promoting the SPCR effect of DT. Based on these, policy implications are made to accelerate the pace of corporate DT, give full play to the first-mover advantage, and break the "pollution (carbon) lock-in" with a view to providing theoretical references for the listed enterprises' digitalized governance of SPCR, as well as the governmental departments' formulation of relevant guiding policies, and striving to achieve the high-quality development goal.
Collapse
Affiliation(s)
- Bei Liu
- School of Management, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China; School of Digital Economy and Management, Nanjing University, Suzhou, 215163, China
| | - Zhaoxuan Qiu
- Business School, Hohai University, Nanjing, 211100, China
| | - Letian Hu
- School of Management, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China
| | - Di Hu
- Institute of Food and Strategic Reserves, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| | - Yixiao Nai
- Institute of Food and Strategic Reserves, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| |
Collapse
|
12
|
Saia S, Radicetti E, Pawlowski K, Zimmermann SD, Genre A. Editorial: Mechanisms and practices for the management of plant-soil biota interaction. FRONTIERS IN PLANT SCIENCE 2024; 15:1399420. [PMID: 38654906 PMCID: PMC11035879 DOI: 10.3389/fpls.2024.1399420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Sergio Saia
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Science, Stockholm University, Stockholm, Sweden
| | | | - Andrea Genre
- Department of Life Science and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Omar RA, Talreja N, Chuhan D, Ashfaq M. Waste-derived carbon nanostructures (WD-CNs): An innovative step toward waste to treasury. ENVIRONMENTAL RESEARCH 2024; 246:118096. [PMID: 38171470 DOI: 10.1016/j.envres.2023.118096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
With the growing population, the accumulation of waste materials (WMs) (industrial/household waste) in the environment incessantly increases, affecting human health. Additionally, it affects the climate and ecosystem of terrestrial and water habitats, thereby needing effective management technology to control environmental pollution. In this aspect, managing these WMs to develop products that mitigate the associated issues is necessary. Researchers continue to focus on WMs management by adopting a circular economy. These WMs convert into useful/value-added products such as polymers and nanomaterials (NMs), especially carbon nanomaterials (CNs). The conversion/transformation of waste material into useful products is one of the best solutions for managing waste. Waste-derived CNs (WD-CNs) have established boundless promises for numerous applications like environmental remediation, energy, catalysts, sensors, and biomedical applications. This review paper discusses the several sources of waste material (agricultural, plastic, industrial, biomass, and other) transforming into WD-CNs, such as carbon nanotubes (CNTs), biochar, graphene, carbon nanofibers (CNFs), carbon dots, etc., are extensively elaborated and their application. The impact of metal doping within the WD-CNs is briefly discussed, along with their applicability to end applications.
Collapse
Affiliation(s)
- Rishabh Anand Omar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Neetu Talreja
- Department of Science, Faculty of Science and Technology, Alliance University, Anekal, Bengaluru-562 106, Karnataka, India.
| | - Divya Chuhan
- Department of Drinking Water and Sanitation, Ministry of Jal Shakti, 1208-A, Pandit Deendayal Antyodaya Bhawan, CGO Complex, Lodhi Road, New Delhi 110003 India
| | - Mohammad Ashfaq
- Department of Biotechnology, University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India.
| |
Collapse
|
14
|
Viotti P, Marzeddu S, Antonucci A, Décima MA, Lovascio P, Tatti F, Boni MR. Biochar as Alternative Material for Heavy Metal Adsorption from Groundwaters: Lab-Scale (Column) Experiment Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:809. [PMID: 38399060 PMCID: PMC10890072 DOI: 10.3390/ma17040809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
The purpose of this manuscript is to present a review of laboratory experiments (including methodology and results) that use biochar, a specific carbon obtained by a pyrolysis process from different feedstocks, as an alternative material for heavy metal adsorption from groundwater. In recent years, many studies have been conducted regarding the application of innovative materials to water decontamination to develop a more sustainable approach to remediation processes. The use of biochar for groundwater remediation has particularly attracted the interest of researchers because it permits the reuse of materials that would be otherwise disposed of, in accordance with circular economy, and reduces the generation of greenhouse gases if compared to the use of virgin materials. A review of the different approaches and results reported in the current literature could be useful because when applying remediation technologies at the field scale, a preliminary phase in which the suitability of the adsorbent is evaluated at the lab scale is often necessary. This paper is therefore organised with a short description of the involved metals and of the biochar production and composition. A comprehensive analysis of the current knowledge related to the use of biochar in groundwater remediation at the laboratory scale to obtain the characteristic parameters of the process that are necessary for the upscaling of the technology at the field scale is also presented. An overview of the results achieved using different experimental conditions, such as the chemical properties and dosage of biochar as well as heavy metal concentrations with their different values of pH, is reported. At the end, numerical studies useful for the interpretation of the experiment results are introduced.
Collapse
Affiliation(s)
- Paolo Viotti
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Simone Marzeddu
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Angela Antonucci
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - María Alejandra Décima
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Pietro Lovascio
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Fabio Tatti
- National Centre of Waste and Circular Economy, Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Maria Rosaria Boni
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| |
Collapse
|
15
|
Deng X, Teng F, Chen M, Du Z, Wang B, Li R, Wang P. Exploring negative emission potential of biochar to achieve carbon neutrality goal in China. Nat Commun 2024; 15:1085. [PMID: 38316787 PMCID: PMC10844326 DOI: 10.1038/s41467-024-45314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Limiting global warming to within 1.5 °C might require large-scale deployment of premature negative emission technologies with potentially adverse effects on the key sustainable development goals. Biochar has been proposed as an established technology for carbon sequestration with co-benefits in terms of soil quality and crop yield. However, the considerable uncertainties that exist in the potential, cost, and deployment strategies of biochar systems at national level prevent its deployment in China. Here, we conduct a spatially explicit analysis to investigate the negative emission potential, economics, and priority deployment sites of biochar derived from multiple feedstocks in China. Results show that biochar has negative emission potential of up to 0.92 billion tons of CO2 per year with an average net cost of US$90 per ton of CO2 in a sustainable manner, which could satisfy the negative emission demands in most mitigation scenarios compatible with China's target of carbon neutrality by 2060.
Collapse
Affiliation(s)
- Xu Deng
- Institute of Energy, Environment and Economy, Tsinghua University, Beijing, 100084, China
| | - Fei Teng
- Institute of Energy, Environment and Economy, Tsinghua University, Beijing, 100084, China.
| | - Minpeng Chen
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing, 100872, China
| | - Zhangliu Du
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Bin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Renqiang Li
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pan Wang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
16
|
Kurniawan TA, Liang X, Goh HH, Dzarfan Othman MH, Anouzla A, Al-Hazmi HE, Chew KW, Aziz F, Ali I. Leveraging food waste for electricity: A low-carbon approach in energy sector for mitigating climate change and achieving net zero emission in Hong Kong (China). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119879. [PMID: 38157574 DOI: 10.1016/j.jenvman.2023.119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
In recent years, food waste has been a global concern that contributes to climate change. To deal with the rising impacts of climate change, in Hong Kong, food waste is converted into electricity in the framework of low-carbon approach. This work provides an overview of the conversion of food waste into electricity to achieve carbon neutrality. The production of methane and electricity from waste-to-energy (WTE) conversion are determined. Potential income from its sale and environmental benefits are also assessed quantitatively and qualitatively. It was found that the electricity generation from the food waste could reach 4.33 × 109 kWh annually, avoiding equivalent electricity charge worth USD 3.46 × 109 annually (based on US' 8/kWh). An equivalent CO2 mitigation of 9.9 × 108 kg annually was attained. The revenue from its electricity sale in market was USD 1.44×109 in the 1st year and USD 4.24 ×109 in the 15th year, respectively, according to the projected CH4 and electricity generation. The modelling study indicated that the electricity production is 0.8 kWh/kg of landfilled waste. The food waste could produce electricity as low as US' 8 per kW ∙ h. In spite of its promising results, there are techno-economic bottlenecks in commercial scale production and its application at comparable costs to conventional fossil fuels. Issues such as high GHG emissions and high production costs have been determined to be resolved later. Overall, this work not only leads to GHG avoidance, but also diversifies energy supply in providing power for homes in the future.
Collapse
Affiliation(s)
| | - Xue Liang
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Abdelkader Anouzla
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Hassan II University, Mohammedia, 28806, Morocco
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Faissal Aziz
- Laboratory of Water, Biodiversity & Climate Changes, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
17
|
Cho SK, Igliński B, Kumar G. Biomass based biochar production approaches and its applications in wastewater treatment, machine learning and microbial sensors. BIORESOURCE TECHNOLOGY 2024; 391:129904. [PMID: 37918492 DOI: 10.1016/j.biortech.2023.129904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Biochar is a stable carbonaceous material derived from various biomass and can be utilized as adsorbents, catalysts and precursors in various environmental applications. This review discusses various feedstock materials and methods of biochar production via traditional as well as modern approaches. Additionally, the biochar characteristics, HTC process, and its modification by employing steam and gas purging, acidic, basic / alkaline and organo-solvent, electro- and magnetic fields have been discussed. The recent biochar applications for real water, wastewater and industrial wastewater for the abstraction of environmental contaminants also reviewed. Moreover, applications in machine learning and microbial sensors were discussed. In the meantime, analyses on commercial and environmental profit, current ecological concerns and the future directions of biochar application have been well presented.
Collapse
Affiliation(s)
- Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Bartłomiej Igliński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
18
|
Masud MAA, Shin WS, Sarker A, Septian A, Das K, Deepo DM, Iqbal MA, Islam ARMT, Malafaia G. A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166813. [PMID: 37683867 DOI: 10.1016/j.scitotenv.2023.166813] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Biochar, a carbon-rich material produced from the pyrolysis of organic biomass, has gained significant attention as a potential solution for sustainable green remediation practices. Several studies analyze biomass-derived biochar techniques and environmental applications, but comprehensive assessments of biochar limitations, uncertainty, and future research directions still need to be improved. This critical review aims to present a comprehensive analysis of biochar's efficacy in environmental applications, including soil, water, and air, by sequentially addressing its preparation, application, and associated challenges. The review begins by delving into the diverse methods of biochar production, highlighting their influence on physical and chemical properties. This review explores the diverse applications of biochar in remediating contaminated soil, water, and air while emphasizing its sustainability and eco-friendly characteristics. The focus is on incorporating biochar as a remediation technique for pollutant removal, sequestration, and soil improvement. The review highlights the promising results obtained from laboratory-scale experiments, field trials, and case studies, showcasing the effectiveness of biochar in mitigating contaminants and restoring ecosystems. The environmental benefits and challenges of biochar production, characterization, and application techniques are critically discussed. The potential synergistic effects of combining biochar with other remediation methods are also explored to enhance its efficacy. A rigorous analysis of the benefits and drawbacks of biochar for diverse environmental applications in terms of technical, environmental, economic, and social issues is required to support the commercialization of biochar for large-scale uses. Finally, future research directions and recommendations are presented to facilitate the development and implementation of biochar-based, sustainable green remediation strategies.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Aniruddha Sarker
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea.
| | - Ardie Septian
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency (Badan Riset dan Inovasi Nasional, BRIN), Serpong 15314, Indonesia.
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| | | | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
19
|
Arregi A, Santamaria L, Lopez G, Olazar M, Bilbao J, Artetxe M, Amutio M. Appraisal of agroforestry biomass wastes for hydrogen production by an integrated process of fast pyrolysis and in line steam reforming. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119071. [PMID: 37801944 DOI: 10.1016/j.jenvman.2023.119071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023]
Abstract
The pyrolysis and in line steam reforming of different types of representative agroforestry biomass wastes (pine wood, citrus wastes and rice husk) was performed in a two-reactor system made up of a conical spouted bed and a fluidized bed. The pyrolysis step was carried out at 500 °C, and the steam reforming at 600 °C with a space time of 20 gcatalyst min gvolatiles-1 and a steam/biomass ratio (S/B) of 4. A study was conducted on the effect that the pyrolysis volatiles composition obtained with several biomasses has on the reforming conversion, product yields and H2 production. The different composition of the pyrolysis volatiles obtained with the three biomasses studied led to differences in the initial activity and, especially, in the catalyst deactivation rate. Initial conversions higher than 99% were obtained in all cases and the H2 production obtained varied in the 6.7-11.2 wt% range, depending on the feedstock used. The stability of the catalysts decreased depending on the feedstock as follows: pine wood ≫ citrus waste > rice husk. A detailed assessment of the mechanisms of catalyst deactivation revealed that coke deposition is the main cause of catalyst decay in all the runs. However, the volatile composition derived from the pyrolysis of citrus waste and rice husk involved the formation of an encapsulating coke, which severely blocked the catalyst pores, leading to catalyst deactivation during the first minutes of reaction.
Collapse
Affiliation(s)
- Aitor Arregi
- Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006, Spain
| | - Laura Santamaria
- Department of Chemical Engineering, University of the Basque Country UPV/EHU, P.O. Box 644, E48080, Bilbao, Spain
| | - Gartzen Lopez
- Department of Chemical Engineering, University of the Basque Country UPV/EHU, P.O. Box 644, E48080, Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Martin Olazar
- Department of Chemical Engineering, University of the Basque Country UPV/EHU, P.O. Box 644, E48080, Bilbao, Spain
| | - Javier Bilbao
- Department of Chemical Engineering, University of the Basque Country UPV/EHU, P.O. Box 644, E48080, Bilbao, Spain
| | - Maite Artetxe
- Department of Chemical Engineering, University of the Basque Country UPV/EHU, P.O. Box 644, E48080, Bilbao, Spain
| | - Maider Amutio
- Department of Chemical Engineering, University of the Basque Country UPV/EHU, P.O. Box 644, E48080, Bilbao, Spain
| |
Collapse
|
20
|
Ulfat W, Mohyuddin A, Amjad M, Othman MHD, Gikas P, Kurniawan TA. Fabrication, characterization, and application of light weight thermal insulation material from combined buffing dust and plaster of paris for construction industry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119129. [PMID: 37778073 DOI: 10.1016/j.jenvman.2023.119129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Buffing dust, generated from tannery industries, is a source of air pollution in Pakistan. Valorization of the waste into another useful material is important to deal with the environmental pollution, while reducing waste disposal costs in landfills. To demonstrate its technological strength, this work fabricates a thermal insulation material made of plaster of Paris and the buffing dust (from tanning waste) in the form of a composite with superior mechanical properties and low thermal conductivity. Buffing dust with concentrations ranging from 5 to 20% (w/w) were loaded in the composite. The samples synthesized were made slurry of plaster of Paris, buffing dust, and water at ambient temperature. The physico-mechanical properties of composite were analyzed. It was found that the composite had better thermal insulation properties than the panels of the plaster of Paris. Its thermal conductivity was reduced to 15% after adding buffing dust (20% w/w). All the materials had physico-chemical properties like tensile strength (0.02 MPa and 0.06 MPa), density (700-400 kg/m3), water absorption (5.2-8.6%) and thermal conductivity (0.17000-0.09218 W/m-K). Thermogravimetric analysis showed that the material was thermally stable at temperatures ranging from 145 to 177 °C, while FT-IR results revealed that the composite contained O-H, N-H, and CO functional groups. SEM analysis displayed that the composite's homogeneity was reduced with low voids due to buffing dust addition, while EDX analysis showed that the composite contained 23.62% of S, 26.76% of Ca, 49.2% of O and 0.42% of C. This implies that buffing dust could be recycled to manufacture heat insulation materials for construction sector to reduce air pollution, while minimizing energy consumption. By integrating the buffing dust from tanning waste and the plaster of Paris as a composite for construction sector, this work promotes the recycling of unused waste, while saving public funds. Instead of paying landfill fees and polluting soil, the waste may be recycled at lower cost, while reducing environmental damage.
Collapse
Affiliation(s)
- Wajad Ulfat
- Department of Chemistry, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Muhammad Amjad
- Department of Chemistry, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia
| | - Petros Gikas
- Technical University of Crete, School of Chemical and Environmental Engineering, Chania, Greece
| | | |
Collapse
|
21
|
Kurniawan TA, Haider A, Mohyuddin A, Fatima R, Salman M, Shaheen A, Ahmad HM, Al-Hazmi HE, Othman MHD, Aziz F, Anouzla A, Ali I. Tackling microplastics pollution in global environment through integration of applied technology, policy instruments, and legislation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118971. [PMID: 37729832 DOI: 10.1016/j.jenvman.2023.118971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/19/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Microplastic pollution is a serious environmental problem that affects both aquatic and terrestrial ecosystems. Small particles with size of less than 5 mm, known as microplastics (MPs), persist in the environment and pose serious threats to various species from micro-organisms to humans. However, terrestrial environment has received less attention than the aquatic environment, despite being a major source of MPs that eventually reaches water body. To reflect its novelty, this work aims at providing a comprehensive overview of the current state of MPs pollution in the global environment and various solutions to address MP pollution by integrating applied technology, policy instruments, and legislation. This review critically evaluates and compares the existing technologies for MPs detection, removal, and degradation, and a variety of policy instruments and legislation that can support the prevention and management of MPs pollution scientifically. Furthermore, this review identifies the gaps and challenges in addressing the complex and diverse nature of MPs and calls for joint actions and collaboration from stakeholders to contain MPs. As water pollution by MPs is complex, managing it effectively requires their responses through the utilization of technology, policy instruments, and legislation. It is evident from a literature survey of 228 published articles (1961-2023) that existing water technologies are promising to remove MPs pollution. Membrane bioreactors and ultrafiltration achieved 90% of MPs removal, while magnetic separation was effective at extracting 88% of target MPs from wastewater. In biological process, one kg of wax worms could consume about 80 g of plastic/day. This means that 100 kg of wax worms can eat about 8 kg of plastic daily, or about 2.9 tons of plastic annually. Overall, the integration of technology, policy instrument, and legislation is crucial to deal with the MPs issues.
Collapse
Affiliation(s)
| | - Ahtisham Haider
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
| | - Rida Fatima
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Muhammad Salman
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Anila Shaheen
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan; Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Faissal Aziz
- Laboratory of Water, Biodiversity & Climate Changes, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
22
|
Fan Y, Lv G, Chen Y, Chang Y, Li Z. Differential effects of cow dung and its biochar on Populus euphratica soil phosphorus effectiveness, bacterial community diversity and functional genes for phosphorus conversion. FRONTIERS IN PLANT SCIENCE 2023; 14:1242469. [PMID: 37780507 PMCID: PMC10538999 DOI: 10.3389/fpls.2023.1242469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
Introduction Continuous monoculture leading to soil nutrient depletion may cause a decline in plantation productivity. Cow dung is typically used as a cheap renewable resource to improve soil nutrient status. In this study, our purpose was to compare the effects of different cow dung return methods (direct return and carbonization return) on soil microbial communities and phosphorus availability in the root zone (rhizosphere soil and non-rhizosphere soil) of P.euphratica seedlings in forest gardens and to explore possible chemical and microbial mechanisms. Methods Field experiments were conducted. Two-year-old P.euphratica seedlings were planted in the soil together with 7.5 t hm-2 of cow dung and biochar made from the same amount of cow dung. Results Our findings indicated that the available phosphorus content in soil subjected to biochar treatment was considerably greater than that directly treated with cow dung, leading to an increase in the phosphorus level of both aboveground and underground components of P.euphratica seedlings. The content of Olsen-P in rhizosphere and non-rhizosphere soil increased by 134% and 110%, respectively.This was primarily a result of the direct and indirect impact of biochar on soil characteristics. Biochar increased the biodiversity of rhizosphere and non-rhizosphere soil bacteria compared with the direct return of cow dung. The Shannon diversity index of carbonized cow manure returning to field is 1.11 times and 1.10 times of that of direct cow manure returning to field and control, and the Chao1 diversity index is 1.20 times and 1.15 times of that of direct cow manure returning to field and control.Compared to the direct addition of cow dung, the addition of biochar increased the copy number of the phosphorus functional genes phoC and pqqc in the rhizosphere soil. In the biochar treatment, the abundance of the phosphate-solubilizing bacteria Sphingomonas and Lactobacillus was significantly higher than that in the other treatments, it is relative abundance was 4.83% and 2.62%, respectively, which indirectly improved soil phosphorus availability. Discussion The results indicated that different cow dung return methods may exert different effects on phosphorus availability in rhizosphere and non-rhizosphere soils via chemical and microbial pathways. These findings indicated that, compared to the direct return of cow dung, biochar return may exert a more significant impact on the availability of phosphorus in both rhizosphere and non-rhizosphere soils, as well as on the growth of P.euphratica seedlings and the microbial community.
Collapse
Affiliation(s)
- Yuxian Fan
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Yudong Chen
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Yaling Chang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Zhoukang Li
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| |
Collapse
|
23
|
Kurniawan TA, Othman MHD, Liang X, Goh HH, Gikas P, Kusworo TD, Anouzla A, Chew KW. Decarbonization in waste recycling industry using digitalization to promote net-zero emissions and its implications on sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117765. [PMID: 36965421 DOI: 10.1016/j.jenvman.2023.117765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Digitalization and sustainability have been considered as critical elements in tackling a growing problem of solid waste in the framework of circular economy (CE). Although digitalization can enhance time-efficiency and/or cost-efficiency, their end-results do not always lead to sustainability. So far, the literatures still lack of a holistic view in understanding the development trends and key roles of digitalization in waste recycling industry to benefit stakeholders and to protect the environment. To bridge this knowledge gap, this work systematically investigates how leveraging digitalization in waste recycling industry could address these research questions: (1) What are the key problems of solid waste recycling? (2) How the trends of digitalization in waste management could benefit a CE? (3) How digitalization could strengthen waste recycling industry in a post-pandemic era? While digitalization boosts material flows in a CE, it is evident that utilizing digital solutions to strengthen waste recycling business could reinforce a resource-efficient, low-carbon, and a CE. In the Industry 4.0 era, digitalization can add 15% (about USD 15.7 trillion) to global economy by 2030. As digitalization grows, making the waste sector shift to a CE could save between 30% and 35% of municipalities' waste management budget. With digitalization, a cost reduction of 3.6% and a revenue increase of 4.1% are projected annually. This would contribute to USD 493 billion in an increasing revenue yearly in the next decade. As digitalization enables tasks to be completed shortly with less manpower, this could save USD 421 billion annually for the next decade. With respect to environmental impacts, digitalization in the waste sector could reduce global CO2 emissions by 15% by 2030 through technological solutions. Overall, this work suggests that digitalization in the waste sector contributes net-zero emission to a digital economy, while transitioning to a sustainable world as its social impacts.
Collapse
Affiliation(s)
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Skudai, Malaysia
| | - Xue Liang
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Petros Gikas
- Technical University of Crete, School of Chemical and Environmental Engineering, Chania, Greece
| | - Tutuk Djoko Kusworo
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Indonesia
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
24
|
Kurniawan TA, Haider A, Ahmad HM, Mohyuddin A, Umer Aslam HM, Nadeem S, Javed M, Othman MHD, Goh HH, Chew KW. Source, occurrence, distribution, fate, and implications of microplastic pollutants in freshwater on environment: A critical review and way forward. CHEMOSPHERE 2023; 325:138367. [PMID: 36907482 DOI: 10.1016/j.chemosphere.2023.138367] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The generation of microplastics (MPs) has increased recently and become an emerging issue globally. Due to their long-term durability and capability of traveling between different habitats in air, water, and soil, MPs presence in freshwater ecosystem threatens the environment with respect to its quality, biotic life, and sustainability. Although many previous works have been undertaken on the MPs pollution in the marine system recently, none of the study has covered the scope of MPs pollution in the freshwater. To consolidate scattered knowledge in the literature body into one place, this work identifies the sources, fate, occurrence, transport pathways, and distribution of MPs pollution in the aquatic system with respect to their impacts on biotic life, degradation, and detection techniques. This article also discusses the environmental implications of MPs pollution in the freshwater ecosystems. Certain techniques for identifying MPs and their limitations in applications are presented. Through a literature survey of over 276 published articles (2000-2023), this study presents an overview of solutions to the MP pollution, while identifying research gaps in the body of knowledge for further work. It is conclusive from this review that the MPs exist in the freshwater due to an improper littering of plastic waste and its degradation into smaller particles. Approximately 15-51 trillion MP particles have accumulated in the oceans with their weight ranging between 93,000 and 236,000 metric ton (Mt), while about 19-23 Mt of plastic waste was released into rivers in 2016, which was projected to increase up to 53 Mt by 2030. A subsequent degradation of MPs in the aquatic environment results in the generation of NPs with size ranging from 1 to 1000 nm. It is expected that this work facilitates stakeholders to understand the multi-aspects of MPs pollution in the freshwater and recommends policy actions to implement sustainable solutions to this environmental problem.
Collapse
Affiliation(s)
| | - Ahtisham Haider
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Hafiz Muhammad Umer Aslam
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
25
|
Mohamed Abdoul-Latif F, Ainane A, Hachi T, Abbi R, Achira M, Abourriche A, Brulé M, Ainane T. Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents. Molecules 2023; 28:4310. [PMID: 37298784 PMCID: PMC10254907 DOI: 10.3390/molecules28114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
This work investigates olive pomace from olive mill factories as an adsorbent for the removal of total phenols from olive mill effluent (OME). This pathway of valorization of olive pomace reduces the environmental impact of OME while providing a sustainable and cost-effective wastewater treatment approach for the olive oil industry. Olive pomace was pretreated with water washing, drying (60 °C) and sieving (<2 mm) to obtain the raw olive pomace (OPR) adsorbent material. Olive pomace biochar (OPB) was obtained via carbonization of OPR at 450 °C in a muffle furnace. The adsorbent materials OPR and OPB were characterized using several basic analyzes (Scanning Electron Microscopy-Energy-Dispersive X-ray SEM/EDX, X-ray Diffraction XRD, thermal analysis DTA and TGA, Fourier transform infrared FTIR and Brunauer, Emmett and Teller surface BET). The materials were subsequently tested in a series of experimental tests to optimize the sorption of polyphenols from OME, investigating the effects of pH and adsorbent dose. Adsorption kinetics showed good correlation with a pseudo-second-order kinetic model as well as Langmuir isotherms. Maximum adsorption capacities amounted to 21.27 mg·g-1 for OPR and 66.67 mg·g-1 for OPB, respectively. Thermodynamic simulations indicated spontaneous and exothermic reaction. The rates of total phenol removal were within the range of 10-90% following 24 h batch adsorption in OME diluted at 100 mg/L total phenols, with the highest removal rates observed at pH = 10. Furthermore, solvent regeneration with 70% ethanol solution yielded partial regeneration of OPR at 14% and of OPB at 45% following the adsorption, implying a significant rate of recovery of phenols in the solvent. The results of this study suggest that adsorbents derived from olive pomace may be used as economical materials for the treatment and potential capture of total phenols from OME, also suggesting potential further applications for pollutants in industrial wastewaters, which can have significant implications in the field of environmental technologies.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Centre d’Etudes et de Recherche de Djibouti, IRM-CERD, Route de l’Aéroport, Haramous B.P. 486, Djibouti City 77101, Djibouti
| | - Ayoub Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Touria Hachi
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Rania Abbi
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Meryem Achira
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Abdelmjid Abourriche
- ENSAM Casablanca, University of Hassan II, 150 Bd du Nil, Casablanca 20670, Morocco
| | - Mathieu Brulé
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., 26504 Patras, Greece
| | - Tarik Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| |
Collapse
|
26
|
Remediation technologies for contaminated groundwater due to arsenic (As), mercury (Hg), and/or fluoride (F): A critical review and way forward to contribute to carbon neutrality. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|