1
|
Nguyen HT, Wu S, Ootawa T, Nguyen HC, Tran HT, Pothinuch P, Pham HTT, Do ATH, Hoang HT, Islam MZ, Miyamoto A, Nguyen HTT. Effects of Roasting Conditions on Antibacterial Properties of Vietnamese Turmeric ( Curcuma longa) Rhizomes. Molecules 2023; 28:7242. [PMID: 37959661 PMCID: PMC10647697 DOI: 10.3390/molecules28217242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Processing with heat treatment has been reported to alter several therapeutic effects of turmeric. In Vietnamese traditional medicine, turmeric has been long used for bacterial infections, and roasting techniques are sometimes applied with this material. However, there have been no studies investigating the effects of these thermal processes on the plant's antibacterial properties. Our study was therefore performed to examine the changes that roasting produced on this material. Slices of dried turmeric were further subjected to light-roasting (80 °C in 20 min) or dark-roasting (160 °C in 20 min) processes. Broth dilution and agar-well diffusion methods were applied to examine and compare the effects of ethanol extracts obtained from non-roasted, light-roasted and dark-roasted samples, on a set of 6 gram-positive and gram-negative bacteria. In both investigations, dark-roasted turmeric was significantly less antibacterial than non-roasted and light-roasted materials, as evident by the higher values of minimum inhibitory concentrations and the smaller diameters of induced inhibitory zones. In addition, dark-roasting was also found to clearly reduce curcumin contents, total polyphenol values and antioxidant activities of the extracts. These results suggest that non-roasting or light-roasting might be more suitable for the processing of turmeric materials that are aimed to be applied for bacterial infections.
Collapse
Affiliation(s)
- Hai Thanh Nguyen
- Department of Plant Biotechnology, Faculty of Biotechnology, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 131000, Vietnam; (H.T.N.); (H.T.T.P.); (A.T.H.D.)
| | - Siyuan Wu
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.W.); (T.O.); (M.Z.I.)
| | - Tomoki Ootawa
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.W.); (T.O.); (M.Z.I.)
| | - Hieu Chi Nguyen
- National Institute for Control of Vaccines and Biologicals, Hoang Mai District, Hanoi 128100, Vietnam; (H.C.N.); (H.T.T.)
| | - Hong Thi Tran
- National Institute for Control of Vaccines and Biologicals, Hoang Mai District, Hanoi 128100, Vietnam; (H.C.N.); (H.T.T.)
| | - Pitchaya Pothinuch
- Faculty of Food Technology, Rangsit University, 52/347 Muang-Ake Pahonyontin Road, Lak-Hok, Pathum Thani 12000, Thailand;
| | - Hang Thi Thu Pham
- Department of Plant Biotechnology, Faculty of Biotechnology, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 131000, Vietnam; (H.T.N.); (H.T.T.P.); (A.T.H.D.)
| | - Anh Thi Hong Do
- Department of Plant Biotechnology, Faculty of Biotechnology, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 131000, Vietnam; (H.T.N.); (H.T.T.P.); (A.T.H.D.)
| | - Hao Thanh Hoang
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 131000, Vietnam;
| | - Md. Zahorul Islam
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.W.); (T.O.); (M.Z.I.)
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Atsushi Miyamoto
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.W.); (T.O.); (M.Z.I.)
| | - Ha Thi Thanh Nguyen
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.W.); (T.O.); (M.Z.I.)
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 131000, Vietnam;
| |
Collapse
|
2
|
Gull N, Arshad F, Naikoo GA, Hassan IU, Pedram MZ, Ahmad A, Aljabali AAA, Mishra V, Satija S, Charbe N, Negi P, Goyal R, Serrano-Aroca Á, Al Zoubi MS, El-Tanani M, Tambuwala MM. Recent Advances in Anticancer Activity of Novel Plant Extracts and Compounds from Curcuma longa in Hepatocellular Carcinoma. J Gastrointest Cancer 2023; 54:368-390. [PMID: 35285010 PMCID: PMC8918363 DOI: 10.1007/s12029-022-00809-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Among all forms of cancers, hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. There are several treatment options for HCC ranging from loco-regional therapy to surgical treatment. Yet, there is high morbidity and mortality. Recent research focus has shifted towards more effective and less toxic cancer treatment options. Curcumin, the active ingredient in the Curcuma longa plant, has gained widespread attention in recent years because of its multifunctional properties as an antioxidant, anti-inflammatory, antimicrobial, and anticancer agent. METHODS A systematic search of PubMed, Embase and Google Scholar was performed for studies reporting incidence of HCC, risk factors associated with cirrhosis and experimental use of curcumin as an anti-cancer agent. RESULTS This review exclusively encompasses the anti-cancer properties of curcumin in HCC globally and it's postulated molecular targets of curcumin when used against liver cancers. CONCLUSIONS This review is concluded by presenting the current challenges and future perspectives of novel plant extracts derived from C. longa and the treatment options against cancers.
Collapse
Affiliation(s)
- Nighat Gull
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, U.P., India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Sultanate of Oman.
| | - Israr Ul Hassan
- College of Engineering, Dhofar University, Salalah, Sultanate of Oman
| | - Mona Zamani Pedram
- Faculty of Mechanical Engineering-Energy Division, K. N. Toosi University of Technology, P.O. Box: 19395-1999, No. 15-19, Pardis St., Mollasadra Ave., Vanak Sq., Tehran, 1999 143344, Iran
| | - Arif Ahmad
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nitin Charbe
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001, Valencia, Spain
| | - Mazhar S Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Northern Ireland, Coleraine, BT52 1SA, County Londonderry, UK.
| |
Collapse
|
3
|
Yadav R, Pradhan M, Yadav K, Mahalvar A, Yadav H. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. J Drug Deliv Sci Technol 2022; 74:103430. [PMID: 35582019 PMCID: PMC9101776 DOI: 10.1016/j.jddst.2022.103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
The current COVID-19 epidemic is a sobering reminder that human susceptibility to infectious diseases remains even in our modern civilization. After all, infectious diseases are still the major reason of death globally. Healthcare authorities have often underestimated and ignored the threat posed by "microbial dangers," although they put millions of lives at risk every year. Overlooked developing diseases including fungal infections (FIs) contribute to roughly 1.7 million fatalities per year. As many as 150 million cases of severe and potentially life-threatening FIs are reported each year. In the last few years, the number of instances has steadily increased. Most of them are invasive fungal infections that require specialized treatment and hospital care. In recent years herbal antifungal compounds have been explored to acquire effective and safe therapy against fungal infections. However, potential therapeutic effects are hampered by the poor solubility, stability, and bioavailability of these important chemicals as well as the gastric degradation that occurs in the gastrointestinal tract. To get around this issue, researchers have turned to novel drug delivery systems such as nanoemulsions, ethosomes, metallic nanoparticles, liposomes, lipid nanoparticles, transferosomes, etc by improving their limits, nanocarriers can enhance the medicinal effects of herbal oils and extracts. The present review article focuses on the available antifungal agents and their characteristics, mechanism of antifungal drugs resistance, herbal oils and extract as antifungal agents, challenges in the delivery of herbal drugs, and application of nano-drug delivery systems for effective delivery of antifungal herbal compounds.
Collapse
Affiliation(s)
- Rahul Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Madhulika Pradhan
- Rungta College of Pharmaceutical Education and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh, 492010, India
| | - Anand Mahalvar
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Homesh Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| |
Collapse
|
4
|
Garcia JF, Arribalzaga S, Díez R, Lopez C, Fernandez MN, Garcia JJ, Diez MJ, Seco-Calvo J, Sierra M, Sahagún AM. Herbs as an Active Ingredient in Sport: Availability and Information on the Internet. Nutrients 2022; 14:nu14132764. [PMID: 35807943 PMCID: PMC9268717 DOI: 10.3390/nu14132764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/23/2023] Open
Abstract
The use of supplements containing herbal active ingredients in sport has increased in recent years. Their consumption is explained by the benefits they may provide and because their natural origin do not involve health complications, from the point of view of the consumers. The aim of this study is to analyze the availability of four supplements (caffeine, turmeric, ginseng, cannabidiol) on the internet and understand the nature of these websites. A descriptive, observational, and cross-sectional study design was used. A detailed search was carried out with specifically developed software. The searches and data evaluation took 10 days. The websites consulted correspond to those that sell supplements, or some sport websites in the case of the Spanish ones, whereas those in English belong to pharmacies, parapharmacies, or herbalists. It is concluded that the websites do not provide adequate information to ensure proper consumption and lack advice on the choices of supplements and their administration guidelines.
Collapse
Affiliation(s)
- Juan F. Garcia
- Department of Mechanical, Informatics and Aerospatiale Engineering, University of Leon, 24071 Leon, Spain;
| | - Soledad Arribalzaga
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), Campus de Vegazana, University of Leon, 24071 Leon, Spain;
| | - Raquel Díez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| | - Cristina Lopez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| | - M. Nelida Fernandez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| | - Juan J. Garcia
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| | - M. Jose Diez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| | - Jesús Seco-Calvo
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), Campus de Vegazana, University of Leon, 24071 Leon, Spain;
- Psychology Department, Faculty of Medicine, Visiting Researcher of Basque Country University, 48900 Leioa, Spain
- Correspondence:
| | - Matilde Sierra
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| | - Ana M. Sahagún
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| |
Collapse
|
5
|
Otsuka S, Kawamura M, Fujino S, Nakamura F, Arai D, Fusetani N, Nakao Y. Coronarin D, a Metabolite from the Wild Turmeric, Curcuma aromatica, Promotes the Differentiation of Neural Stem Cells into Astrocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3300-3309. [PMID: 35245031 PMCID: PMC8931754 DOI: 10.1021/acs.jafc.2c00020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 05/03/2023]
Abstract
Plants in the genus Curcuma have been widely used as traditional medicines in Asian countries. These plants contain bioactive compounds with neuroprotective properties or activities that increase neural stem cells (NSCs) and neurons. However, bioactive components in Curcuma that promote the differentiation of NSCs into astrocytes have not yet been reported. Here, the effects of Curcuma extracts on the in vitro differentiation of embryonic stem-cell-derived NSCs were evaluated. The extract of the wild turmeric, Curcuma aromatica, strongly promoted the differentiation of NSCs into astrocytes. Bioassay-guided isolation yielded coronarins C (1) and D (2), as well as (E)-labda-8(17),12-diene-15,16-dial (3) as the bioactive compounds. Coronarin D (2) markedly promoted the differentiation of NSCs into astrocytes up to approximately 4 times (3.64 ± 0.48) and increased the expression level of GFAP at the mRNA and protein level, while compounds 1 and 3 exhibited only weak effects, suggesting that the 15-hydroxy-Δ12-γ-lactone moiety is important for bioactivity. Moreover, compound 2 increased the number of pSTAT3-positive cells, suggesting that compound 2 promoted astrocytic differentiation through JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Satoshi Otsuka
- Department
of Chemistry and Biochemistry, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research
Institute for Science and Engineering, Waseda
University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Midori Kawamura
- Department
of Chemistry and Biochemistry, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shutaro Fujino
- Department
of Chemistry and Biochemistry, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Fumiaki Nakamura
- Department
of Chemistry and Biochemistry, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Daisuke Arai
- Department
of Chemistry and Biochemistry, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Nobuhiro Fusetani
- Research
Institute for Science and Engineering, Waseda
University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Fisheries
and Oceans Hakodate, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Yoichi Nakao
- Department
of Chemistry and Biochemistry, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research
Institute for Science and Engineering, Waseda
University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
6
|
Wang Y, Feng F, He W, Sun L, He Q, Jin J. miR-188-3p abolishes germacrone-mediated podocyte protection in a mouse model of diabetic nephropathy in type I diabetes through triggering mitochondrial injury. Bioengineered 2022; 13:774-788. [PMID: 34847832 PMCID: PMC8805940 DOI: 10.1080/21655979.2021.2012919] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/27/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial injury-triggered podocyte apoptosis is a major risk factor for diabetic nephropathy (DN). However, the detailed relationship between mitochondrial homeostasis and podocyte apoptosis remains unclear. The present study aimed to explore the role and functional mechanism of germacrone in DN in type I diabetes (type I DN). A mouse model of type I DN was established by injecting streptozocin, and a podocyte injury model was constructed using high glucose (HG) induction. Histopathology was detected by hematoxylin and eosin and periodic acid-Schiff staining. Transmission electron microscopy and flow cytometry were used to evaluate the mitochondrial function. Germacrone simultaneously reduced blood glucose, 24 h proteinuria, and other nephrotic symptoms in a type 1 DN mouse model. Moreover, germacrone protected against mitochondrial damage, limited reactive oxygen species (ROS) accumulation, and restored glutathione peroxidase (GPX) activity and GPX4 protein expression, subsequently preventing podocyte apoptosis. Mechanistically, the increased miR-188-3p expression in type I DN mice was reversed in germacrone-challenged DN mice. HG induced miR-188-3p expression and the miR-188-3p antagonist abolished the HG-mediated increase in ROS. Notably, miR-188-3p was found to have a therapeutic effect against DN by aggravating mitochondrial damage and podocyte apoptosis. Germacrone alleviates DN progression in type I diabetes by limiting podocyte apoptosis, which was partly counteracted by miR-188-3p upregulation. The combination of germacrone and miR-188-3p antagonists is expected to be an effective therapeutic strategy for DN.Abbreviations DN: diabetic nephropathy; Type I DN: DN in Type I diabetes; STZ: streptozocin; ROS: reactive oxygen species; NcRNAs: non-coding RNAs; UTR: untranslated regions; NC: negative control; BUN: blood urea nitrogen; BUA: blood uric acid; Ucr: urine creatinine; Scr: serum creatinine; PAS: Periodic Acid-Schiff; IF: Immunofluorescence; FISH: Fluorescence in situ hybridization; TUG1: taurine upregulated gene 1; GPX: Glutathione Peroxidase; GPX4: glutathione peroxidase 4; EMT: epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Fangfang Feng
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Wenfang He
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, P.R China
| | - Lifang Sun
- Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, P.R China
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, P.R China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, P.R China
| | - Juan Jin
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, P.R China
| |
Collapse
|
7
|
Preparation and physicochemical assessment of bioactive films based on chitosan and starchy powder of white turmeric rhizomes (Curcuma Zedoaria) for green packaging applications. Int J Biol Macromol 2021; 193:2192-2201. [PMID: 34785196 DOI: 10.1016/j.ijbiomac.2021.11.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 02/08/2023]
Abstract
In the current study, the bioactive films of chitosan/white turmeric (CH/WT) were prepared by employing solvent casting technique and analyzed their physicochemical and biological properties for active packaging applications. The successful inclusion of white turmeric into the chitosan matrix is confirmed by Fourier Transform Infrared Spectroscopy. Due to the presence of hydrogen bonding interaction, the active films exhibited good tensile properties, smooth surface morphology, miscibility, water resistance and UV barrier properties. The incorporation of white turmeric reduced the water vapour transmission rate and oxygen permeability (p < 0.05) in contrast with pristine film. The prepared blend films revealed soil degradation rate more than 60% within 15 days. Furthermore, the blend films exhibited lesser water solubility, moisture content and swelling index after addition of white turmeric to chitosan (p < 0.05). The prepared films revealed extensive antimicrobial activity against gram positive and gram negative bacteria. The antioxidant activity and total phenolic content were improved upon the incorporation of white turmeric. Moreover, the oil absorption rate of the blend films was decreased by 46% in comparison with pristine film. Overall, white turmeric incorporated chitosan films were employed as a green packaging material to extend the shelf life of the foodstuff.
Collapse
|
8
|
Qian Y, Shanbo M, Shaojie H, Long L, Yuhan C, Jin W, Shan M, Xiao-Peng S. Integrating bioinformatics with pharmacological evaluation for illustrating the action mechanism of herbal formula Jiao'e mixture in suppressing lung carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114513. [PMID: 34400263 DOI: 10.1016/j.jep.2021.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lung carcinoma (LC) is not only a kind of disease that seriously threatens human life but also an intractable problem in modern medicine. Jiao'e Mixture (JEM) is an innovative Chinese medicine formula with Chinese patent, which is composed of two herbal extracts with a specific ratio-zedoary turmeric oil and medicinal Zanthoxylum bungeanum Maxim(Z. bungeanum Maxim) seeds oil (ZMSO). Zedoary turmeric oil is extracted from dried rhizomes of Curcuma wenyujin Y.H.Chen et C. Ling, which has been reported have an anti-cancer effects. Medicinal ZMSO is a by-product of Z. bungeanum Maxim, refined from kernel shell separation, modern cold soaking and refining technology; JEM is used to treat Lung carcinoma (LC) patients in folk for many years. However, its therapeutic mechanisms for treating LC have not been fully explored. AIM OF THE STUDY The purpose of this study was to explore the therapeutic mechanisms of JEM for treating LC. MATERIALS AND METHODS The action mechanism of JEM in LC treatment was analysed by comprehensive network pharmacology approach combined with experimental validation (in vivo and in vitro). RESULTS Seventeen active compounds and 457 related targets were collected from the HERB, TCMSP, and Swiss Target Prediction platforms. Nine hundred and thirty-eight LC related targets were obtained from Gene Cards and OMIM databases. Finally, 140 overlapping targets were obtained, which representing the target of JEM in LC treatment. The pathway analysis showed that PI3K-AKT could be a potential pathway for JEM in LC treatment. In vivo results presented that JEM had a good effect in inhibiting the growth of LC tumour cells with high efficacy and low toxicity. In vitro experiments validated that JEM had inhibited LC cells' proliferation, migration and invasion, and had induced cell apoptosis mainly via PI3K/Akt signalling pathways. CONCLUSION The anti-LC activity of JEM might via regulating the PI3K-AKT signalling pathways.This study may provide further evidence for the potential use of JEM in LC treatment.
Collapse
Affiliation(s)
- Yang Qian
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China; College of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, China
| | - Ma Shanbo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Huang Shaojie
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Li Long
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Chen Yuhan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China; College of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, China
| | - Wang Jin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Miao Shan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China.
| | - Shi Xiao-Peng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China.
| |
Collapse
|
9
|
Ionic liquid-based catanionic vesicles: A de novo system to judiciously improve the solubility, stability and antimicrobial activity of curcumin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Masota NE, Vogg G, Ohlsen K, Holzgrabe U. Reproducibility challenges in the search for antibacterial compounds from nature. PLoS One 2021; 16:e0255437. [PMID: 34324599 PMCID: PMC8321225 DOI: 10.1371/journal.pone.0255437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Reproducibility of reported antibacterial activities of plant extracts has long remained questionable. Although plant-related factors should be well considered in serious pharmacognostic research, they are often not addressed in many research papers. Here we highlight the challenges in reproducing antibacterial activities of plant extracts. METHODS Plants with reported antibacterial activities of interest were obtained from a literature review. Antibacterial activities against Escherichia coli and Klebsiella pneumoniae were tested using extracts' solutions in 10% DMSO and acetone. Compositions of working solutions from both solvents were established using LC-MS analysis. Moreover, the availability of details likely to affect reproducibility was evaluated in articles which reported antibacterial activities of studied plants. RESULTS Inhibition of bacterial growth at MIC of 256-1024 μg/mL was observed in only 15.4% of identical plant species. These values were 4-16-fold higher than those reported earlier. Further, 18.2% of related plant species had MICs of 128-256 μg/mL. Besides, 29.2% and 95.8% of the extracts were soluble to sparingly soluble in 10% DMSO and acetone, respectively. Extracts' solutions in both solvents showed similar qualitative compositions, with differing quantities of corresponding phytochemicals. Details regarding seasons and growth state at collection were missing in 65% and 95% of evaluated articles, respectively. Likewise, solvents used to dissolve the extracts were lacking in 30% of the articles, whereas 40% of them used unidentified bacterial isolates. CONCLUSION Reproducibility of previously reported activities from plants' extracts is a multi-factorial aspect. Thus, collective approaches are necessary in addressing the highlighted challenges.
Collapse
Affiliation(s)
- Nelson E. Masota
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
- School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Gerd Vogg
- Botanical Garden of The University of Wuerzburg, Wuerzburg, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
11
|
Mahmoudvand H, Pakravanan M, Kheirandish F, Jahanbakhsh S, Sepahvand M, Niazi M, Rouientan A, Aflatoonian MR. Efficacy and Safety Curcuma zadoaria L. to Inactivate the Hydatid Cyst Protoscoleces. ACTA ACUST UNITED AC 2021; 15:64-71. [PMID: 31533603 PMCID: PMC7366002 DOI: 10.2174/1574884714666190918155147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/29/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The present work aimed to evaluate the chemical composition of Curcuma zadoaria essential oil and to investigate its efficacy and safety against hydatid cyst protoscoleces. METHODS Collected protoscoleces from liver fertile hydatid cysts of infected sheep were exposed to different concentrations of the essential oil (75, 150, 300 μl/mL) for 5-30 min in vitro and ex vivo. Then, by using the eosin exclusion assay, the viability of protoscoleces was studied. In the next step, 24 male NMRI mice were examined to assess the toxicity of C. zadoaria essential oil by measuring the biochemical and hematological parameters. RESULTS Based on the obtained results, the LD50 value of intraperitoneal injection of the C. zadoaria essential oil was 1.76 mL/kg of body weight and the maximum non-fatal dose was 0.96 mL/kg of body weight. C. zadoaria essential oil had a strong proto scolicidal activity in vitro so that at the 300 and 150 μl/ml entirely eliminates the parasite after 5 and 10 minutes; whereas, weak proto scolicidal activity was observed at lower doses. Ex vivo assay, no similar effect with in vitro was observed, therefore, more time is required to show a potent proto scolicidal activity. C. zadoaria essential oil at the concentrations of 300 and 150 μl/mL after an exposure time of 7 and 12 min, killed 100% of protoscoleces within the hydatid cyst, respectively. After intraperitoneal injection of the C. zadoaria essential oil for 2 weeks, no significant difference (p > 0.05) was observed in the clinical chemistry and hematologic parameters at the doses of 0.15, 0.3, 0.6 mL/kg. CONCLUSION The obtained results in vitro and ex vivo exhibited that C. zadoaria essential oil had a favorable proto scolicidal activity on hydatid cyst protoscoleces. However, more supplementary works are required to verify these findings by assessing clinical subjects.
Collapse
Affiliation(s)
- Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahbobeh Pakravanan
- Central Research Laboratory, Deputy of Research, Kerman University of Medical Sciences, Kerman, Iran
| | - Farnaz Kheirandish
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sareh Jahanbakhsh
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Sepahvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Massumeh Niazi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abdolreza Rouientan
- Department of Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad R Aflatoonian
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Degot P, Huber V, El Maangar A, Gramüller J, Rohr L, Touraud D, Zemb T, Gschwind RM, Kunz W. Triple role of sodium salicylate in solubilization, extraction, and stabilization of curcumin from Curcuma longa. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Zhao X, Kim YR, Min Y, Zhao Y, Do K, Son YO. Natural Plant Extracts and Compounds for Rheumatoid Arthritis Therapy. ACTA ACUST UNITED AC 2021; 57:medicina57030266. [PMID: 33803959 PMCID: PMC8001474 DOI: 10.3390/medicina57030266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
Natural plant extracts and compounds (NPECs), which originate from herbs or plants, have been used in the clinical treatment of rheumatoid arthritis (RA) for many years. Over the years, many scientists have carried out a series of studies on the treatment of RA by NPEC. They found a high quantity of active NPECs with broad application prospects. In view of various complex functions of these NPECs, exploring their potential as medicines for RA treatment will be beneficial for RA patients. Thus, to help advance the development of high-quality NPECs for RA, we herein aimed to review the research progress of NPECs in the treatment of RA in recent years. Our findings showed that, from the pharmacological perspective, natural plant extracts or mixed herbal compounds effectively regulate the immune system to alleviate RA by inhibiting pro-inflammatory cytokines. Further, individualized medication can be applied according to each patient's physical condition. However, the pathogenesis of RA and its immune mechanism has not been fully understood and requires further studies.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (X.Z.); (Y.M.)
| | - Young-Rok Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 63243, Korea;
| | - Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (X.Z.); (Y.M.)
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Kyoungtag Do
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 63243, Korea;
- Correspondence: (K.D.); (Y.-O.S.); Tel.: +82-64-754-3334 (K.D.); +82-64-754-3331 (Y.-O.S.)
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (X.Z.); (Y.M.)
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 63243, Korea;
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Korea
- Practical Translational Research Center, Jeju National University, Jeju 63243, Korea
- Correspondence: (K.D.); (Y.-O.S.); Tel.: +82-64-754-3334 (K.D.); +82-64-754-3331 (Y.-O.S.)
| |
Collapse
|
14
|
Ti H, Mai Z, Wang Z, Zhang W, Xiao M, Yang Z, Shaw P. Bisabolane-type sesquiterpenoids from Curcuma longa L. exert anti-influenza and anti-inflammatory activities through NF-κB/MAPK and RIG-1/STAT1/2 signaling pathways. Food Funct 2021; 12:6697-6711. [PMID: 34179914 DOI: 10.1039/d1fo01212f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Influenza is a viral respiratory illness that causes seasonal epidemics and occasional pandemics. Disease severity may be contributed by influenza virus-induced cytokine dysregulation. The study was designed to investigate the isolation and identification of bisabolane-type sesquiterpenoids from Curcuma longa L., their antiviral and anti-inflammatory activities against H1N1 and their potential role in regulating host immune response in vitro. A pair of new bisabolane-type sesquiterpenoids, (6S,7S)-3-hydroxy-3-hydroxymethylbisabola-1,10-diene-9-one (18) together with seventeen known analogs (1-17), was isolated and elucidated from Curcuma longa L. Compounds 2, 11 and 14 could significantly inhibit A/PR/8/34 (H1N1) replication in MDCK cells, and compound 2 could significantly inhibit A/PR/8/34 (H1N1) replication in A549 cells. Compounds 4, 8, 9, 13 and 17 could markedly reduce pro-inflammatory cytokine (TNF-α, IL-6, IL-8 and IP-10) production at the mRNA and protein levels in A549 cells. Compound 4 regulated the levels of steroid biosynthesis, oxidative phosphorylation and protein processing in the endoplasmic reticulum, thereby inhibiting immune responses by proteomics analysis. Furthermore, compound 4 could inhibit the expression of p-NF-κB p65, NF-κB p65, IκBα, p-p38 MAPK, p-IκBα, RIG-1, STAT-1/2 and p-STAT-1/2 in the signaling pathways. These findings indicate that bisabolane-type sesquiterpenoids of C. longa could inhibit the expression of inflammatory cytokines induced by the virus and regulate the activity of NF-κB/MAPK and RIG-1/STAT-1/2 signaling pathways in vitro.
Collapse
Affiliation(s)
- Huihui Ti
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhao XS, Yang MH, Zeng YX, Zhou YK, Li RT. Gas chromatography–mass spectrometry for quantitative and qualitative analysis of essential oil from Curcuma wenyujin rhizomes. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_87_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, Sestito S, Rapposelli S, Neffe-Skocińska K, Zielińska D, Salehi B, Setzer WN, Dosoky NS, Taheri Y, El Beyrouthy M, Martorell M, Ostrander EA, Suleria HAR, Cho WC, Maroyi A, Martins N. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front Pharmacol 2020; 11:01021. [PMID: 33041781 PMCID: PMC7522354 DOI: 10.3389/fphar.2020.01021] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Curcumin, a yellow polyphenolic pigment from the Curcuma longa L. (turmeric) rhizome, has been used for centuries for culinary and food coloring purposes, and as an ingredient for various medicinal preparations, widely used in Ayurveda and Chinese medicine. In recent decades, their biological activities have been extensively studied. Thus, this review aims to offer an in-depth discussion of curcumin applications for food and biotechnological industries, and on health promotion and disease prevention, with particular emphasis on its antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, and cardioprotective effects. Bioavailability, bioefficacy and safety features, side effects, and quality parameters of curcumin are also addressed. Finally, curcumin's multidimensional applications, food attractiveness optimization, agro-industrial procedures to offset its instability and low bioavailability, health concerns, and upcoming strategies for clinical application are also covered.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kasli, Jounieh, Lebanon
| | - Alain Abi Rizk
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kasli, Jounieh, Lebanon
| | - Carmen Sadaka
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Raviella Zgheib
- Institut Jean-Pierre Bourgin, AgroParisTech, INRA, Université Paris-Saclay, Versailles, France
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | | | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | | | - Dorota Zielińska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Warszawa, Poland
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | | | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kasli, Jounieh, Lebanon
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Elise Adrian Ostrander
- Medical Illustration, Kendall College of Art and Design, Ferris State University, Grand Rapids, MI, United States
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Solubilization and extraction of curcumin from Curcuma Longa using green, sustainable, and food-approved surfactant-free microemulsions. Food Chem 2020; 336:127660. [PMID: 32771898 DOI: 10.1016/j.foodchem.2020.127660] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
Curcumin is a powerful coloring agent widely used in the food industry. Its extraction from the plant Curcuma longa is commonly done with aqueous solvent solutions. In contrast to the conventional extraction methods, the present study aimed to compare two different green and bio-based surfactant-free microemulsion (SFME) extraction systems, which are approved for food and yield a higher extracting power of curcuminoids. Two SFMEs, water/ethanol/triacetin and water/diacetin/triacetin, were investigated via dynamic light scattering. Curcumin solubility in binary mixtures consisting of ethanol/triacetin or diacetin/triacetin was studied both experimentally and theoretically using UV-Vis measurements and COSMO-RS. The SFMEs were further examined and compared to a common ethanol/water (80/20) extraction mixture with respect to their extracting ability using high performance liquid chromatography. The SFMEs containing ethanol were found to extract ~18% more curcuminoids than the SFMEs containing diacetin and ~53% more than the ordinary ethanol/water mixture.
Collapse
|
18
|
Wang X, Zuo GL, Wang CY, Kim HY, Lim SS, Tong SQ. An Off-Line DPPH-GC-MS Coupling Countercurrent Chromatography Method for Screening, Identification, and Separation of Antioxidant Compounds in Essential Oil. Antioxidants (Basel) 2020; 9:antiox9080702. [PMID: 32756519 PMCID: PMC7464616 DOI: 10.3390/antiox9080702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Essential oils are an important source of natural antioxidants and multiple methods have been established for evaluation of their overall antioxidant activity, however, the antioxidant activities of their compounds are less investigated. In the present study, the hyphenation of 2,2′-diphenyl-1-picrylhydrazyl (DPPH)-gas chromatography (GC)-mass spectrometry (MS) offline and high-speed countercurrent chromatography (HSCCC) is established for efficient screening, identification, and isolation of antioxidants from essential oils and applied to the essential oil of Curcuma wenyujin Y.H. Chen et C. Ling. Five compounds are preliminarily screened as antioxidants using DPPH-GC according to the reduction of GC peak areas of each compound after reaction with DPPH and then identified as eucalyptol (7.66%), camphor (2.34%), δ-elemene (1.15%), β-elemene (7.10%), and curzerene (15.77%) using GC-MS. Moreover, these five compounds are isolated by HSCCC using two solvent systems, n-hexane-acetonitrile-ethanol (5:3:2, v/v) and n-hexane-acetonitrile-acetone (4:3:1, v/v), and subjected to DPPH scavenging assay. Camphor, δ-elemene, and β-elemene show weak DPPH scavenging activity, while curzerene and eucalyptol show moderate DPPH scavenging activity. Notably, a significant synergistic effect on DPPH scavenging is found between curzerene and eucalyptol. The result demonstrated that off-line DPPH-GC-MS coupling CCC is an efficient method for screening, identification, and separation of antioxidant compounds in essential oil
Collapse
Affiliation(s)
- Xiang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; (X.W.); (C.-Y.W.)
| | - Guang-Lei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.-L.Z.); (H.Y.K.)
| | - Chao-Yue Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; (X.W.); (C.-Y.W.)
| | - Hyun Yong Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.-L.Z.); (H.Y.K.)
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.-L.Z.); (H.Y.K.)
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea
- Institute of Natural Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea
- Correspondence: (S.S.L.); (S.-Q.T.); Tel.: +82-33-248-2144 (S.S.L.); +86-571-88320984 (S.-Q.T.); Fax: +82-33-251-0663 (S.S.L.); +86-571-88320984 (S.-Q.T.)
| | - Sheng-Qiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; (X.W.); (C.-Y.W.)
- Correspondence: (S.S.L.); (S.-Q.T.); Tel.: +82-33-248-2144 (S.S.L.); +86-571-88320984 (S.-Q.T.); Fax: +82-33-251-0663 (S.S.L.); +86-571-88320984 (S.-Q.T.)
| |
Collapse
|
19
|
Akram M, Riaz M, Munir N, Rasul A, Daniyal M, Ali Shah SM, Shariati MA, Shaheen G, Akhtar N, Parveen F, Akhter N, Owais Ghauri A, Chishti AW, Usman Sarwar M, Said Khan F. Progress and prospects in the management of bacterial infections and developments in Phytotherapeutic modalities. Clin Exp Pharmacol Physiol 2020; 47:1107-1119. [PMID: 32064656 DOI: 10.1111/1440-1681.13282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/28/2022]
Abstract
The advent of antibiotics revolutionized medical care resulting in significantly reduced mortality and morbidity caused by infectious diseases. However, excessive use of antibiotics has led to the development of antibiotic resistance and indeed, the incidence of multidrug-resistant pathogens is considered as a major disadvantage in medication strategy, which has led the scholar's attention towards innovative antibiotic sources in recent years. Medicinal plants contain a variety of secondary metabolites with a wide range of therapeutic potential against the resistant microbes. Therefore, the aim of this review is to explore the antibacterial potential of traditional herbal medicine against bacterial infections. More than 200 published research articles reporting the therapeutic potential of medicinal plants against drug-resistant microbial infections were searched using different databases such as Google Scholar, Science Direct, PubMed and the Directory of Open Access Journals (DOAJ), etc., with various keywords like medicinal plants having antibacterial activities, antimicrobial potentials, phytotherapy of bacterial infection, etc. Articles were selected related to the efficacious herbs easily available to local populations addressing common pathogens. Various plants such as Artocarpus communis, Rheum emodi, Gentiana lutea L., Cassia fistula L., Rosemarinus officinalis, Argemone maxicana L, Hydrastis canadensis, Citrus aurantifolia, Cymbopogon citrates, Carica papaya, Euphorbia hirta, etc, were found to have significant antibacterial activities. Although herbal preparations have promising potential in the treatment of multidrug-resistant bacterial infection, still more research is required to isolate phytoconstituents, their mechanism of action as well as to find their impacts on the human body.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Akhtar Rasul
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Syed Muhammad Ali Shah
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohammad Ali Shariati
- Kazakh Research Institute of Processing and Food Industry (Semey branch), Semey, Kazakhstan
| | - Ghazala Shaheen
- Department of Eastern Medicine, Faculty of Pharmacy and Alternative Medicine, College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Akhtar
- Department of Pharmacy, University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Farzana Parveen
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Akhter
- College of Allied Health Professional, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aymen Owais Ghauri
- Faculty of Pharmacy, Rayaz College of Eastern Medicine, Jinnah University for Women, Karachi, Pakistan
| | - Abdul Wadood Chishti
- Faculty of Pharmacy and Alternative Medicine, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Usman Sarwar
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fahad Said Khan
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
20
|
Hashem S, Nisar S, Sageena G, Macha MA, Yadav SK, Krishnankutty R, Uddin S, Haris M, Bhat AA. Therapeutic Effects of Curcumol in Several Diseases; An Overview. Nutr Cancer 2020; 73:181-195. [PMID: 32285707 DOI: 10.1080/01635581.2020.1749676] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sheema Hashem
- Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Sabah Nisar
- Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | | | - Muzafar A. Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Santosh K. Yadav
- Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Haris
- Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Ajaz A. Bhat
- Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
21
|
Li DM, Zhu GF, Xu YC, Ye YJ, Liu JM. Characterization and phylogenetic analysis of the complete chloroplast genome of Curcuma zedoaria (Zingiberaceae). Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1734496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Dong-Mei Li
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gen-Fa Zhu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ye-Chun Xu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuan-Jun Ye
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jin-Mei Liu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
22
|
Senouci H, Benyelles NG, Dib MEA, Costa J, Muselli A. Chemical Composition and Combinatory Antifungal Activities of Ammoides verticillata, Allium sativum and Curcuma longa Essential Oils Against Four Fungi Responsible for Tomato Diseases. Comb Chem High Throughput Screen 2020; 23:196-204. [PMID: 32072896 DOI: 10.2174/1386207323666200219123214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tomato is considered a model plant in genetics and is one of the most economically important crops of all those that exist in the world. Several species of fungi are reported on tomato fruit, causing damage both during cultivation and after harvest. Some of the appropriate actions that could be initiated to resolve the problem are to develop and search for new antimicrobial substances isolated from the bioactive natural products, such as essential oils. AIMS AND OBJECTIVE The aim of this work was to determine the chemical composition of essential oils of Ammoides verticillata, Allium sativum and Curcuma longa, to evaluate their in-vitro antifungal activities and in-vivo antifungal effect of essential oils to prevent the diseases caused by tomato. MATERIALS AND METHODS The essential oils obtained from aerial parts of plants were analyzed by GC/MS and tested for their antifungal activities against Penicillium expansum, Fusarium solani, Rhizopus stolonifer and Alternaria alternata using the radial growth technique method. The effectiveness in-vivo of the association between Allium sativum and Curcuma longa essential oils was also investigated on tomatoes inoculated by fungi. RESULTS The essential oil from A. verticilata was mainly composed of phenolic compounds (54.4%), the A. sativum oil was mainly composed of sulfur compounds (91.5%) and C. longa oil was dominated by oxygenated monoterpenes (82.0%). The obtained results in-vitro antifungal revealed that individual essential oils of A. verticillata and A. sativum were more active than the essential oil of C. longa against all screened microorganisms. An important antifungal effect of A. sativum and C. longa essential oils blend was obtained against P. expansum (100%), F. solani (95.2%), R. stolonifer (95.1%) and A. alternata (48.5%). Furthermore, A. sativum and C. longa essential oils blends have demonstrated promising in-vivo antifungal activity to control infection of tomato against P. expansum and R. stolonifer. CONCLUSION A. sativum and C. longa essential oil blends can be used as a natural food preservative and alternative to chemical fungicides to protect stored tomato against many phytopathogens.
Collapse
Affiliation(s)
- Hanane Senouci
- Laboratoire d'Ecologie et Gestion des Ecosystemes Naturels, Universite de Tlemcen, BP 119, Imama 13000 Tlemcen, Algeria
| | - Nassira G Benyelles
- Laboratoire d'Ecologie et Gestion des Ecosystemes Naturels, Universite de Tlemcen, BP 119, Imama 13000 Tlemcen, Algeria
| | - Mohammed E A Dib
- Laboratoire des Substances Naturelles et Bioactives (LASNABIO), Departement de Chimie, Faculte des Sciences, Universite Aboubekr Belkaïd, Tlemcen, Algeria
| | - Jean Costa
- Laboratoire Chimie des Produits Naturels, UMR CNRS 6134 SPE, Campus Grimaldi, BP 52, 20250 Corte, France
| | - Alain Muselli
- Laboratoire Chimie des Produits Naturels, UMR CNRS 6134 SPE, Campus Grimaldi, BP 52, 20250 Corte, France
| |
Collapse
|
23
|
Li L, Xie Q, Bian G, Zhang B, Wang M, Wang Y, Chen Z, Li Y. Anti-H1N1 viral activity of three main active ingredients from zedoary oil. Fitoterapia 2020; 142:104489. [PMID: 32004654 DOI: 10.1016/j.fitote.2020.104489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 01/08/2023]
Abstract
Influenza virus is one of the most widespread infectious diseases in the world. It poses a serious public health threat to humans. With the emergence of drug-resistant virus strains, antiviral drugs are urgently needed to control virus transmission and disease progression. In this study, three main active substances-curcumol, curdione and germacrone-were isolated from the traditional Chinese medicine zedoary. They inhibited the replication of influenza A (H1N1) virus in a dose-dependent manner. After treatment with these compounds, the expression of viral protein and RNA synthesis were inhibited. In vivo, these compounds also reduced H1N1-induced lung damage and the load of virus in serum as well as whole blood cells. In a proteomic analysis, after treatment with germacrone, the expression of antiviral protein and the amount of intracellular virus were significantly reduced, further proving that germacrone can inhibit viral replication. Our experiments have shown that curcumol, curdione and germacrone can inhibit the replication of H1N1 virus; in particular, germacrone shows potential both in vitro and in vivo as a therapeutic drug.
Collapse
Affiliation(s)
- Ling Li
- School of Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Qing Xie
- School of Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Gang Bian
- School of Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Biyan Zhang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengfei Wang
- School of Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yanping Wang
- School of Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Zijun Chen
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yunsen Li
- School of Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
24
|
Empirical "integrated disease management" in Ferrara during the Italian plague (1629-1631). Parasitol Int 2019; 75:102046. [PMID: 31887395 DOI: 10.1016/j.parint.2019.102046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/09/2019] [Accepted: 12/24/2019] [Indexed: 11/24/2022]
Abstract
Plague, a highly infective disease caused by Yersinia pestis (Proteobacteria: Enterobacteriales), ravaged Europe from 1347 over the course of more than 450 years. During the Italian Plague (1629-1631), the disease was rampaging in the entire Northern Italy down to Tuscany, but the city of Ferrara was relatively spared, in spite that the economic activities were maintained with highly affected cities, such as Milan, through the relevant salt commerce. The aim of the study is to evaluate the hygiene rules that were effective in preventing the spread of the plague in Ferrara in 1630, by examining historical documents and reports. According to these documents, a kind of empirical "integrated disease management" was carried out, using remedies including compounds with bactericidal, anti-parasite and repellent activity, and by technical strategies including avoidance of possible plague carriers. The anti-plague remedies and technical strategies used in ancient Ferrara are critically analysed using a multidisciplinary approach (pharmaceutic, medical, epidemiologic and entomological) and compared to current prevention protocols.
Collapse
|
25
|
Chu LL, Pandey RP, Dhakal D, Sohng JK. Increased Production of Dicinnamoylmethane Via Improving Cellular Malonyl-CoA Level by Using a CRISPRi in Escherichia coli. Appl Biochem Biotechnol 2019; 190:325-340. [PMID: 31853874 DOI: 10.1007/s12010-019-03206-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Curcuminoids are natural phenylpropanoids that are biosynthesized via an L-phenylalanine metabolism pathway in turmeric (Curcuma longa L.). Curcuminoids have various chemopreventive activities and pharmaceutical applications in human life. In this study, we synthesized dicinnamoylmethane, one principal component of curcuminoids, from cinnamic acid by means of co-expression of Oryza sativa curcuminoid synthase and Petroselinum crispum 4-coumarate-CoA ligase in Escherichia coli BL21 (DE3). Moreover, we used CRISPRi systems to knock down the genes in a tricarboxylic acid cycle and fatty acid biosynthesis pathway. The repression of target genes led to an increase of up to 0.236 μmol g-1 DCW of malonyl-CoA in cytosol-engineered E. coli and subsequently increased the biosynthesis of dicinnamoylmethane. We found that the S10 strain containing a CRISPRi repression for three genes, fabF, fabD, and mdh, showed the highest amount of dicinnamoylmethane of 7.54 μM, which is 5.76-fold higher than that of the wild-type strain. Finally, 41.94 μM (~ 11.6 mg) of dicinnamoylmethane was obtained in a 3-L fermenter.
Collapse
Affiliation(s)
- Luan Luong Chu
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea. .,Department of Pharmaceutical Engineering & Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
26
|
Wu T, Yin F, Kong H, Peng J. Germacrone attenuates cerebral ischemia/reperfusion injury in rats via antioxidative and antiapoptotic mechanisms. J Cell Biochem 2019; 120:18901-18909. [PMID: 31318092 DOI: 10.1002/jcb.29210] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/09/2022]
Abstract
Germacrone (GM) is an anti-inflammatory compound extracted from Rhizoma curcuma. Here, we strived to investigate the neuroprotective effects of GM in rat models of transient middle cerebral artery occlusion/reperfusion injury. Rats immediately after cerebral ischemia were intraperitoneally injected with GM at doses of 5, 10, and 20 mg/kg. After 1 day of reperfusion, the water content in the brain, infarct volume, and neurological deficits were assessed. Hippocampus neurons were histopathologically examined by hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Activities of glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-PX) in brain tissue were detected. Real-time PCR and Western blotting were utilized to quantify the expression of apoptosis markers, such as caspase-3, Bax, and Bcl-2. The content of phospho-Akt (p-Akt) was also measured using Western blotting. GM treatment markedly decreased the brain water content, infarct volume and the neurological deficits, which was corroborated by attenuated histopathologic change. MDA levels were reduced and activities of GSH, SOD, and GSH-PX were elevated after GM treatment. Caspase-3 and Bax were decreased, and Bcl-2 was increased at both messenger RNA and protein levels by GM treatment. The p-Akt expression was increased by GM. Our data indicated that the neuroprotective effects of GM may attenuate the injuries from cerebral ischemia/reperfusion in rats through antioxidative and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Tianhui Wu
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Nephrology and Rheumatology, Hunan Children's Hospital, The Paediatric Academy of University of South China, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huimin Kong
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Santhoshkumar R, Yusuf A. Chemotaxonomic studies on rhizome extract compositions of twenty Curcuma species from South India. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Gil-Ramírez A, Rodriguez-Meizoso I. Purification of Natural Products by Selective Precipitation Using Supercritical/Gas Antisolvent Techniques (SAS/GAS). SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1617737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alicia Gil-Ramírez
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
29
|
Huang Y, Xue C, He W, Zhao X. Inhibition effect of Zedoary turmeric oil on Listeria monocytogenes and Staphylococcus aureus growth and exotoxin proteins production. J Med Microbiol 2019; 68:657-666. [DOI: 10.1099/jmm.0.000949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yixuan Huang
- Department of Food Quality and Safety, College of Food Science and Engineering, Tonghua Normal University, 134000 Tonghua, PR China
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China
| | - Changsong Xue
- Department of Chinese Medicine, College of Medicine and Pharmacy, Tonghua Normal University, 134000 Tonghua, PR China
| | - Wenbing He
- Changbai Mountain Edible Plant Resources Research and Development Engineering Center, Tonghua Normal University, 134002 Tonghua, PR China
- Department of Food Quality and Safety, College of Food Science and Engineering, Tonghua Normal University, 134000 Tonghua, PR China
| | - Xingchen Zhao
- Department of Food Quality and Safety, College of Food Science and Engineering, Tonghua Normal University, 134000 Tonghua, PR China
- Changbai Mountain Edible Plant Resources Research and Development Engineering Center, Tonghua Normal University, 134002 Tonghua, PR China
| |
Collapse
|
30
|
Poly (ε-caprolactone) Microsphere Decorated with Nano-ZnO Based Phytoformulation: A Promising Antimicrobial Agent. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01114-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Dosoky NS, Satyal P, Setzer WN. Variations in the Volatile Compositions of Curcuma Species. Foods 2019; 8:foods8020053. [PMID: 30717336 PMCID: PMC6406329 DOI: 10.3390/foods8020053] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/28/2022] Open
Abstract
Curcuma species have been cultivated in tropical and subtropical regions in Asia, Australia, and South America for culinary as well as medicinal applications. The biological activities of Curcuma have been attributed to the non-volatile curcuminoids as well as to volatile terpenoids. Curcuma essential oils have demonstrated a wide variety of pharmacological properties. The objective of this work was to examine the variation in the compositions of Curcuma rhizome essential oils. In this work, the volatile oils from C. longa and C. zedoaria were obtained and analyzed by gas chromatography-mass spectrometry. The chemical compositions of C. longa and C. zedoaria essential oils, including those reported in the literature, were analyzed by hierarchical cluster analysis. In addition, cluster analyses of the chemical compositions of C. aromatica and C. aeruginosa from the literature were also carried out. Curcuma longa volatiles were dominated by α-turmerone, curlone, ar-turmerone, β-sesquiphellandrene, α-zingiberene, germacrone, terpinolene, ar-curcumene, and α-phellandrene and showed four distinct chemical clusters. C. zedoaria rhizome oil contained 1,8-cineole, curzerenone/epi-curzerenone, α-copaene, camphor, β-caryophyllene, elemol, germacrone, curzerene, and β-elemene and showed two different chemical types. C. aromatica had three clearly defined clusters, and C. aeruginosa had three types.
Collapse
Affiliation(s)
- Noura S Dosoky
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
| | - Prabodh Satyal
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
32
|
Shi YG, Bian LQ, Zhu YJ, Zhang RR, Shao SY, Wu Y, Chen YW, Dang YL, Ding Y, Sun H. Multifunctional alkyl ferulate esters as potential food additives: Antibacterial activity and mode of action against Listeria monocytogenes and its application on American sturgeon caviar preservation. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Shi YG, Zhu YJ, Shao SY, Zhang RR, Wu Y, Zhu CM, Liang XR, Cai WQ. Alkyl Ferulate Esters as Multifunctional Food Additives: Antibacterial Activity and Mode of Action against Escherichia coli in Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12088-12101. [PMID: 30360622 DOI: 10.1021/acs.jafc.8b04429] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This work aims to prepare ferulic acid alkyl esters (FAEs) through the lipase-catalyzed reaction between methyl ferulate and various fatty alcohols in deep eutectic solvents and ascertain their antibacterial activities and mechanisms. Screens of antibacterial effects of FAEs against Escherichia coli ATCC 25922 ( E. coli) and Listeria monocytogenes ATCC 19115 ( L. monocytogenes) revealed that hexyl ferulate (FAC6) exerted excellent bacteriostatic and bactericidal effects on E. coli and L. monocytogenes (minimum inhibitory concentration (MIC): 1.6 and 0.1 mM, minimum bactericidal concentration (MBC): 25.6 and 0.2 mM, respectively). The antibacterial mechanism of FAC6 against E. coli was systematically studied to facilitate its practical use as a food additive with multifunctionalities. The growth and time-kill curves implied the partial cell lysis and inhibition of the growth of E. coli caused by FAC6. The result related to propidium iodide uptake and cell constituents' leakage (K+, proteins, nucleotides, and β-galactosidase) implied that bacterial cytomembranes were substantially compromised by FAC6. Variations on morphology and cardiolipin microdomains and membrane hyperpolarization of cells visually verified that FAC6 induced cell elongation and destructed the cell membrane with cell wall perforation. SDS-PAGE analysis and alterations of fluorescence spectra of bacterial membrane proteins manifested that FAC6 caused significant changes in constitutions and conformation of membrane proteins. Furthermore, it also could bind to minor grooves of E. coli DNA to form complexes. Meanwhile, FAC6 exhibited antibiofilm formation activity. These findings indicated that that FAC6 has promising potential to be developed as a multifunctional food additive.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| | - Yun-Jie Zhu
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| | - Shi-Yin Shao
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| | - Run-Run Zhang
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| | - Yu Wu
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| | - Chen-Min Zhu
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| | - Xian-Rui Liang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Wen-Qiang Cai
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition , Zhejiang Gongshang University , Hangzhou , Zhejiang 310035 , China
| |
Collapse
|
34
|
Zhou W, Wang J, Zhao Y, Yu L, Fang Y, Jin H, Zhou H, Zhang P, Liu Y, Zhang X, Liang X. Discovery of β2- adrenoceptor agonists in Curcuma zedoaria Rosc using label-free cell phenotypic assay combined with two-dimensional liquid chromatography. J Chromatogr A 2018; 1577:59-65. [DOI: 10.1016/j.chroma.2018.09.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
|
35
|
Bioactivity-based analysis and chemical characterization of anti-inflammatory compounds from Curcuma zedoaria rhizomes using LPS-stimulated RAW264.7 cells. Bioorg Chem 2018; 82:26-32. [PMID: 30267971 DOI: 10.1016/j.bioorg.2018.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 02/03/2023]
Abstract
Inflammation is not only a self-defense response of the innate immune system, but also the pathogenesis mechanism of multiple diseases such as arthritis, neurodegeneration, and cancer. Curcuma zedoaria Roscoe (Zingiberaceae), an indigenous plant of India, has been used traditionally in Ayurveda and folk medicine. As part of our ongoing efforts to screen traditional medicinal plants exhibiting pharmacological potential and to characterize the compounds involved, we examined the anti-inflammatory effects of the MeOH extract of C. zedoaria rhizomes using lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophage cells and found that MeOH extract inhibited the synthesis of nitric oxide (NO) in a dose-dependent manner (IC50: 23.44 ± 0.77 μg/mL). In our efforts to characterize the compounds responsible for these anti-inflammatory effects, bioactivity-guided fractionation of the MeOH extract and chemical investigation of its active hexane-soluble fraction led to the successful isolation of five sesquiterpenes (1-5), the structures of which were elucidated by NMR spectroscopic analysis and LC/MS analysis. Among them, curcuzedoalide (5) exhibited potent inhibitory effects on NO synthesis (IC50: 12.21 ± 1.67 μM) and also suppressed pre-inflammatory protein expression of iNOS and COX-2. Curcuzedoalide (5) was thus determined to be a contributor to the anti-inflammatory effect of C. zedoaria rhizomes and could be a potential candidate for therapeutic applications.
Collapse
|
36
|
Dosoky NS, Setzer WN. Chemical Composition and Biological Activities of Essential Oils of Curcuma Species. Nutrients 2018; 10:E1196. [PMID: 30200410 PMCID: PMC6164907 DOI: 10.3390/nu10091196] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Members of the genus Curcuma L. have been used in traditional medicine for centuries for treating gastrointestinal disorders, pain, inflammatory conditions, wounds, and for cancer prevention and antiaging, among others. Many of the biological activities of Curcuma species can be attributed to nonvolatile curcuminoids, but these plants also produce volatile chemicals. Essential oils, in general, have shown numerous beneficial effects for health maintenance and treatment of diseases. Essential oils from Curcuma spp., particularly C. longa, have demonstrated various health-related biological activities and several essential oil companies have recently marketed Curcuma oils. This review summarizes the volatile components of various Curcuma species, the biological activities of Curcuma essential oils, and potential safety concerns of Curcuma essential oils and their components.
Collapse
Affiliation(s)
- Noura S Dosoky
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
37
|
Akter J, Amzad Hossain M, Sano A, Takara K, Zahorul Islam M, Hou DX. Antifungal Activity of Various Species and Strains of Turmeric (Curcuma SPP.) Against Fusarium Solani Sensu Lato. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1815-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Lipase-Catalyzed Synthesis of Sucrose Monolaurate and Its Antibacterial Property and Mode of Action against Four Pathogenic Bacteria. Molecules 2018; 23:molecules23051118. [PMID: 29738519 PMCID: PMC6100556 DOI: 10.3390/molecules23051118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to evaluate the antibacterial activities and mode of action of sucrose monolaurate (SML) with a desirable purity, synthesized by Lipozyme TL IM-mediated transesterification in the novel ionic liquid, against four pathogenic bacteria including L. monocytogenes, B. subtilis, S. aureus, and E. coli. The antibacterial activity was determined by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and the time⁻kill assay. SML showed varying antibacterial activity against tested bacteria with MICs and MBCs of 2.5 and 20 mM for L. monocytogenes, 2.5 and 20 mM for B. subtilis, 10 and 40 mM for S. aureus, respectively. No dramatic inhibition was observed for E. coli at 80 mM SML. Mechanism of bacterial inactivation caused by SML was revealed through comprehensive factors including cell morphology, cellular lysis, membrane permeability, K⁺ leakage, zeta potential, intracellular enzyme, and DNA assay. Results demonstrated that bacterial inactivation against Gram-positive bacteria was primarily induced by the pronounced damage to the cell membrane integrity. SML may interact with cytoplasmic membrane to disturb the regulation system of peptidoglycan hydrolase activities to degrade the peptidoglycan layer and form a hole in the layer. Then, the inside cytoplasmic membrane was blown out due to turgor pressure and the cytoplasmic materials inside leaked out. Leakage of intracellular enzyme to the supernatants implied that the cell membrane permeability was compromised. Consequently, the release of K⁺ from the cytosol lead to the alterations of the zeta potential of cells, which would disturb the subcellular localization of some proteins, and thereby causing bacterial inactivation. Moreover, remarkable interaction with DNA was also observed. SML at sub-MIC inhibited biofilm formation by these bacteria.
Collapse
|
39
|
Jung EB, Trinh TA, Lee TK, Yamabe N, Kang KS, Song JH, Choi S, Lee S, Jang TS, Kim KH, Hwang GS. Curcuzedoalide contributes to the cytotoxicity of Curcuma zedoaria rhizomes against human gastric cancer AGS cells through induction of apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:48-55. [PMID: 29102767 DOI: 10.1016/j.jep.2017.10.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma zedoaria Roscoe (Zingiberaceae), also known as white turmeric or zedoaria, has been used in Ayurveda and traditional Chinese medicine to treat various cancers, and it possesses several sesquiterpenoid compounds. OBJECTIVE This study aimed to evaluate the therapeutic effects of a methanolic (MeOH) extract of C. zedoaria rhizomes, as well as its active constituents, against gastric cancer, which is a frequently diagnosed cancer in South Korea. MATERIALS AND METHODS Repeated column chromatography, together with semi-preparative HPLC purification, was used to separate the bioactive constituents from the C. zedoaria MeOH extract. The cytotoxic effects of the C. zedoaria MeOH extract and its active compounds were measured in human gastric cancer AGS cells. Expression of proteins related to apoptosis was evaluated using Western blotting analysis. RESULTS The MeOH extract of C. zedoaria rhizomes exerted a cytotoxic effect on AGS cells (IC50: 96.60 ± 4.87μg/mL). Based on the bioactivity-guided fractionation for antiproliferative activity, a chemical investigation of the MeOH extract led to the isolation of five sesquiterpenes including isoprocurcumenol (1), germacrone (2), curzerenone (3), curcumenol (4), and curcuzedoalide (5). Among these, curcuzedoalide demonstrated the strongest effect in suppressing gastric cancer cell proliferation in a dose-dependent manner with an IC50 value of 125.11±2.77μM. Western blotting analysis showed that curcuzedoalide inhibited AGS human gastric cancer cell viability by activating caspase-8, caspase-9, caspase-3, and PARP, which contributed to apoptotic cell death in AGS human gastric cancer cells. CONCLUSION These data indicate that curcuzedoalide contributed to the cytotoxicity of C. zedoaria by activating the cleavage of caspases and PARP, which are representative markers for apoptosis. Therefore, curcuzedoalide is a positive candidate for the development of novel chemotherapeutics.
Collapse
Affiliation(s)
- Eun Bee Jung
- College of Korean Medicine, Gachon University, Seongnam 13120, South Korea.
| | - Tuy An Trinh
- College of Korean Medicine, Gachon University, Seongnam 13120, South Korea.
| | - Tae Kyoung Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam 13120, South Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, South Korea.
| | - Ji Hoon Song
- Department of Medicine, University of Ulsan College of Medicine, Seoul 05505, South Korea.
| | - Sungyoul Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, South Korea.
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546, South Korea.
| | - Tae Su Jang
- Institute of Green Bio Science & Technology, Seoul National University, Pyeong Chang 232-916, South Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, South Korea.
| |
Collapse
|
40
|
Han JW, Shim SH, Jang KS, Choi YH, Dang QL, Kim H, Choi GJ. In vivo assessment of plant extracts for control of plant diseases: A sesquiterpene ketolactone isolated from Curcuma zedoaria suppresses wheat leaf rust. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:135-140. [PMID: 29173073 DOI: 10.1080/03601234.2017.1397448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As an alternative to synthetic pesticides, natural materials such as plant extracts and microbes have been considered to control plant diseases. In this study, methanol extracts of 120 plants were explored for in vivo antifungal activity against Rhizoctonia solani, Botrytis cinerea, Phytophthora infestans, Puccinia triticina, and Blumeria graminis f. sp. hordei. Of the 120 plant extracts, eight plant extracts exhibited a disease control efficacy of more than 90% against at least one of five plant diseases. In particular, a methanol extract of Curcuma zedoaria rhizomes exhibited strong activity against wheat leaf rust caused by P. triticina. When the C. zedoaria methanol extracts were partitioned with various solvents, the layers of n-hexane, methylene chloride, and ethyl acetate showed disease control values of 100, 80, and 43%, respectively, against wheat leaf rust. From the C. zedoaria rhizome extracts, an antifungal substance was isolated and identified as a sesquiterpene ketolactone based on the mass and nuclear magnetic resonance spectral data. The active compound controlled the development of rice sheath blight, wheat leaf rust, and tomato late blight. Considering the in vivo antifungal activities of the sesquiterpene ketolactone and the C. zedoaria extracts, these results suggest that C. zedoaria can be used as a potent fungicide in organic agriculture.
Collapse
Affiliation(s)
- Jae Woo Han
- a Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology , Daejeon , Republic of Korea
| | - Sang Hee Shim
- b College of Pharmacy, Duksung Women's University , Seoul , Republic of Korea
| | - Kyoung Soo Jang
- a Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology , Daejeon , Republic of Korea
| | - Yong Ho Choi
- a Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology , Daejeon , Republic of Korea
| | - Quang Le Dang
- c Research and Development Center of Bioactive Compounds, Vietnam Institute of Industrial Chemistry , Hanoi , Vietnam
| | - Hun Kim
- a Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology , Daejeon , Republic of Korea
- d Department of Medicinal Chemistry and Pharmacology , Korea University of Science and Technology , Daejeon , Korea
| | - Gyung Ja Choi
- a Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology , Daejeon , Republic of Korea
- d Department of Medicinal Chemistry and Pharmacology , Korea University of Science and Technology , Daejeon , Korea
| |
Collapse
|
41
|
Rajkumari S, Sanatombi K. Nutritional value, phytochemical composition, and biological activities of edible Curcuma species: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1387556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - K. Sanatombi
- Department of Biotechnology, Manipur University, Imphal, India
| |
Collapse
|
42
|
Wu J, Feng Y, Han C, Huang W, Shen Z, Yang M, Chen W, Ye L. Germacrone derivatives: synthesis, biological activity, molecular docking studies and molecular dynamics simulations. Oncotarget 2017; 8:15149-15158. [PMID: 28148897 PMCID: PMC5362474 DOI: 10.18632/oncotarget.14832] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/13/2017] [Indexed: 11/25/2022] Open
Abstract
Germacrone is one of the major bioactive components in the Curcuma zedoaria oil product, which is extracted from Curcuma zedoaria Roscoe, known as zedoary. The present study designed some novel germacrone derivatives based on combination principles, synthesized these compounds, and investigated their inhibitions on Bel-7402, HepG2, A549 and HeLa cells. Meanwhile, the study evaluated inhibitions of these derivatives on c-Met kinase, which has been detected in a number of cancers. The results suggested that the majority of the compounds showed stronger inhibitory effect on cancers and c-Met kinase than germacrone. Furthermore, our docking experiments analyzed the results and explained the molecular mechanism. Molecular dynamics simulations were then applied to perform further evaluation of the binding stabilities between compounds and their receptors.
Collapse
Affiliation(s)
- Jie Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Feng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chao Han
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wu Huang
- Inspection and Quarantine Technology Center of Zhanjiang Entry-Exit Inspection and Quarantine Bureau, Zhanjiang 524001, China
| | - Zhibin Shen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengdie Yang
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiqiang Chen
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
43
|
Xiong C, Li Q, Li S, Chen C, Chen Z, Huang W. In vitro Antimicrobial Activities and Mechanism of 1-Octen-3-ol against Food-related Bacteria and Pathogenic Fungi. J Oleo Sci 2017; 66:1041-1049. [PMID: 28794307 DOI: 10.5650/jos.ess16196] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
1-Octen-3-ol, known as mushroom alcohol, is a natural product extracted from fungi and plants. Its antimicrobial activities against five common food-related bacteria and two pathogenic fungi were evaluated in this paper, including Staphylococcus aureus, Bacillus subtilis, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, Fusarium tricinctum and Fusarium oxysporum. The results showed that 1-octen-3-ol had a strong antibacterial activity against the tested bacteria, especially against Gram-positive bacteria, and it can also inhibit fungal growth and spore germination. The minimum inhibitory concentrations (MICs) for Gram-positive bacteria and Gram-negative bacteria were 1.0 and 2.0 mg/mL, respectively. The minimum bactericidal concentrations (MBCs) for Gram-positive bacteria and Gram-negative bacteria were 4.0 and 8.0 mg/mL, respectively. The completely inhibitory concentrations for fungal growth and spore germination were 8.0 and 2.0 mg/ml, respectively. Cell constituents' leakage and scanning electron microscope assays indicated that 1-octen-3-ol changed the permeability of the cell membrane. Discrepant antimicrobial activity between 1-octen-3-ol and 1-octen-3-one indicated that hydroxyl may play a decisive role in antimicrobial activity. It is suggested that 1-octen-3-ol, with attractive mushroom aroma and antimicrobial activity, has potential applications in control of pathogens.
Collapse
Affiliation(s)
- Chuan Xiong
- College of Life Science, Sichuan University.,Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences
| | - Qiang Li
- College of Life Science, Sichuan University.,Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences
| | - Shuhong Li
- Biotechnology & Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences
| | - Cheng Chen
- Institute of plant protection, Sichuan Academy of Agricultural Sciences
| | - Zuqin Chen
- College of Life Science, Sichuan University
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences
| |
Collapse
|
44
|
Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria. Food Chem 2017; 220:249-256. [DOI: 10.1016/j.foodchem.2016.09.187] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/22/2022]
|
45
|
Evaluation of Efficacy and Safety of Dan'e-Fukang Soft Extract in the Treatment of Endometriosis: A Meta-Analysis of 39 Randomized Controlled Trials Enrolling 5442 Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9767391. [PMID: 28337228 PMCID: PMC5350406 DOI: 10.1155/2017/9767391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/20/2016] [Indexed: 11/28/2022]
Abstract
Objective. To systematically evaluate the efficacy and safety of Dan'e-fukang soft extract in endometriosis treatment. Method. PubMed, CNKI, Wanfang Database, VIP, SinoMed, and Cochrane Library were searched. Randomized controlled trials (RCTs) comparing the efficacy of Dan'e-fukang soft extract and conventional western medicines for endometriosis treatment were included. The data were extracted independently by two people and analyzed using RevMan 5.2.0 software. The relative risk (RR) and mean difference (MD) with 95% confidence intervals were considered as effective outcome indicators. Results. Thirty-nine papers including 5442 patients with endometriosis were included in this study. A meta-analysis revealed that Dan'e-fukang soft extract was more efficient than gestrinone in the treatment of endometriosis (RR = 1.08, 95% CI = 1.03 to 1.15, I2 = 71%, REM, 18 trials) and its efficacy was comparable to that of danazol and mifepristone. Dan'e-fukang soft extract was also as effective as gestrinone and mifepristone in terms of relapse rate and relieving dysmenorrhea. The incidence of adverse reactions was lower than that of conventional western medicines. Conclusions. The results of this study showed that Dan'e-fukang soft extract offers certain advantages in endometriosis treatment, but rigorously designed, strictly implemented RCTs are needed to further validate its efficacy.
Collapse
|
46
|
Ye L, Wu J, Chen W, Feng Y, Shen Z. Novel anti-cancer agents based on germacrone: design, synthesis, biological activity, docking studies and MD simulations. RSC Adv 2017. [DOI: 10.1039/c6ra26944c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Germacrone is a major activity component found in Curcuma zedoaria oil product, which is extracted from Curcuma zedoaria.
Collapse
Affiliation(s)
- Lianbao Ye
- Medicinal Chemistry of Department
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Jie Wu
- Medicinal Chemistry of Department
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Weiqiang Chen
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Yu Feng
- Medicinal Chemistry of Department
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Zhibing Shen
- School of Traditional Chinese Medicine
- Guangdong Pharmaceutical University
- Guangzhou
- China
| |
Collapse
|
47
|
Osorio-Tobón JF, Carvalho PI, Barbero GF, Nogueira GC, Rostagno MA, Meireles MADA. Fast analysis of curcuminoids from turmeric (Curcuma longa L.) by high-performance liquid chromatography using a fused-core column. Food Chem 2016; 200:167-74. [DOI: 10.1016/j.foodchem.2016.01.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 01/14/2023]
|
48
|
Tariq S, Imran M, Mushtaq Z, Asghar N. Phytopreventive antihypercholesterolmic and antilipidemic perspectives of zedoary (Curcuma Zedoaria Roscoe.) herbal tea. Lipids Health Dis 2016; 15:39. [PMID: 26920896 PMCID: PMC4769493 DOI: 10.1186/s12944-016-0210-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/23/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Metabolic syndrome is an increasingly prevalent problem, not only in industrialized developed countries, but in developing countries as well. The modern healthcare to reduce the dysfunction of metabolic syndrome is burdened with great problems of unsafe medicines and certain degree of side effects. Medicinal plants and derived component products are becoming increasingly popular in modern society as natural alternatives to synthetic multiple drugs for the treatment of hypercholesterolemia and hypertriglyceridemia. The present research work was carried out to evaluate the zedoary (Curcuma zedoaria Roscoe.) herbal tea (ZHT) for antihypercholestrolemic and antilipidemic perspectives in discerning consumers. METHODS Zedoary rhizome dried powder (ZRDP) after proximate composition analysis was used to prepared ZHT samples as T1 (500 mg ZRDP), T2 (1 g ZRDP) and T3 (1.5 g ZRDP) in 200 mL boiling water for 5 minutes, respectively. ZHT samples were characterized for total phenolic compounds (TPC), DPPH inhibition, total flavonoids, color tonality (L*, a* and b* value), pH, acidity, total soluble solids (TSS) and sensory acceptance. Thirty mild-hypercholestrolemic male human volunteers were randomly allocated to three groups (G1, G2 and G3) and each group consisting of 1o mild-hypercholestrolemic male human subjects. The volunteers were assigned ZHT samples for consecutive two months. The blood drawn for day 0, day 30 and day 60 after an overnight 12 h fast was analyzed for serum parameters such as total cholesterol (TC), high-density lipoprotein cholesterol (HDL-cholesterol), low-density lipoprotein cholesterol (LDL-cholesterol) and triglycerides (TG) concentration. RESULTS The ZRDP possessed abundantly the crude protein (13.5 ± 0.68 %), total dietary fiber (21.86 ± 0.71 %), acid detergent fiber (13.22 ± 0.44 %), neutral detergent fiber (18.68 ± 0.53 %) and mineral contents. Highest TPC, DPPH inhibition and total flavonoids values were observed 9.74 ± 0.64 (mg GAE/g DW), 47.28 ± 1.62 (%) and 17.12 ± 0.75 (QE mg/g), respectively in T3. L* value was significantly (p ≤ 0.05) low for T3 samples. In contrast, a* value and b* value was significantly (p ≤ 0.05) higher for T3 when compared with T1 and T2. T3 samples showed lower pH (5.13 ± 0.13) and higher acidity (0.25 ± 0.08) values than T1 (5.64 ± 0.25, 0.17 ± 0.05) and T2 (5.42 ± 0.21, 0.21 ± 0.06), respectively. Similarly, an increasing trend in TSS contents was observed. Sensory scores assigned to color, flavor, aroma and overall acceptability attributes varied in a quite narrow range for all ZHT samples. The lowest evaluation scores were recorded for T3 samples. The G3 showed the more reduction in body weight and BMI during efficacy study as compared to G1 and G2. The decrease in serum TC for G1, G2 and G3 on day 60 was observed 9 %, 14 % and 17 %, respectively when compared with reference value at day 0. The consumption of T3 resulted in significant increase (6.8 %) of HDL-cholesterol after two months. A trend in decrease of serum LDL-cholesterol (5.6 %) and TG (12.5 %) was also observed after consumption of T3 at day 60. CONCLUSIONS The results of the present study conclude that the strong phenolic contents and radical scavenging activity of zedoary rhizome have protective role against hypercholesterolemic and lipidemic conditions.
Collapse
Affiliation(s)
- Sara Tariq
- Department of Food Science, Nutrition and Home Economics, Government College University, Faisalabad, Pakistan.
| | - Muhammad Imran
- Institute of Home and Food Sciences, Faculty of Science and Technology, Government College University, Faisalabad, Pakistan.
| | - Zarina Mushtaq
- Institute of Home and Food Sciences, Faculty of Science and Technology, Government College University, Faisalabad, Pakistan.
| | - Nosheen Asghar
- Department of Food Science, Nutrition and Home Economics, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
49
|
Osorio-Tobón JF, Carvalho PI, Rostagno MA, Petenate AJ, Meireles MAA. Precipitation of curcuminoids from an ethanolic turmeric extract using a supercritical antisolvent process. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Hadisaputri YE, Miyazaki T, Suzuki S, Kubo N, Zuhrotun A, Yokobori T, Abdulah R, Yazawa S, Kuwano H. Molecular characterization of antitumor effects of the rhizome extract from Curcuma zedoaria on human esophageal carcinoma cells. Int J Oncol 2015; 47:2255-63. [PMID: 26498695 DOI: 10.3892/ijo.2015.3199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/18/2015] [Indexed: 11/06/2022] Open
Abstract
Curcuma zedoaria has been used as a traditional agent against malignant diseases. To elucidate detailed mechanisms producing such an activity, characterization and determination of molecular mechanisms of its antitumor effects was conducted. Inhibiting activities against cell proliferation, invasion and colony formation, and expression levels of corresponding molecules were investigated using human esophageal cancer TE-8 cells treated with the rhizome extract from C. zedoaria. Antitumor effect of the extract administered orally was also examined in tumor-bearing mice. The extract possessed strong anti-proliferation and invasion activities against TE-8 cells. Further, upregulated PTEN and downregulated phosphorylated Akt, mTOR and STAT3 expressions in the cells were induced shortly after treatment with the extract, followed by attenuation of FGFR1 and MMP-2, activation of caspase-9, caspase-3 and PARP, and suppression of Bcl-2 expressions, which led the cells to apoptotic cell death. Furthermore, tumor formation in mice was significantly suppressed through the oral administration of the extract. Taken together, these results suggest that the C. zedoaria extract could be a promising agent against esophageal cancer.
Collapse
Affiliation(s)
- Yuni Elsa Hadisaputri
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
| | - Tatsuya Miyazaki
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
| | - Shigemasa Suzuki
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
| | - Norio Kubo
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
| | - Ade Zuhrotun
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Bandung, Indonesia
| | - Takehiko Yokobori
- Department of Molecular and Cellular Pharmacology, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Bandung, Indonesia
| | - Shin Yazawa
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
| |
Collapse
|