1
|
Heo SJ, Moon N, Kim JH. A systematic review and quality assessment of estimated daily intake of microplastics through food. REVIEWS ON ENVIRONMENTAL HEALTH 2024:reveh-2024-0111. [PMID: 39431565 DOI: 10.1515/reveh-2024-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Plastic waste enters the oceans and soil and is consumed by organisms and humans. Some of the ingested microplastics may remain in the human body and cause toxicity. We conducted a systematic review to estimate the extent to which humans are exposed to microplastics through consumption and performed a quality assessment of research results. We searched for studies published up to December 2023 and included studies that reported on the characteristics and estimated intake of microplastics. The quality assessment tool reported in previous studies was used for food and drinking water studies. We included 76 studies in the analysis, and the types of foods were classified into seven categories: seafood, drinking water, table salt, fruits and vegetables, beverages, condiments, and meat. The estimated daily intake of microplastics via food was 0.0002-1,531,524 MP/day, with the highest value in bottled water. The quality of food and drinking water studies was evaluated using a quantitative tool to assess reliability. The quality of food studies was 11.50 out of 20 points and the quality of drinking water studies was 11.16 out of 19 points. These results indicate that the closer the score is to the maximum, the more reliable the research findings. The quantitative assessment can be used as an indicator for evaluating the risks of microplastics and can help reduce biases that may occur during the research process. This study confirmed microplastics in foods and human exposure to up to one million microplastics daily. Our study emphasizes the potential for microplastic exposure through food intake and subsequent accumulation in the human body; therefore, efforts are needed to reduce exposure to microplastics in daily life.
Collapse
Affiliation(s)
- Su Ji Heo
- Department of Nursing, Graduated School, 26723 Kyung Hee University , Seoul, Korea
| | - Nalae Moon
- Department of Nursing, Graduated School, 26723 Kyung Hee University , Seoul, Korea
| | - Ju Hee Kim
- College of Nursing Science, 26723 Kyung Hee University , Seoul, Korea
| |
Collapse
|
2
|
de Carvalho JGR, Augusto HC, Ferraz R, Delerue-Matos C, Fernandes VC. Micro(nano)plastic and Related Chemicals: Emerging Contaminants in Environment, Food and Health Impacts. TOXICS 2024; 12:762. [PMID: 39453182 PMCID: PMC11510996 DOI: 10.3390/toxics12100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Microplastic pollution is a problem of increasing concern in food, and while food safety issues around the world are serious, an increasing number of food safety issues related to microplastics have become the focus of people's attention. The presence of microplastics in food is a worldwide problem, and they are present in all kinds of foods, foods of both animal and plant origin, food additives, drinks, plastic food packaging, and agricultural practices. This can cause problems for both humans and the environment. Microplastics have already been detected in human blood, heart, placenta, and breastmilk, but their effects in humans are not well understood. Studies with mammals and human cells or organoids have given perspective about the potential impact of micro(nano)plastics on human health, which affect the lungs, kidneys, heart, neurological system, and DNA. Additionally, as plastics often contain additives or other substances, the potentially harmful effects of exposure to these substances must also be carefully studied before any conclusions can be drawn. The study of microplastics is very complex as there are many factors to account for, such as differences in particle sizes, constituents, shapes, additives, contaminants, concentrations, etc. This review summarizes the more recent research on the presence of microplastic and other plastic-related chemical pollutants in food and their potential impacts on human health.
Collapse
Affiliation(s)
- Juliana G. R. de Carvalho
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
| | - Helga Coelho Augusto
- Cofisa—Conservas de Peixa da Figueira, S.A., Terrapleno do Porto de Pesca—Gala, 3090-735 Figueira da Foz, Portugal;
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Virgínia Cruz Fernandes
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| |
Collapse
|
3
|
Xu H, Dong C, Yu Z, Ozaki Y, Hu Z, Zhang B, Yao W, Yu J, Xie Y. Detection and analysis of microplastics in tissues and blood of human cervical cancer patients. ENVIRONMENTAL RESEARCH 2024; 259:119498. [PMID: 38942254 DOI: 10.1016/j.envres.2024.119498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Microplastics (MPs) can enter the reproductive system and can be potentially harmful to human reproductive health. In this study, 13 types of microplastics (MPs) were identified in patient blood, cancer samples, and paracarcinoma samples using Raman spectroscopy, with polyethylene, polypropylene and polyethylene-co-polypropylene being the most abundant polymer types. Futher, cotton was also found in our study. The diversity and abundance of MPs were higher in blood samples than in cancerous tissues, and there was a significant positive correlation between diversity (p < 0.05). Furthermore, the diversity and abundance of MPs in cancerous tissues were higher than in paracancerous tissues. The dimensional sizes of MPs in these samples were also very similar, with the majority of detected MPs being smaller in size. Correlation analysis showed that patient's age correlated with the abundance of MPs in blood samples, body mass index (BMI) correlated with the abundance of MPs in cancerous tissues. Notably, the frequency with which patients consume bottled water and beverages may also increase the abundance of MPs. This study identifies for the first time the presence of MPs and cotton in cancerous and paracancerous tissues of human cervical cancer patients. This provides new ideas and basic data to study the risk relationship between MP exposure and human health.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Chunlin Dong
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, 669-1330, Japan
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Bing Zhang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Jinjin Yu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China.
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
4
|
Socas-Hernández C, Miralles P, González-Sálamo J, Hernández-Borges J, Coscollà C. Assessment of anthropogenic particles content in commercial beverages. Food Chem 2024; 447:139002. [PMID: 38513486 DOI: 10.1016/j.foodchem.2024.139002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Microplastic (MPs) pollution is a current global concern that is affecting all environmental compartments and food sources. In this work, anthropogenic particles occurrence (MPs and natural and synthetic cellulosic particles), have been determined in 73 beverages packed in different containers. Overall, 1521 anthropogenic particles were found, being the lowest occurrence in water samples (7.2 ± 10.1 items·L-1) while beer had the highest (95.5 ± 91.8 items·L-1). Colourless/white particles were the most detected followed by blue and red colours. The highest mean size was 783 ± 715 μm in soft drinks. Cellulosic, both natural and semisynthetic particles, were the composition mostly found but regarding plastic polymers, it was polyester. Phenoxy resin particles from the can coatings were also identified in all metal containers which indicates that leaching from the packaging may be happening. The total estimated daily intake were 0.077 and 0.159 items·kg-1 body weight (b.w.)·day-1 for children and adult population, respectively.
Collapse
Affiliation(s)
- Cristina Socas-Hernández
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Foundation for the Promotion of Health and Biomedical Research of the Valencia Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain
| | - Pablo Miralles
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain.
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain
| |
Collapse
|
5
|
Lam TWL, Chow ASY, Fok L. Human exposure to microplastics via the consumption of nonalcoholic beverages in various packaging materials: The case of Hong Kong. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134575. [PMID: 38749245 DOI: 10.1016/j.jhazmat.2024.134575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
There is growing concern over microplastics in food and beverages, with potential implications for human health. However, little is known about microplastics in nonwater, nonalcoholic packaged beverages. This study addresses this research gap by implementing a dual-method approach that includes laboratory analysis to quantify microplastics in 50 packaged nonalcoholic beverages sold in Hong Kong, coupled with a beverage frequency questionnaire survey to provide a more accurate estimate of microplastic intake from these beverages. The beverages analysed spanned five categories-juice drinks, ready-to-drink teas, soda waters, soft drinks, and sports and energy drinks-and were packaged in four forms: aluminium cans, aseptic cartons, plastic bottles and glass bottles. The results showed that all beverage samples contained microplastics, with an average abundance of 42.1 ± 41.2 n/L (interquartile range [IQR]: 17.8-54.1 n/L), and these particles were predominantly smaller than 150 µm in size. Additionally, based on an annual beverage consumption rate of 157.3 ± 209.7 L/capita (IQR: 42.9-183.0 L/capita), it is estimated that Hong Kong adults ingest approximately 6200 microplastics per capita each year. The potential primary sources of these microplastics are atmospheric fallout and the packaging materials that endure mechanical stresses during the manufacturing and transportation of beverages. Compared to other known routes of exposure, including air, seafood, sugar, salt and honey, packaged nonalcoholic beverages present a comparable level of microplastic exposure, being lower than the first three but higher than the latter two. Nevertheless, the high prevalence of smaller microplastics in the samples is concerning. This study is considered to be important for food safety and human health, as it not only raises public awareness about microplastic contamination in packaged beverages but also serves as a call to action for the beverage industry to adopt more robust safety measures and for policymakers to revise packaging standards to reduce microplastic contamination and safeguard public health.
Collapse
Affiliation(s)
- Theresa Wing Ling Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, the Hong Kong Special Administrative Region of China
| | - Alice Sin Yin Chow
- Department of Social Sciences and Policy Studies, The Education University of Hong Kong, Tai Po, the Hong Kong Special Administrative Region of China
| | - Lincoln Fok
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, the Hong Kong Special Administrative Region of China.
| |
Collapse
|
6
|
Basaran B, Aytan Ü, Şentürk Y, Özçifçi Z, Akçay HT. Microplastic contamination in some beverages marketed in türkiye: Characteristics, dietary exposure and risk assessment. Food Chem Toxicol 2024; 189:114730. [PMID: 38740239 DOI: 10.1016/j.fct.2024.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
In this study, microplastic contamination in water, natural mineral water and mineral water, sparkling soft drinks, cold tea and some traditional beverages marketed in Türkiye were assessed. Microplastics physically and chemically characterized by microscope and ATR/FT-IR, respectively. Microplastics were detected in 9 out of 47 beverage samples. A total of 250 microplastics with 5 different polymers, 2 different shapes, and 7 different colours were detected in 47 beverage samples. The average microplastic concentration was 2.24 ± 9.86 particles/L for all beverages analysed. The highest average microplastic concentration was found in mineral waters in glass bottles (average 11.3 particles/L). No microplastics were found in cold tea and other drinks. The total annual microplastic exposure from beverage consumption in male and female individuals aged >15 years was 2029 and 1786 particles/mL/year, respectively. The microplastic load index category of all beverage samples was determined as "moderate". The average pRi level of all beverages was 117 ± 260 and the risk level was determined as "low". The study provides evidence that microplastics are common in beverages and that microplastics are directly ingested by humans.
Collapse
Affiliation(s)
- Burhan Basaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye.
| | - Ülgen Aytan
- Department of Marine Biology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Yasemen Şentürk
- Department of Marine Biology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Zehra Özçifçi
- Department of Chemistry Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Hakkı Türker Akçay
- Department of Chemistry Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| |
Collapse
|
7
|
Sekar V, Shaji S, Sundaram B. Microplastic prevalence and human exposure in the bottled drinking water in the west Godavari region of Andhra Pradesh, India. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104346. [PMID: 38670001 DOI: 10.1016/j.jconhyd.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Microplastics (MPs) are widespread, minute plastic particles present in various aquatic environments, raising concerns about their effect on human health and ecosystems. The detrimental effects of MPs on the environment, include the contamination of ecosystems, harm to aquatic life through ingestion, potential disruption of food chains, and long-term ecological consequences. Despite numerous studies confirming the MP's presence in aquatic environments, research specifically focused on MPs in bottled drinking water (BDW) is limited. Research on MPs in drinking water is vital to assess potential health risks and develop strategies for ensuring water safety and quality. This study fills a research gap by investigating microplastics (MPs) in nine brands of BDW in the West Godavari region of Andhra Pradesh, India. The average MP concentration in BDW was found to be 2.89 ± 0.48 items/L, with fibers being the predominant shape and sizes ranging from 500 to 1000 μm. Transparent and blue were the most common colors. From ATR-FTIR analysis, the dominant polymer found was polypropylene (PP) followed by polyethylene terephthalate (PET). The human risk assessment was also calculated using the formula of Estimated daily intake (EDI) and Lifetime intake (LTI). The calculation found that the EDI of MPs for children and adults ranged from 0.041 to 0.291 MPs per kilogram per day and 0.019 to 0.133 MPs per kilogram per day, respectively. The mean LTI of MP consumption of an individual, ranged from 17,958 to 2,54,861 MPs, considering an average age of 75 years. The current findings offer valuable information for ongoing evaluations of the potential human risks linked to MP exposure.
Collapse
Affiliation(s)
- Vijaykumar Sekar
- Research Scholar, Department of Civil Engineering, National Institute of Technology, Andhra Pradesh, India
| | - Sheha Shaji
- Research Scholar, Department of Civil Engineering, National Institute of Technology, Andhra Pradesh, India
| | - Baranidharan Sundaram
- Assistant Professor, Department of Civil Engineering, National Institute of Technology, Andhra Pradesh, India.
| |
Collapse
|
8
|
Sharma P, Sharma P. Micro(nano)plastics: invisible compounds with a visible impact. F1000Res 2024; 13:69. [PMID: 38659492 PMCID: PMC11040229 DOI: 10.12688/f1000research.142212.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
The plastic related research has been an epicentre in recent times. The presence and spread of micro (nano) plastics (MNPs) are well-known in the terrestrial and aquatic environment. However, the focus on the fate and remediation of MNP in soil and groundwater is limited. The fate and bioaccumulation of ingested MNPs remain unknown within the digestive tract of animals. There is also a significant knowledge gap in understanding the ubiquitous organic environmental pollutants with MNPs in biological systems. Reducing plastic consumption, improving waste management practices, and developing environmentally friendly alternatives are some of the key steps needed to address MNP pollution. For better handling and to protect the environment from these invisible substances, policymakers and researchers urgently need to monitor and map MNP contamination in soil and groundwater.
Collapse
Affiliation(s)
- Prabhakar Sharma
- Department of Agricultural Engineering and Technology, School of Engineering, Nagaland University, Dimapur, Nagaland, 797112, India
| | - Prateek Sharma
- Environmental Science, Central University of Jharkhand, Ranchi, Jharkhand, 835222, India
| |
Collapse
|
9
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F. Microplastic contamination in commercially packaged edible seaweeds and exposure of the ethnic minority and local population in Mexico. Food Res Int 2024; 176:113840. [PMID: 38163691 DOI: 10.1016/j.foodres.2023.113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Diet is an important pathway for microplastic exposure. This study examined distinct edible seaweed products sold at ethnic food stores in Mexico for microplastic contamination, as well as the exposure of the Asian ethnic minority and local population to microplastics. Microplastics were extracted from seaweed samples using a wet oxide digestion with hydrogen peroxide followed by zinc chloride density separation. They were subsequently detected, quantified, and the polymer type was determined via microscopic inspection and Fourier transform infrared spectroscopy. Microplastic contamination was detected in all samples, with an average abundance of 24.0 ± 9.4 items g-1. Fibrous-shaped (61 %) and non-colored (57 %) microplastics were prevalent. Microplastics with sizes smaller than 0.2 mm prevailed (60 %), and they have the potential to penetrate gut barriers and endanger human health. Polymers identified consisted of polyethylene-polypropylene, polyamide, cellophane, rayon, and polyethylene terephthalate. According to pollution load index values, seaweed samples were minimally contaminated with microplastics, with values ranging between 3.7 and 6.0. The estimated yearly intake of microplastic from seaweed consumption by the South Korean and Chinese populations in Mexico was 5.8 × 104 ± 2.3 × 104 and 5.7 × 104 ± 4.9 × 104, respectively. This study's findings highlight the importance of improved control measures for minimizing microplastics in foods for export.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
10
|
Oyewo B, Tauringana V, Tingbani I. Microplastics in aquatic bodies: Assessing the role of governance mechanisms in industrial wastewater management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119563. [PMID: 37976640 DOI: 10.1016/j.jenvman.2023.119563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
The purpose of this research is to examine the association between corporate governance mechanisms (board independence, board gender diversity, Chief Executive Officer (CEO) duality, and environmental, social and governance (ESG) linked compensation) and wastewater recycling as a strategy for managing the flow of microplastics into the aquatic environment. The study analysed an international sample of top companies on the Forbes 500 list over a 15-year period during the millennium development goals (MDGs) and sustainable development goals (SDGs) eras. Multiple regression analysis with fixed effect OLS, two-stage least squares regression, propensity score matching, and logistic regression were applied in the data analysis. The results show that, at the aggregate level, board gender diversity is positively associated with wastewater recycling, whilst CEO duality has a significant negative impact. When disaggregated into industries, board gender diversity is positively associated with wastewater recycling in high-polluting and low-polluting industries. In relation to the MDGs/SDGs eras, the impact of board gender diversity is more significant in the MDGs era than in the SDGs era. At the geographical region level, CEO duality has a significant negative impact on wastewater management in the America and Asia Pacific regions, whilst the effect of CEO duality is significantly positive in the Western Europe region. We also find that a minimum of two female directors is required to improve wastewater management practice. The study concludes that whilst board gender diversity is a notable driver of wastewater management, CEO duality diminishes the commitment of multinational entities (MNEs) to addressing wastewater management issues. Our result is robust to (i) alternative measures of wastewater management, (ii) alternate sample composition, (iii) alternate method of data analysis, and (iv) endogeneity checks. The study contributes to the limited literature on waste management and the circular economy, particularly governance mechanisms' role in wastewater management in an international context.
Collapse
Affiliation(s)
- Babajide Oyewo
- Essex Business School, University of Essex, Colchester, United Kingdom.
| | - Venancio Tauringana
- Department of Accounting, University of Southampton, Southampton, United Kingdom.
| | - Ishmael Tingbani
- Department of Accounting, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
11
|
Kim SH, Kim J, Park SA, Jung J, Kim KS, Min HJ. Identification and characterization of microplastics in nasal irrigation fluids: A preliminary study. Int Forum Allergy Rhinol 2024; 14:135-137. [PMID: 37439401 DOI: 10.1002/alr.23239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
KEY POINTS Microplastics were identified in nasal irrigations Polypropylenes, which were the main component of the nozzle, were commonly identified Additional studies are needed to understand the biological relevance of microplastics in nasal irrigations.
Collapse
Affiliation(s)
- Seong Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Juyang Kim
- Korea Institute of Analytical Science and Technology, Seoul, South Korea
| | - Seul-Ah Park
- Korea Institute of Analytical Science and Technology, Seoul, South Korea
| | - Jaehak Jung
- Korea Institute of Analytical Science and Technology, Seoul, South Korea
| | - Kyung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Chung-Ang University Hospital, Seoul, South Korea
| |
Collapse
|
12
|
Sun J, Sui M, Wang T, Teng X, Sun J, Chen M. Detection and quantification of various microplastics in human endometrium based on laser direct infrared spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167760. [PMID: 37832687 DOI: 10.1016/j.scitotenv.2023.167760] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The pollution of microplastics (MPs) has received widespread attention with the increasing usage of plastics in recent years. MPs could enter the human body and exist in the circulatory system. Endometrium, with rich blood vessels, acts as an essential role in human health and female fertility. However, there is no study reporting the MPs exposure in human endometrium. We collected the endometrium samples to detect the presence of MPs qualitatively and quantitatively via laser direct infrared. We found that there was a total of 13 types of MPs existing in the collected samples, among which 6 special types of MPs were with both high abundance and high detection rate. The abundance of these MPs ranged from 0 to 117 particles/100 mg, with a median abundance of 21 particles/100 mg. Most detected MPs, accounting for 88.35 %, were in small size (20-100 μm). Among small-size MPs, ethylene-acrylic acid copolymer ranked first while polyethylene accounted for the largest proportion among large-size MPs (100-500 μm). Correlation analysis indicated there was no significant relationship between age and MP abundance or BMI and MP abundance. We also designed a questionnaire to investigate lifestyle and daily habits, aiming at revealing the potential relationship between MP exposure and living habits. We discovered that some drinking habits and chewing gum were significantly correlated with a higher level of MP exposure. For the first time, we identified the presence of MPs in human endometrium and clarified the potential connections between MP exposure and lifestyle. Further studies are still necessary to explore more underlying information.
Collapse
Affiliation(s)
- Jiani Sun
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Mengsong Sui
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Wang
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaoming Teng
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Sun
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Miaoxin Chen
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
13
|
Méndez Rodríguez KB, Jiménez Avalos JA, Fernández Macias JC, González Palomo AK. Microplastics: challenges of assessment in biological samples and their implication for in vitro and in vivo effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119733-119749. [PMID: 37971585 DOI: 10.1007/s11356-023-30853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Microplastics (MPs) have attracted global interest because they have been recognized as emerging pollutants that require urgent attention. MPs are plastic particles with a size between 1 micron and 5 mm (1 µm-5mm); those measuring less than 1 µm are known as nanoplastics (NPs). MP is distributed in the environment in various physical forms that depend on the degradation process, the erosion factors to which it was subjected, or the original form in which it was intentionally manufactured. Humans may be exposed to these pollutants mainly by ingestion or inhalation, which could adversely affect human health with effects that are still unknown due to limitations that are often dependent on their analytical determination and lack of studies over time, as it is a relatively new topic. Therefore, this review focuses on the challenges currently faced by laboratories for determining MPs in different matrices. We highlight the application of methods and techniques to assess the precise levels of exposure to MPs in biological samples. In addition, exposure pathways, sources, and evidence of adverse effects reported in vitro and in vivo studies are described to generate knowledge about their potential threat to human health.
Collapse
Affiliation(s)
- Karen Beatriz Méndez Rodríguez
- Coordinación para la Innovación y Aplicación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), San Luis Potosí, San Luis Potosí, México
| | | | - Juan Carlos Fernández Macias
- Coordinación para la Innovación y Aplicación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), San Luis Potosí, San Luis Potosí, México
| | - Ana Karen González Palomo
- Coordinación para la Innovación y Aplicación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
14
|
Hammodat AR, Nassar S, Mortula MM, Shamsuzzaman M. Factors affecting the leaching of micro and nanoplastics in the water distribution system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118779. [PMID: 37586171 DOI: 10.1016/j.jenvman.2023.118779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The role of the water distribution system (WDS) requires that it supply water of sufficient quality to households. Unregulated leaching of micro and nanoplastics from plastic pipes of the distribution system is therefore a cause for concern, particularly with the rise in research associating these plastic particles to adverse health impacts in living organisms. Within this study, four parameters (pH, free chlorine concentration, pipe material, and time) were varied in a pipe loop network to observe their effect on microplastic (MP) and nanoplastic (NP) leaching into the simulated distribution network. Results indicated an abundance of MPs/NPs in different shapes and sizes throughout the samples. Graphical trends illustrated that basic pH values contributed to a higher number of particles. Statistical analysis via analysis of variance (ANOVA) confirmed this observation and further showed interaction of chlorine dose and pH concentration (p-value = 0.000), and chlorine dose and pipe material (p-value = 0.038) was also significant to leaching. Numerically, polyethylene (PE) particles were the most abundant with a total of 15194 particles, followed by 12920 polypropylene random copolymer (PPR) particles and 12317 polyvinyl chloride (PVC) particles. It was also noticed that the number of particles decreased with time.© 2023 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Amina Rayan Hammodat
- American University of Sharjah, University City, 26666, Sharjah, United Arab Emirates
| | - Shumayal Nassar
- American University of Sharjah, University City, 26666, Sharjah, United Arab Emirates
| | - Md Maruf Mortula
- American University of Sharjah, University City, 26666, Sharjah, United Arab Emirates.
| | | |
Collapse
|
15
|
Wright S, Levermore J, Ishikawa Y. Application of Infrared and Near-Infrared Microspectroscopy to Microplastic Human Exposure Measurements. APPLIED SPECTROSCOPY 2023; 77:1105-1128. [PMID: 37792505 PMCID: PMC10566227 DOI: 10.1177/00037028231199772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/05/2023] [Indexed: 10/06/2023]
Abstract
Microplastic pollution is a global issue for the environment and human health. The potential for human exposure to microplastic through drinking water, dust, food, and air raises concern, since experimental in vitro and in vivo toxicology studies suggest there is a level of hazard associated with high microplastic concentrations. However, to infer the likelihood of hazards manifesting in the human population, a robust understanding of exposure concentrations is needed. Infrared and near-infrared microspectroscopies have routinely been used to analyze microplastic in different exposure matrices (air, dust, food, and water), with technological advances coupling multivariate and machine learning algorithms to spectral data. This focal point article will highlight the application of infrared and Raman modes of spectroscopy to detect, characterize, and quantify microplastic particles, with a focus on human exposure to microplastic. Methodologies and state-of-the-art approaches will be reported and potential confounding variables and challenges in microplastic analysis discussed. The article provides an up-to-date review of the literature on microplastic exposure measurement using (near) infrared spectroscopies as an analytical tool, highlighting the recent advances in this rapidly advancing field.
Collapse
Affiliation(s)
- Stephanie Wright
- Environmental Research Group, School of Public Health, Imperial College London, London UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London UK
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Imperial College London, London UK
| | - Joseph Levermore
- Environmental Research Group, School of Public Health, Imperial College London, London UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London UK
| | - Yukari Ishikawa
- Environmental Research Group, School of Public Health, Imperial College London, London UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London UK
| |
Collapse
|