1
|
Xie H, Zhou Y, Li M, Chen Z, Zheng Y. Attitude, knowledge, and barriers of Chinese clinical and nursing students in implementing complementary and alternative medicine for COVID-19:a cross-sectional study. Heliyon 2024; 10:e30915. [PMID: 38778948 PMCID: PMC11108821 DOI: 10.1016/j.heliyon.2024.e30915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Background Complementary and alternative medicine (CAM) has emerged to combat the global COVID-19 pandemic. However, no studies have been conducted to evaluate the attitudes, knowledge, and barriers of Chinese clinical and nursing students in implementing CAM during this period. Objective The aim of this study was to investigate the attitude, knowledge, and barriers of Chinese clinical and nursing students in using CAM in the context of COVID-19. Methods An online-based cross-sectional survey was carried out among Chinese medical students, majoring in clinical medicine or nursing, in Nanjing, Jiangsu Province, and Zhengzhou, Henan Province from May to July 2022. A total of 402 clinical and 644 nursing students responded to a self-administered questionnaire through the Questionnaire Star and WeChat APPs. SPSS 25 (version 25) was used for data analysis. Proportions were compared by Chi-square test. Level of significance between groups was analyzed using independent student t-test and Mann-Whitney U test. Results The average score of attitude was 46.63 (SD: 7.38) in clinical students and 49.84 (SD: 6.76) in nursing students. The top four most commonly used CAM treatments in China were proprietary Chinese medicine, diet therapy, decoction, and acupuncture and moxibustion (59.66 %, 22.28 %, 11.66 %, 9.85 %). The students had a good mastery of knowledge about CAM-based prevention and control of COVID-19 (mean score 7.36). The score of CAM knowledge in nursing students was significantly higher than that in clinical students (7.56 VS 7.04, P = 0.000). Gender, grade, previous use, age, and knowledge score could affect students' attitude towards CAM. The main barriers in spreading CAM use included time-consumption, bad taste, and fear of treatment-related pain (24.5 %). Compared with clinical students, nursing students were more likely to recommend CAM to patients in the future (P = 0.002). Conclusions During the COVID-19 pandemic, nursing students were more positive towards CAM use, had a better mastery of CAM knowledge than clinical students. CAM is expected to provide better outcomes in COVID-19 patients. Future studies should focus on the changes in students' attitudes over time and exploration of influencing factors on CAM use.
Collapse
Affiliation(s)
- Hui Xie
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450000, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Yaqiu Zhou
- Department of Geriatrics, The Fourth People's Hospital of Taizhou, Taizhou, 225300, China
| | - Muhan Li
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhaoqi Chen
- Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Yuling Zheng
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450000, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| |
Collapse
|
2
|
Wei CY, Shen HS, Yu HH. Effects and core patterns of Chinese herbal medicines on hematologic manifestations in systemic lupus erythematosus: A systematic review and meta-analysis. Explore (NY) 2024; 20:168-180. [PMID: 37643948 DOI: 10.1016/j.explore.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE This systematic review and meta-analysis of randomized controlled trials (RCTs) aimed to evaluate the effects of Chinese herbal medicines (CHMs) on hematologic manifestations in patients with systemic lupus erythematosus (SLE). DATA SOURCES PubMed, Embase, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, and Airiti Library were searched for the period January 2000 to February 2022. STUDY SELECTION RCTs involving CHMs in patients with SLE with available hematologic data. DATA EXTRACTION The primary outcomes included white blood cell (WBC) count, hemoglobin level, and platelet count. The Cochrane risk of bias tool was used to assess the quality of the included RCTs. Sensitivity analysis of RCTs with abnormal hematologic data before intervention was performed to verify the robustness of the results. Subgroup analysis was also applied for results with high heterogenicity. Core patterns of used herbal drug pairs had also been analyzed and visualized. DATA SYNTHESIS Fifteen RCTs involving 1183 participants were included. The effects of elevating WBC count (weighted mean difference [WMD]: 0.69; 95% confidence interval [CI]: 0.33-1.06; p <0.001), hemoglobin levels (WMD: 0.64; 95% CI: 0.31-0.97; p <0.001), and platelet count (WMD: 0.61; 95% CI: 0.48-0.74; p <0.001) in the CHM group were significantly greater than those in the control group. In total, 23 single herbs and 152 herbal drug pairs were identified for core patterns network analysis. CONCLUSIONS We demonstrated significantly superior therapeutic effects achieved with CHMs and conventional therapy regarding leukopenia, anemia, and thrombocytopenia compared to that of conventional therapy alone in patients with SLE.
Collapse
Affiliation(s)
- Chen-Ying Wei
- Department of Chinese Medicine, Taoyuan Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsuan-Shu Shen
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Sports Medicine Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Han-Hua Yu
- Division of Rheumatology, Allergy and Immunology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Li Y, Teng M, Yang H, Li S, Liu X, Zhang J, Qiu Y, Li L. Impact of macrophage differentiation on hematopoietic function enhancement by Shenzhu ErKang Syrup. Aging (Albany NY) 2024; 16:169-190. [PMID: 38175693 PMCID: PMC10817372 DOI: 10.18632/aging.205358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Shenzhu Erkang Syrup (SZEK) is a traditional Chinese medicine that improves spleen and stomach function, tonifying the Qi and activating the blood; however, its therapeutic effects in hematopoietic dysfunction and their underlying mechanism remain unexplored. In this study, mice were given cyclophosphamide (100 mg/kg) by intraperitoneal injections for three days to produce hematopoietic dysfunction model. We investigated the hematopoietic effect and mechanism of SZEK in mice with hematopoietic dysfunction via histopathological examination, flow cytometry, enzyme-linked immunosorbent assay, and Western blotting combined with intestinal flora and serum metabolomics analysis. In mice with hematopoietic dysfunction, SZEK (gavage, 0.3 mL/25 g) alleviated pathological damage to the bone marrow and spleen; increased the number of naïve cells (Lin-), hematopoietic stem cells (Lin-Sca-1+c-Kit+), long-term self-renewing hematopoietic stem cells (Lin-Sca-1+c-Kit+CD48-CD150+), B lymphocytes (CD45+CD19+), and macrophages (CD11b+F4/80+) in the bone marrow; and reduced inflammation. Preliminary intestinal flora and serum metabolome analyses indicated that the pro-hematopoietic mechanism of SZEK was associated with macrophage differentiation. Further validation revealed that SZEK promoted hematopoiesis by decreasing the number of M2 macrophages and inhibiting the secretion of negative hematopoietic regulatory factors in mice with hematopoietic dysfunction.
Collapse
Affiliation(s)
- Yuan Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Meng Teng
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Hongxin Yang
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Siyu Li
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Jicheng Zhang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130012, Jilin, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
4
|
Cheng X, Jin S, Feng M, Miao Y, Dong Q, He B. The Role of Herbal Medicine in Modulating Bone Homeostasis. Curr Top Med Chem 2024; 24:634-643. [PMID: 38333981 DOI: 10.2174/0115680266286931240201131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Osteoporosis and other bone diseases are a major public health concern worldwide. Current pharmaceutical treatments for bone disorders have limitations, driving interest in complementary herbal medicines that can help maintain bone health. This review summarizes the scientific evidence for medicinal herbs that modulate bone cell activity and improve bone mass, quality and strength. Herbs with osteogenic, anti-osteoporotic, and anti-osteoclastic effects are discussed, including compounds and mechanisms of action. Additionally, this review examines the challenges and future directions for translational research on herbal medicines for osteoporosis and bone health. While preliminary research indicates beneficial bone bioactivities for various herbs, rigorous clinical trials are still needed to verify therapeutic efficacy and safety. Further studies should also elucidate synergistic combinations, bioavailability of active phytochemicals, and precision approaches to match optimal herbs with specific etiologies of bone disease. Advancing evidence- based herbal medicines may provide novel alternatives for promoting bone homeostasis and treating skeletal disorders.
Collapse
Affiliation(s)
- Xinnan Cheng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
- Shaanxi, University of Chinese Medicine, Xian Yang, 710000, China
| | - Shanshan Jin
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
- Shaanxi, University of Chinese Medicine, Xian Yang, 710000, China
| | - Mingzhe Feng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
| | - Yunfeng Miao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
- Shaanxi, University of Chinese Medicine, Xian Yang, 710000, China
| | - Qi Dong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
| |
Collapse
|
5
|
Chen W, Xin J, Wei X, Ding Q, Shen Y, Xu X, Wei Y, Lv Y, Wang J, Li Z, Zhang W, Zu X. Integrated transcriptomic and metabolomic profiles reveal the protective mechanism of modified Danggui Buxue decoction on radiation-induced leukopenia in mice. Front Pharmacol 2023; 14:1178724. [PMID: 37601071 PMCID: PMC10434993 DOI: 10.3389/fphar.2023.1178724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Leukopenia caused by radiation hinders the continuous treatment of cancers. Danggui Buxue Decoction (DBD) has been widely used in clinical owing to low toxicity and definite therapeutic effects to increase leukocytes. Meanwhile, icaritin (ICT) has also been proved to have the effect of boosting peripheral blood cells proliferation. However, there is no study to prove the efficacy of MDBD (Modified Danggui Buxue Decoction), a derivative herbal formula composed of DBD and ICT, in the treatment of radiation-induced leukopenia. In this study, we performed a model of 3.5 Gy whole-body radiation to induce leukopenia in mice. The results of pharmacodynamic studies demonstrated that MDBD could significantly increase the white blood cells in peripheral blood by improving the activity of bone marrow nuclear cells, reducing bone marrow damage, modulating spleen index, and regulating hematopoietic factors to alleviate leukopenia. We also analyzed the integrated results of metabolomics and transcriptomics and found that MDBD could relieve leukopenia and alleviate bone marrow damage by targeting steroid biosynthesis and IL-17 signaling pathway, in which the key genes are Jun, Cxcl2 and Egr1. Therefore, our study provides a basis for the effectiveness and compatibility in the combination of traditional Chinese medicine formula and small molecule drugs.
Collapse
Affiliation(s)
- Wei Chen
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jiayun Xin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintong Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qianqian Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yunheng Shen
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xike Xu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yanping Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanhui Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanhong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weidong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianpeng Zu
- School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
The Application of Ethnomedicine in Modulating Megakaryocyte Differentiation and Platelet Counts. Int J Mol Sci 2023; 24:ijms24043168. [PMID: 36834579 PMCID: PMC9961075 DOI: 10.3390/ijms24043168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Megakaryocytes (MKs), a kind of functional hematopoietic stem cell, form platelets to maintain platelet balance through cell differentiation and maturation. In recent years, the incidence of blood diseases such as thrombocytopenia has increased, but these diseases cannot be fundamentally solved. The platelets produced by MKs can treat thrombocytopenia-associated diseases in the body, and myeloid differentiation induced by MKs has the potential to improve myelosuppression and erythroleukemia. Currently, ethnomedicine is extensively used in the clinical treatment of blood diseases, and the recent literature has reported that many phytomedicines can improve the disease status through MK differentiation. This paper reviewed the effects of botanical drugs on megakaryocytic differentiation covering the period 1994-2022, and information was obtained from PubMed, Web of Science and Google Scholar. In conclusions, we summarized the role and molecular mechanism of many typical botanical drugs in promoting megakaryocyte differentiation in vivo, providing evidence as much as possible for botanical drugs treating thrombocytopenia and other related diseases in the future.
Collapse
|
7
|
Ma CC, Jiang YH, Wang Y, Xu RR. The Latest Research Advances of Danggui Buxue Tang as an Effective Prescription for Various Diseases: A Comprehensive Review. Curr Med Sci 2022; 42:913-924. [PMID: 36245031 DOI: 10.1007/s11596-022-2642-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
Abstract
Danggui Buxue Tang (DBT) is composed of Astragali Radix and Angelicae Sinensis Radix in a weight ratio of 5:1. The recipe of the decoction is simple, and DBT has been widely used in the treatment of blood deficiency syndrome for more than 800 years in China. Studies on its chemical constituents show that saponins, flavonoids, volatile oils, organic acids, and polysaccharides are the main components of DBT. Many techniques such as third-generation sequencing, PCR-denaturing gradient gel electrophoresis, and HPLC-MS have been used for the quality control of DBT. DBT has a wide range of biological activities, including blood enhancement, antagonizing diabetic nephropathy, cardiovascular protection, immunity stimulation, estrogen-like effect, and antifibrosis, among others. In this paper, we summarize the recent research advances of DBT in terms of its components, pharmacological activities, and possible mechanisms of action as well as provide suggestions for further research.
Collapse
Affiliation(s)
- Chen-Chen Ma
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yue-Hua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Rui-Rong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
8
|
Caulis Polygoni Multiflori Accelerates Megakaryopoiesis and Thrombopoiesis via Activating PI3K/Akt and MEK/ERK Signaling Pathways. Pharmaceuticals (Basel) 2022; 15:ph15101204. [PMID: 36297316 PMCID: PMC9607024 DOI: 10.3390/ph15101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/23/2022] Open
Abstract
Thrombocytopenia is one of the most common complications of cancer therapy. Until now, there are still no satisfactory medications to treat chemotherapy and radiation-induced thrombocytopenia (CIT and RIT, respectively). Caulis Polygoni Multiflori (CPM), one of the most commonly used Chinese herbs, has been well documented to nourish blood for tranquilizing the mind and treating anemia, suggesting its beneficial effect on hematopoiesis. However, it is unknown whether CPM can accelerate megakaryopoiesis and thrombopoiesis. Here, we employ a UHPLC Q–Exactive HF-X mass spectrometer (UHPLC QE HF-X MS) to identify 11 ingredients in CPM. Then, in vitro experiments showed that CPM significantly increased megakaryocyte (MK) differentiation and maturation but did not affect apoptosis and lactate dehydrogenase (LDH) release of K562 and Meg-01 cells. More importantly, animal experiments verified that CPM treatment markedly accelerated platelet recovery, megakaryopoiesis and thrombopoiesis in RIT mice without hepatic and renal toxicities in vivo. Finally, RNA-sequencing (RNA-seq) and western blot were used to determine that CPM increased the expression of proteins related to PI3K/Akt and MEK/ERK (MAPK) signaling pathways. On the contrary, blocking PI3K/Akt and MEK/ERK signaling pathways with their specific inhibitors suppressed MK differentiation induced by CPM. In conclusion, for the first time, our study demonstrates that CPM may be a promised thrombopoietic agent and provide an experimental basis for expanding clinical use.
Collapse
|
9
|
Hemostatic Effect of 20(S)-Panaxadiol by Induced Platelet Aggregation Depending on Calcium Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8265898. [PMID: 36177062 PMCID: PMC9514943 DOI: 10.1155/2022/8265898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022]
Abstract
Panax notoginseng (Burk.) F.H. Chen is the most traditional hemostatic herb in China. Our previous research found that 20(S)-protopanaxadiol showed the hemostatic effect. And 20(S)-panaxadiol (PD) has a similar structure to 20(S)-protopanaxadiol with a dammarane skeleton. So, this article mainly studies the hemostatic effect of PD. The mouse tail amputation and liver scratch models were used to detect the hemostatic effect of PD. Blood routine and plasma coagulation parameters were measured by using a blood analyzer. The platelet aggregometer analyzed the platelet aggregation rate and adenosine triphosphate (ATP) concentration. Moreover, the intracellular calcium concentration ([Ca2+]i), P-selectin (CD62P), PAC-1 (GP IIb/IIIa receptor marker), and cyclic adenosine monophosphate (cAMP) of platelets were also detected. The results showed that PD obviously shortened the bleeding time of the model mouse, affected the RBC and PLT parameters of rats, reduced APTT and TT, elevated FIB concentration, and promoted human/rat-washed platelet aggregation in vitro. PD promoted the release of ATP and [Ca2+]i and slightly increased the expression of CD62P and PAC-1 of platelets without 1 mM Ca2+. After adding 1 mM Ca2+, PD obviously increased ATP releasing and CD62P and GP IIb/IIIa expression rate and decreased the cAMP level of platelets. These parameter changes of PD-caused platelet were inhibited by vorapaxar. Besides, PD increased the phosphorylation of phosphoinositide 3-kinase/protein kinase B/glycogen synthase kinase 3β (PI3K/Akt/GSK3β) of human platelets. PD is an important hemostatic ingredient in Panax notoginseng, which induced platelet aggregation by affecting the calcium signaling and activating the PI3K/Akt/GSK3β signaling pathway.
Collapse
|
10
|
Zhang H, Zhang Y, Tang X, Su W, Yang C, Pan D, Zhao D, Qi B, Li X. Hemostatic Effect of 20(S)-Panaxadiol by Induced Platelet Aggregation Depending on Calcium Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1-18. [DOI: org/10.1155/2022/8265898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Panax notoginseng (Burk.) F.H. Chen is the most traditional hemostatic herb in China. Our previous research found that 20(S)-protopanaxadiol showed the hemostatic effect. And 20(S)-panaxadiol (PD) has a similar structure to 20(S)-protopanaxadiol with a dammarane skeleton. So, this article mainly studies the hemostatic effect of PD. The mouse tail amputation and liver scratch models were used to detect the hemostatic effect of PD. Blood routine and plasma coagulation parameters were measured by using a blood analyzer. The platelet aggregometer analyzed the platelet aggregation rate and adenosine triphosphate (ATP) concentration. Moreover, the intracellular calcium concentration ([Ca2+]i), P-selectin (CD62P), PAC-1 (GP IIb/IIIa receptor marker), and cyclic adenosine monophosphate (cAMP) of platelets were also detected. The results showed that PD obviously shortened the bleeding time of the model mouse, affected the RBC and PLT parameters of rats, reduced APTT and TT, elevated FIB concentration, and promoted human/rat-washed platelet aggregation in vitro. PD promoted the release of ATP and [Ca2+]i and slightly increased the expression of CD62P and PAC-1 of platelets without 1 mM Ca2+. After adding 1 mM Ca2+, PD obviously increased ATP releasing and CD62P and GP IIb/IIIa expression rate and decreased the cAMP level of platelets. These parameter changes of PD-caused platelet were inhibited by vorapaxar. Besides, PD increased the phosphorylation of phosphoinositide 3-kinase/protein kinase B/glycogen synthase kinase 3β (PI3K/Akt/GSK3β) of human platelets. PD is an important hemostatic ingredient in Panax notoginseng, which induced platelet aggregation by affecting the calcium signaling and activating the PI3K/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuyao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaolei Tang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Wenjie Su
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chunhui Yang
- Department of Tuina, The Affiliated Hospital to Changchun University of Chinese Medicine, 130021, China
| | - Daian Pan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Bin Qi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
11
|
Tie D, Fan Z, Chen D, Chen X, Chen Q, Chen J, Bo H. Mechanisms of Danggui Buxue Tang on Hematopoiesis via Multiple Targets and Multiple Components: Metabonomics Combined with Database Mining Technology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1155-1171. [PMID: 35475977 DOI: 10.1142/s0192415x22500471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aimed to explore the mechanism of action of Danggui Buxue Tang (DBT) with its multiple components and targets in the synergistic regulation of hematopoiesis. Mouse models of hematopoiesis were established using antibiotics. Metabolomics was used to detect body metabolites and enriched pathways. The active ingredients, targets, and pathways of DBT were analyzed using system pharmacology. The results of metabolomics and system pharmacology were integrated to identify the key pathways and targets. A total of 515 metabolites were identified using metabolomics. After the action of antibiotics, 49 metabolites were markedly changed: 23 were increased, 26 were decreased, and 11 were significantly reversed after DBT administration. Pathway enrichment analysis showed that these 11 metabolites were related to bile secretion, cofactor biosynthesis, and fatty acid biosynthesis. The results of the pharmacological analysis showed that 616 targets were related to DBT-induced anemia, which were mainly enriched in biological processes, such as bile secretion, biosynthesis of cofactors, and cholesterol metabolism. Combined with the results of metabolomics and system pharmacology, we found that bile acid metabolism and biotin synthesis were the key pathways for DBT. Forty-two targets of DBT were related to these two metabolic pathways. PPI analysis revealed that the top 10 targets were CYP3A4, ABCG2, and UGT1A8. Twenty-one components interacted with these 10 targets. In one case, a target corresponds to multiple components, and a component corresponds to multiple targets. DBT acts on multiple targets of ABCG2, UGT1A8, and CYP3A4 through multiple components, affecting the biosynthesis of cofactors and bile secretion pathways to regulate hematopoiesis.
Collapse
Affiliation(s)
- Defu Tie
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Zhaohui Fan
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Dan Chen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Xiao Chen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Qizhu Chen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Jun Chen
- College of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Huaben Bo
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| |
Collapse
|
12
|
Guo Y, Zhang Y, Hou Y, Guo P, Wang X, Zhang S, Yang P. Anticonstriction Effect of MCA in Rats by Danggui Buxue Decoction. Front Pharmacol 2021; 12:749915. [PMID: 34867357 PMCID: PMC8634798 DOI: 10.3389/fphar.2021.749915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Danggui Buxue decoction (DBD), consisting of Angelicae Sinensis Radix (ASR) and Astragali Radix (AR), is a famous prescription with the function of antivasoconstriction. This study intends to probe its mechanisms on the relaxation of the middle cerebral artery (MCA). Methods: Vascular tension of rat MCA was measured using a DMT620 M system. First, the identical series of concentrations of DBD, ASR, and AR were added into resting KCl and U46619 preconstricted MCA. According to the compatibility ratio, their dilatation effects were further investigated on KCl and U46619 preconstricted vessels. Third, four K+ channel blockers were employed to probe the vasodilator mechanism on KCl-contracted MCA. We finally examined the effects of DBD, ASR, and AR on the vascular tone of U46619-contracted MCA in the presence or absence of Ca2+. Results: Data suggested that DBD, ASR, and AR can relax on KCl and U46619 precontracted MCA with no effects on resting vessels. The vasodilator effect of ASR was greater than those of DBD and AR on KCl-contracted MCA. For U46619-contracted MCA, ASR showed a stronger vasodilator effect than DBD and AR at low concentrations, but DBD was stronger than ASR at high concentrations. Amazingly, the vasodilator effect of DBD was stronger than that of AR at all concentrations on two vasoconstrictors which evoked MCA. The vasodilator effect of ASR was superior to that of DBD at a compatibility ratio on KCl-contracted MCA at low concentrations, while being inferior to DBD at high concentrations. However, DBD exceeded AR in vasodilating MCA at all concentrations. For U46619-constricted MCA, DBD, ASR, and AR had almost identical vasodilation. The dilation of DBD and AR on KCl-contracted MCA was independent of K+ channel blockers. However, ASR may inhibit the K+ channel opening partially through synergistic interactions with Gli and BaCl2. DBD, ASR, and AR may be responsible for inhibiting [Ca2+]out, while ASR and AR can also inhibit [Ca2+]in. Conclusion: DBD can relax MCA with no effects on resting vessels. The mechanism may be related to ASR’s inhibition of KATP and Kir channels. Meanwhile, the inhibition of [Ca2+]out by DBD, ASR, and AR as well as the inhibition of [Ca2+]in by ASR and AR may contribute to dilate MCA.
Collapse
Affiliation(s)
- Ying Guo
- School of Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu Fifth People's Hospital, Chengdu, China
| | - Yating Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengmei Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People's Hospital, Chengdu, China
| |
Collapse
|
13
|
Chang WCW, Wang CY, Liu WY, Tsai CC, Wu YT, Hsu MC. Chinese Herbal Medicine Significantly Impacts the Haematological Variables of the Athlete Biological Passport. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9533. [PMID: 34574458 PMCID: PMC8469363 DOI: 10.3390/ijerph18189533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
In the fight against sports doping, the Athlete Biological Passport (ABP) system aims to indirectly unveil the doping incidents by monitoring selected biomarkers; however, several unexplored extrinsic factors may dampen a fair interpretation of ABP profiles. Chinese herbal medicine (CHM) plays a pivotal role in the health care system, and some remedies have a long history of being used to treat anaemia. In this study, we addressed the concerns of whether the CHM administration could yield a measurable effect on altering the ABP haematological variables. Forty-eight healthy volunteers were randomly assigned to receive two-week oral administration of one of the six selected CHM products that are commonly prescribed in Taiwan (eight subjects per group). Their blood variables were determined longitudinally in the phases of baseline, intervention, and recovery over 5 weeks. Blood collection and analyses were carried out in strict compliance with relevant operating guidelines. In the groups receiving Angelicae Sinensis Radix, Astragali Radix, and Salviae Miltiorrhizae Radix et Rhizoma, a significant increased reticulocyte percentage and decreased OFF-hr Score were manifested during the intervention, and such effects even sustained for a period of time after withdrawal. All other variables, including haemoglobin and Abnormal Blood Profile Score, did not generate statistical significance. Our results show that the use of CHM may impact the ABP haematological variables. As a consequence, we recommend athletes, particularly those who have been registered in the testing pool, should be aware of taking specific Chinese herbal-based treatment or supplementation, and document any of its usage on the anti-doping forms.
Collapse
Affiliation(s)
- William Chih-Wei Chang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.C.-W.C.); (C.-Y.W.); (W.-Y.L.)
- Master Degree Program in Toxicology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yuan Wang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.C.-W.C.); (C.-Y.W.); (W.-Y.L.)
| | - Wan-Yi Liu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.C.-W.C.); (C.-Y.W.); (W.-Y.L.)
| | - Chin-Chuan Tsai
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 840, Taiwan;
- Chinese Medicine Department, E-Da Hospital, Kaohsiung 824, Taiwan
| | - Yu-Tse Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.C.-W.C.); (C.-Y.W.); (W.-Y.L.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
14
|
Barik P, Shibu MA, Hsieh DJY, Day CH, Chen RJ, Kuo WW, Chang YM, Padma VV, Ho TJ, Huang CY. Cardioprotective effects of transplanted adipose-derived stem cells under Ang II stress with Danggui administration augments cardiac function through upregulation of insulin-like growth factor 1 receptor in late-stage hypertension rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:1466-1475. [PMID: 33881220 DOI: 10.1002/tox.23145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
In aging hypertensive conditions, deterioration of insulin-like growth factor 1 receptor (IGF1R) cause a pathological impact on hypertensive hearts with an increased Ang II level. Recovering these adverse conditions through transplanted adipose-derived stem cells is a challenging approach. Moreover, Danggui, a Traditional Chinese medicine (TCM), is used for the treatment of cardioprotective effects. In this study, to evaluate whether the combined effect of MSCs and TCM can recover the cardiac function in late-stage hypertension rats. We observed that lower dose of Danggui crude extract treatment showed an increased level of cell viability with maintained stemness properties and growth rate in rat adipose-derived stem cells (rADSCs). Further, we cocultured the H9c2 cells with rADSCs and the results revealed that Danggui-treated MSCs enhanced the IGF1R expression and attenuated the hypertrophy in H9c2 cells against Ang II challenge by immunoblot and rhodamine-phalloidin staining. In addition, Danggui crude extract was also quantified and characterized by HPLC and LC-MS analysis. Furthermore, the in vivo study was performed by considering 11 months old rats (n = 7). Importantly, the oral administration of Danggui crude extract with stem cells intravenous injection in SHR-D-ADSCs group showed a combination effect to augment the cardiac function through enhancement of ejection fraction, fractional shortening, contractility function in the late-stage hypertension conditions. We have also observed a decreased apoptosis rate in the heart tissue of SHR-D-ADSCs group. Taken together, these results indicate that the combinatorial effects of Danggui crude extract and stem cell therapy enhanced cardiac function in late-stage SHR rats.
Collapse
Affiliation(s)
- Parthasarathi Barik
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Tsung-Jung Ho
- Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
15
|
Danggui Buxue Tang Rescues Folliculogenesis and Ovarian Cell Apoptosis in Rats with Premature Ovarian Insufficiency. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6614302. [PMID: 34035823 PMCID: PMC8118728 DOI: 10.1155/2021/6614302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/13/2021] [Accepted: 04/23/2021] [Indexed: 12/30/2022]
Abstract
Premature ovarian insufficiency (POI) is a common female endocrine disease that is closely linked to ovarian function. Danggui Buxue Tang (DBT) is a classic prescription of traditional Chinese medicine that is helpful for rescuing ovarian function. However, the mechanism by which DBT rescues ovarian function remains unclear. This study explored the molecular mechanism of DBT with respect to apoptosis and related signals in ovarian cells. The quality control of DBT was performed by HPLC. After DBT intervention in the POI rat model, serum AMH/FSH/LH/E2 levels were detected by ELISA, follicles at various developmental stages were observed by HE staining, apoptosis was detected by TUNEL, and the expression profiles of Bcl-2 family proteins and key proteins in the Jak2/Foxo3a signaling pathway were evaluated by western blot. The results demonstrated that DBT could encourage the development of primary/secondary/antral follicles and increase the secretion of AMH. Moreover, DBT might inhibit Foxo3a by upregulating Jak2, thereby mediating Bcl-2 family activities and inhibiting apoptosis in ovarian cells. In conclusion, DBT promotes follicular development and rescues ovarian function by regulating Bcl-2 family proteins to inhibit cell apoptosis, which could be related to the Jak2/Foxo3a signaling pathway.
Collapse
|
16
|
Shi XQ, Zhu ZH, Yue SJ, Tang YP, Chen YY, Pu ZJ, Tao HJ, Zhou GS, Yang Y, Guo MJ, Ting-Xia Dong T, Tsim KWK, Duan JA. Integration of organ metabolomics and proteomics in exploring the blood enriching mechanism of Danggui Buxue Decoction in hemorrhagic anemia rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113000. [PMID: 32663590 DOI: 10.1016/j.jep.2020.113000] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Buxue Decoction (DBD), as a classical Chinese medicine prescription, is composed of Danggui (DG) and Huangqi (HQ) at a ratio of 1:5, and it has been used clinically in treating anemia for hundreds of years. AIM OF THE STUDY The aim of this study was to explore the treatment mechanisms of DBD in anemia rats from the perspective of thymus and spleen. MATERIALS AND METHODS In this study, a successful hemorrhagic anemia model was established, and metabolomics (UPLC-QTOF-MS/MS) and proteomics (label-free approach) together with bioinformatics (Gene Ontology analysis and Reactome pathway enrichment), correlation analysis (pearson correlation matrix) and joint pathway analysis (MetaboAnalyst) were employed to discover the underlying mechanisms of DBD. RESULTS DBD had a significant blood enrichment effect on hemorrhagic anemia rats. Metabolomics and proteomics results showed that DBD regulated a total of 10 metabolites (lysophosphatidylcholines, etc.) and 41 proteins (myeloperoxidase, etc.) in thymus, and 9 metabolites (L-methionine, etc.) and 24 proteins (transferrin, etc.) in spleen. With GO analysis and Reactome pathway enrichment, DBD mainly improved anti-oxidative stress ability of thymocyte and accelerated oxidative phosphorylation to provide ATP for splenocyte. Phenotype key indexes were strongly and positively associated with most of the differential proteins and metabolites, especially nucleosides, amino acids, Fabp4, Decr1 and Ndufs3. 14 pathways in thymus and 9 pathways in spleen were obtained through joint pathway analysis, in addition, the most influential pathway in thymus was arachidonic acid metabolism, while in spleen was the biosynthesis of phenylalanine, tyrosine and tryptophan. Furthermore, DBD was validated to up-regulate Mpo, Hbb and Cp levels and down-regulate Ca2+ level in thymus, as well as up-regulate Fabp4, Ndufs3, Tf, Decr1 and ATP levels in spleen. CONCLUSION DBD might enhance thymus function mainly by reducing excessive lipid metabolism and intracellular Ca2+ level, and promote ATP production in spleen to provide energy.
Collapse
Affiliation(s)
- Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing,, 210023, Jiangsu Province, China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Shi-Jun Yue
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Yan-Yan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Zong-Jin Pu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Hui-Juan Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing,, 210023, Jiangsu Province, China.
| | - Meng-Jie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing,, 210023, Jiangsu Province, China
| | - Tina Ting-Xia Dong
- Division of Life Science and Centre for Chinese Medicine, The Hongkong University of Science and Technology, Hongkong, 999077, China
| | - Karl Wah-Keung Tsim
- Division of Life Science and Centre for Chinese Medicine, The Hongkong University of Science and Technology, Hongkong, 999077, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| |
Collapse
|
17
|
Zhang H, Pan D, Wu X, Su W, Tang X, Zhao D, Sun L, Song B, Bai X, Li X. Platelet Protease Activated Receptor 1 Is Involved in the Hemostatic Effect of 20( S)-Protopanaxadiol by Regulating Calcium Signaling. Front Pharmacol 2020; 11:549150. [PMID: 33041793 PMCID: PMC7530267 DOI: 10.3389/fphar.2020.549150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Panax notoginseng (Burk.) F.H. Chen has long been used to stop bleeding for hundreds of years in China. At present, only dencichine, notoginsenoside Ft1, and 20(S)-protopanaxadiol (PPD) showed hemostatic effect. However, the molecular mechanism of PPD on the platelet aggragetion needs to be further investigated. The study aims to evaluate the hemostatic effect of PPD and reveal its interacting targets using a series of experiments. In this study, the bleeding time was measured in mouse tail amputation and liver scratch models to evaluate hemostatic effect of PPD. The routine blood and plasma coagulation parameters in NS, HC, and PPD (2, 4, and 8 mg/kg) groups were measured using a blood analyzer. Platelet aggregation rate and ATP release were analyzed by a platelet aggregometer. Subsequently, the degranulation marker CD62P and PAC-1, and the concentrations of cytosolic Ca2+ ([Ca2+]i), cAMP, cGMP, and PAC-1 expressions were also assessed. We found that PPD shorted the bleeding time on the mouse tail amputation and liver scratch models and mainly increased blood platelet count in the rats after subcutaneous injection for 4 h. Meanwhile, PPD decreased APTT, increased FIB content, and directly induced platelet aggregation in vitro. In the absence of Ca2+, PPD induced the increase of [Ca2+]i and slightly increased the levels of CD62P and PAC-1. After the addition of 1 mM Ca2+, PPD treatment markedly promoted platelet activation by promoting ATP level, releasing CD62P and increasing PAC-1 binding in washed platelets. Excitingly, PPD-induced changes including platelet aggregation, decreased cAMP content, and the increases of CD62P and PAC-1 were significantly reversed by protease-activated receptor 1 (PAR-1) antagonist, vorapaxar, which showed similar function as thrombin. In addition, molecular docking analysis and ELISA assay demonstrated that PPD had a promising docking score with -6.6 kcal/mol and increased PAR-1 expression in human platelets, which indicated that PAR-1 is involved in PPD-induced platelet aggregation by regulating calcium signaling. Collectively, our study could provide the new insights of PPD as an essential hemostatic ingredient in Panax notoginseng for the treatment of hemorrhagic disease.
Collapse
Affiliation(s)
- He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Daian Pan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xingquan Wu
- Department of Tuina, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Wenjie Su
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaolei Tang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Bailin Song
- Department of Tuina, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China.,College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
18
|
Wang X, Bei H, Du R, Chen Q, Wu F, Chen J, Bo H. Metabolomic analysis of serum reveals the potential effective ingredients and pathways of Danggui Buxue Tang in promoting erythropoiesis. Complement Ther Med 2020; 48:102247. [DOI: 10.1016/j.ctim.2019.102247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/12/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023] Open
|
19
|
Liu J, Wei J, Wang C, Meng X, Chen H, Deng P, Huandike M, Zhang H, Li X, Chai L. The combination of Radix Astragali and Radix Angelicae Sinensis attenuates the IFN-γ-induced immune destruction of hematopoiesis in bone marrow cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:356. [PMID: 31818289 PMCID: PMC6902408 DOI: 10.1186/s12906-019-2781-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/29/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Radix Astragali and Radix Angelicae Sinensis are two herbs that compose Danggui Buxue Tang (an herbal formula for treatment of anemia diseases). In this study, we explored the molecular mechanism and effective targets to immune destruction of bone marrow (BM) cells treated with Radix Astragali, Radix Angelicae Sinensis or a combination of two agents. The potential synergic advantages of two herbs should also be explored. METHODS The constituents of Radix Astragali and Radix Angelicae Sinensis were analyzed by high performance liquid chromatography-electrospray ionization/mass spectrometer system BM cells were separated from limbs of BALB/c mice, and immune destruction was induced with IFN-γ. The percentages of hematopoietic stem cells (HSCs) and CD3+ T cells were detected by flow cytometry. The distribution of T-bet and changes in the combination of SAP and SLAM in BM cells were observed by immunofluorescence. Western blotting was used to assay the expression of key molecules of the eIF2 signaling pathway in BM cells. RESULTS Seven constituents of Radix Astragali and six constituents of Radix Angelicae Sinensis were identified. The percentages of HSCs increased significantly after treatment with Radix Angelicae Sinensis, especially at high concentrations. The percentages of CD3+ T cells were significantly decreased after Radix Astragali and Radix Angelicae Sinensis treatment. However, the synergistic function of two-herb combinations was superior to that of the individual herbs alone. The distribution of T-bet in BM cells was decreased significantly after Radix Angelicae Sinensis treatment. The number of SLAM/SAP double-stained cells was increased significantly after Radix Astragali treatment at low concentrations. The phosphorylation levels of eIF2α were also reduced after Radix Astragali and Radix Angelicae Sinensis treatment. CONCLUSIONS Radix Astragali and Radix Angelicae Sinensis could intervene in the immunologic balance of T lymphocytes, inhibit the apoptosis of BM cells induced by immune attack, restore the balance of the T cell immune response network and recover the hematopoietic function of HSCs. The synergistic effects of Radix Astragali and Radix Angelicae Sinensis were superior to those of each herb alone.
Collapse
|
20
|
Bo H, He J, Wang X, Du R, Bei H, Chen J, Wang J, Wu F, Zhang W, Chen Q. Danggui Buxue Tang promotes the adhesion and migration of bone marrow stromal cells via the focal adhesion pathway in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:90-97. [PMID: 30445110 DOI: 10.1016/j.jep.2018.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Danggui Buxue Tang has been used in China to treat clinical anemia for more than 800 years. However, there is no scientific report on its effect on bone marrow stromal cells. AIM OF THE STUDY Here, we aimed to explore the effect of Danggui Buxue Tang on bone marrow stromal cell adhesion and migration. MATERIALS AND METHODS Bone marrow stromal cells were used as a model to evaluate the effect of Danggui Buxue Tang on the adhesion and migration of bone marrow stromal cells. RNA-sequencing, quantitative polymerase chain reaction, and western blotting were used to detect and confirm the expression of genes related to the focal adhesion pathway before and after drug delivery. RESULTS Danggui Buxue Tang significantly increased the number of bone marrow stromal cells. After 12 days of 16 mg/mL Danggui Buxue Tang treatment, bone marrow stromal cells were significantly increased (by 0.527 ± 0.008 fold; p < 0.001) as compared to the control group (0.180 ± 0.019). The effect was not due to enhanced cell proliferation, as there was no difference in the cell cycle (p > 0.05). The adhesion area of a single cell was doubled by Danggui Buxue Tang treatment (p < 0.001), and the time required for cell adhesion to a Petri dish was shortened. Thus, Danggui Buxue Tang increases the number of bone marrow stromal cells by promoting adhesion. Danggui Buxue Tang also significantly promoted bone marrow stromal cell migration (p < 0.001). Transcript analysis revealed that the focal adhesion and PI3K-Akt signaling pathways were activated. Expression analysis confirmed that the gene and protein expression of focal adhesion-related factors were upregulated. CONCLUSION Danggui Buxue Tangaffects bone marrow stromal cell adhesion and migration by enhancing the focal adhesion pathway in vitro, and bone marrow stromal cells are a target of DBT-regulated hematopoiesis, and the active ingredients of DBT involved in the effects require further investigation.
Collapse
Affiliation(s)
- Huaben Bo
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, China.
| | - Junhua He
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, China
| | - Xiao Wang
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, China
| | - Ruilan Du
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, China
| | - Haikang Bei
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, China
| | - Jun Chen
- College of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, China
| | - Jinquan Wang
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, China
| | - Fenglin Wu
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, China
| | - Wenfeng Zhang
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, China
| | - Qizhu Chen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Zhao D, Zhao JB. Comparison of Chang Run Tong and Forlaxin Treatment of Constipation in Elderly Diabetic Patients. J Altern Complement Med 2018; 24:472-480. [PMID: 29698053 DOI: 10.1089/acm.2018.0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Dong Zhao
- Department of Chinese Medicine Geriatrics, China-Japan Hospital, Beijing, China
| | - Jing-Bo Zhao
- Giome Academia, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
22
|
Song Y, Zhu J, Wang T, Zhang C, Yang F, Guo X, Liu P, Cao H, Hu G. Effect of Ultra-fine Traditional Chinese Medicine Compounds on Regulation of Lipid Metabolism and Reduction in Egg Cholesterol of Laying Hens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Y Song
- Jiangxi Agricultural University, P. R. China
| | - J Zhu
- Jiangxi Agricultural University, P. R. China
| | - T Wang
- Jiangxi Agricultural University, P. R. China
| | - C Zhang
- Jiangxi Agricultural University, P. R. China
| | - F Yang
- Jiangxi Agricultural University, P. R. China
| | - X Guo
- Jiangxi Agricultural University, P. R. China
| | - P Liu
- Jiangxi Agricultural University, P. R. China
| | - H Cao
- Jiangxi Agricultural University, P. R. China
| | - G Hu
- Jiangxi Agricultural University, P. R. China
| |
Collapse
|
23
|
Hua Y, Yao W, Ji P, Wei Y. Integrated metabonomic-proteomic studies on blood enrichment effects of Angelica sinensis on a blood deficiency mice model. PHARMACEUTICAL BIOLOGY 2017; 55:853-863. [PMID: 28140733 PMCID: PMC6130503 DOI: 10.1080/13880209.2017.1281969] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 05/18/2023]
Abstract
CONTEXT Angelica sinensis (Oliv.) Diels (Umbelliferae) (AS) is a well-known Traditional Chinese Medicine (TCM) that enriches and regulates the blood. OBJECTIVE An integrated metabonomic and proteomic method was developed and applied to study the blood enrichment effects and mechanisms of AS on blood deficiency (BD) mouse model. MATERIALS AND METHODS Forty mice were randomly divided into the control, BD, High-dose of AS (ASH), Middle-dose of AS (ASM), and Low-dose of AS (ASL) groups. BD model mice were established by injecting N-acetylphenylhydrazine (APH) and cyclophosphamide (CTX) (ip). The aqueous extract of AS was administered at three dose of 20, 10, or 5 g/kg b. wt. orally for 7 consecutive days before/after APH and CTX administration. Gas chromatography-mass spectrometry (GC-MS) combined with pattern recognition method and 2D gel electrophoresis (2-DE) proteomics were performed in this study to discover the underlying hematopoietic regulation mechanisms of AS on BD mouse model. RESULTS Unlike in the control group, the HSP90 and arginase levels increased significantly (p < 0.05) in the BD group, but the levels of carbonic anhydrase, GAPDH, catalase, fibrinogen, GSTP, carboxylesterase and hem binding protein in the BD group decreased significantly (p < 0.05). Unlike the levels in the BD group, the levels of these biomarkers were regulated to a normal state near the control group in the ASM group. Unlike in the control group, l-alanine, arachidonic acid, l-valine, octadecanoic acid, glycine, hexadecanoic acid, l-threonine, butanoic acid, malic acid, l-proline and propanoic acid levels increased significantly (p < 0.05) in the BD group, the levels of d-fructose in the BD group decreased significantly (p < 0.05). The relative concentrations of 12 endogenous metabolites were also significantly affected by the ASL, ASM, and ASH treatments. Notably, most of the altered BD-related metabolites were restored to normal state after ASM administration. CONCLUSION AS can promote hematopoietic activities, inhibit production of reactive oxygen species, regulate energy metabolism, increase antiapoptosis, and potentially contribute to the blood enrichment effects of AS against APH- and CTX-induced BD mice.
Collapse
Affiliation(s)
- Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
| | - Wangling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
- CONTACT Yanming WeiCollege of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province730070, People’s Republic of China
| |
Collapse
|
24
|
SH003 reverses drug resistance by blocking signal transducer and activator of transcription 3 (STAT3) signaling in breast cancer cells. Biosci Rep 2017; 37:BSR20170125. [PMID: 28864784 PMCID: PMC5686394 DOI: 10.1042/bsr20170125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023] Open
Abstract
Overcoming drug resistance is an important task for investigators and clinician to achieve successful chemotherapy in cancer patients. Drug resistance is caused by various factors, including the overexpression of P-glycoprotein (P-gp, MDR1). The development of new, useful compounds that overcome drug resistance is urgent. SH003 is extracted from the mixture of three different herbs, and its anticancer effect has been revealed in different cancer cell types. In the present study, we investigated whether SH003 is able to reverse drug resistance using paclitaxel-resistant breast cancer cells (MCF-7/PAC). In our experiments, SH003 significantly decreased cell growth and colony formation in MCF-7/PAC cells and parental MCF-7 cells. This growth inhibition was related to the accumulation of cells in the sub-G0/G1 apoptotic population and an increase in the number of apoptotic cells. SH003 reduced the mRNA expression of multidrug resistance 1 (MDR1) and multidrug resistance-associated proteins (MRPs) in MCF-7/PAC cells. SH003 also down-regulated the expression of P-gp. SH003 reversed drug efflux from MCF-7/PAC cells, resulting in rhodamine123 (Rho123) accumulation. Inhibition of drug resistance by SH003 is related to the suppression of the signal transducer and activator of transcription 3 (STAT3) signaling pathway. SH003 decreased STAT3 activation (p-STAT3) and its nuclear translocation and inhibited the secretion of VEGF and MMP-2, which are STAT3 target genes. An STAT3 inhibitor, JAK inhibitor I and an HIF-1α inhibitor decreased cell growth in MCF-7 and MCF-7/PAC cells. Taken together, these results demonstrate that SH003 can overcome drug resistance, and SH003 might be helpful for chemotherapy in cancer patients.
Collapse
|
25
|
Chinese Herbal Formula, Modified Danggui Buxue Tang, Attenuates Apoptosis of Hematopoietic Stem Cells in Immune-Mediated Aplastic Anemia Mouse Model. J Immunol Res 2017; 2017:9786972. [PMID: 28951880 PMCID: PMC5603747 DOI: 10.1155/2017/9786972] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
A derivative formula, DGBX, which is composed of three herbs (Radix astragali, Radix Angelicae sinensis, and Coptis chinensis Franch), is derived from a famous Chinese herbal formula, Danggui Buxue Tang (DBT) (Radix astragali and Radix Angelicae sinensis). We aimed to investigate the effects of DGBX on the regulation of the balance between proliferation and apoptosis of hematopoietic stem cells (HSCs) due to the aberrant immune response in a mouse model of aplastic anemia (AA). Cyclosporine (CsA), an immunosuppressor, was used as the positive control. Our results indicated that DGBX could downregulate the production of IFNγ in bone marrow cells by interfering with the binding between SLAM and SAP and the expressions of Fyn and T-bet. This herbal formula can also inhibit the activation of Fas-mediated apoptosis, interferon regulatory factor-1-induced JAK/Stat, and eukaryotic initiation factor 2 signaling pathways and thereby induce proliferation and attenuate apoptosis of HSCs. In conclusion, DGBX can relieve the immune-mediated destruction of HSCs, repair hematopoietic failure, and recover the hematopoietic function of HSCs in hematogenesis. Therefore, DGBX can be used in traditional medicine against AA as a complementary and alternative immunosuppressive therapeutic formula.
Collapse
|
26
|
Kim J, Lee YJ, Kim YA, Cho ES, Huh E, Bang OS, Kim NS. Aqueous extract of Phragmitis rhizoma ameliorates myelotoxicity of docetaxel in vitro and in vivo. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:393. [PMID: 28793897 PMCID: PMC5549314 DOI: 10.1186/s12906-017-1890-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022]
Abstract
Background A variety of anticancer chemotherapeutics induce adverse side effects including myelotoxicity. Dried roots of Phragmites communis Trinius, Phragmitis rhizoma, have been clinically used in traditional folk medicine to relieve various symptoms like fever. In this study, we evaluated the protective effect of the aqueous extract of Phragmitis rhizoma (EPR) against docetaxel-induced myelotoxicity in vitro and in vivo. Methods The in vitro myelo-protective effect of EPR was evaluated using the colony forming unit (CFU) assay with hematopoietic progenitor cells. The in vivo efficacy of EPR was evaluated in myelosuppressed C57BL/6 male mice which were induced by repeated intraperitoneal injections of 30 mg/kg docetaxel for 3 times. EPR was orally administered for 4 days to docetaxel-induced myelosuppressed C57BL/6 male mice which were induced by intraperitoneal injection of 30 mg/kg docetaxel for 3 times: Group 1 (vehicle control, n = 10), Group 2 (docetaxel plus vehicle, n = 10), Group 3 (docetaxel plus EPR 30 mg/kg, n = 10), Group 4 (docetaxel plus EPR 100 mg/kg, n = 10) and Group 5 (docetaxel plus EPR 300 mg/kg, n = 10). Whole blood counts were measured automatically, and immune organs were histologically examined. Expression of immunomodulatory cytokines was measured by quantitative real-time polymerase chain reaction or enzyme-linked immunosorbent assay. The toxicity of EPR itself was evaluated in normal human cell lines including IMR-90, foreskin fibroblast and human umbilical vein endothelial cells. The hepatotoxicity of EPR was predicted by multi-parametric assays involving cell viability, caspase 3/7 activity, GSH contents and LDH leakage using the HepaRG hepatic cell line. Results Co-treatment of EPR or its major component, p-hydroxycinnamic acid, increased the numbers of hematopoietic CFU counts in the docetaxel-induced in vitro myelotoxicity assay system. The in vitro protective effect of EPR against docetaxel toxicity was replicated in a myelosuppressed animal model: white blood cells, neutrophils, lymphocytes and red blood cells rebounded; bone marrow niche and structural integrity of the thymus were preserved; and the expression of immune-stimulating cytokines including IL3, IL6, SCF and GM-CSF was enhanced. Furthermore, EPR and p-hydroxycinnamic acid promoted the proliferation of primary splenocytes and thymocytes. In the toxicity assays, no remarkable signs related with toxicity were observed in all tested normal human cells and HepaRG. Conclusions EPR has the potential to ameliorate docetaxel-mediated myelotoxicity in both in vitro and in vivo models. However, the identification of the responsible active components and the precise underlying myelo-protective mechanism of EPR need to be elucidated before novel drug development using EPR can precede. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1890-1) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Chen ST, Lee TY, Tsai TH, Huang YC, Lin YC, Lin CP, Shieh HR, Hsu ML, Chi CW, Lee MC, Chang HH, Chen YJ. Traditional Chinese medicine Danggui Buxue Tang inhibits colorectal cancer growth through induction of autophagic cell death. Oncotarget 2017; 8:88563-88574. [PMID: 29179457 PMCID: PMC5687627 DOI: 10.18632/oncotarget.19902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
Purpose The induction of autophagic cell death is an important process in the development of anticancer therapeutics. We aimed to evaluate the activity of the ancient Chinese decoction Danggui Buxue Tang (DBT) against colorectal cancer (CRC) and the associated autophagy-related mechanism. Materials and methods CT26 CRC cells were implanted into syngeneic BALB/c mice for the tumor growth assay. DBT extracts and DBT-PD (polysaccharide-depleted) fractions were orally administered. The toxicity profiles of the extracts were analyzed using measurements of body weight, hemogram, and biochemical parameters. The morphology of tissue sections was observed using light and transmission electron microscopy. Western blotting and small interference RNA assays were used to determine the mechanism. Results DBT-PD and DBT, which contained an equal amount of DBT-PD, inhibited CT26 syngeneic tumor growth. In the tumor specimen, the expression of microtubule-associated proteins 1A/1B light chain 3B (LC3B) was upregulated by DBT-PD and DBT. The development of autophagosomes was observed via transmission electron microscopy in tumors treated with DBT-PD and DBT. In vitro experiments for mechanism clarification demonstrated that DBT-PD could induce autophagic death in CT26 cells accompanied by LC3B lipidation, downregulation of phospho-p70s6k, and upregulation of Atg7. RNA interference of Atg7, but not Atg5, partially reversed the effect of DBT-PD on LC3B lipidation and expression of phospho-p70s6k and Atg7. The changes in ultrastructural morphology and LC3B expression induced by DBT-PD were also partially blocked by the knockdown of Atg7 mRNA. Conclusion DBT induced autophagic death of colorectal cancer cells through the upregulation of Atg7 and modulation of the mTOR/p70s6k signaling pathway.
Collapse
Affiliation(s)
- Shun-Ting Chen
- Department of Chinese Medicine, Taipei Buddhist Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.,Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.,Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.,Depatment of Chemical Engineering, National United University, Miaoli 36003, Taiwan
| | - Yu-Chuen Huang
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yin-Cheng Lin
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City 25160, Taiwan
| | - Chin-Ping Lin
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City 25160, Taiwan
| | - Hui-Ru Shieh
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City 25160, Taiwan
| | - Ming-Ling Hsu
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City 25160, Taiwan
| | - Chih-Wen Chi
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City 25160, Taiwan
| | - Ming-Cheng Lee
- Department of Research, Taipei Buddhist Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23141, Taiwan
| | - Hen-Hong Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, and Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yu-Jen Chen
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan .,Department of Medical Research, Mackay Memorial Hospital, New Taipei City 25160, Taiwan.,Department of Radiation Oncology, Mackay Memorial Hospital, Taipei 10449, Taiwan
| |
Collapse
|
28
|
He J, Zeng Z, Chen J, Wang J, Chen Q, Bo H. Effect of Danggui Buxue Tang on Erythropoiesis in Acute Chemotherapy Injured Mice. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.583.592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Chen WR, Yu Y, Zulfajri M, Lin PC, Wang CC. Phthalide Derivatives from Angelica Sinensis Decrease Hemoglobin Oxygen Affinity: A New Allosteric-Modulating Mechanism and Potential Use as 2,3-BPG Functional Substitutes. Sci Rep 2017; 7:5504. [PMID: 28710372 PMCID: PMC5511246 DOI: 10.1038/s41598-017-04554-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 11/09/2022] Open
Abstract
Angelica sinensis (AS), one of the most versatile herbal medicines remains widely used due to its multi-faceted pharmacologic activities. Besides its traditional use as the blood-nourishing tonic, its anti-hypertensive, anti-cardiovascular, neuroprotective and anti-cancer effects have been reported. Albeit the significant therapeutic effects, how AS exerts such diverse efficacies from the molecular level remains elusive. Here we investigate the influences of AS and four representative phthalide derivatives from AS on the structure and function of hemoglobin (Hb). From the spectroscopy and oxygen equilibrium experiments, we show that AS and the chosen phthalides inhibited the oxygenated Hb from transforming into the high-affinity “relaxed” (R) state, decreasing Hb’s oxygen affinity. It reveals that phthalides cooperate with the endogenous Hb modulator, 2,3-bisphosphoglycerate (2,3-BPG) to synergetically regulate Hb allostery. From the docking modeling, phthalides appear to interact with Hb mainly through its α1/α2 interface, likely strengthening four (out of six) Hb “tense” (T) state stabilizing salt-bridges. A new allosteric-modulating mechanism is proposed to rationalize the capacity of phthalides to facilitate Hb oxygen transport, which may be inherently correlated with the therapeutic activities of AS. The potential of phthalides to serve as 2,3-BPG substitutes/supplements and their implications in the systemic biology and preventive medicine are discussed.
Collapse
Affiliation(s)
- Wei-Ren Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Youqing Yu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Muhammad Zulfajri
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Ping-Cheng Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Chia C Wang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China. .,Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China.
| |
Collapse
|
30
|
The herbal decoction modified Danggui Buxue Tang attenuates immune-mediated bone marrow failure by regulating the differentiation of T lymphocytes in an immune-induced aplastic anemia mouse model. PLoS One 2017; 12:e0180417. [PMID: 28683082 PMCID: PMC5500321 DOI: 10.1371/journal.pone.0180417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
Angelicae Sinensis, Radix Astragali and Rhizoma Coptidis are all herbs of modified Danggui Buxue Tang (DGBX) and are extensively applied herbs in traditional Chinese medicine for the treatment of anemia and inflammation. In this study, immune-induced AA mice were used as an animal model, and the immunosuppressive agent, Ciclosporin A (CsA), was used as a positive control. Multiple pro-inflammatory cytokines were examined by bead-based multiplex flow cytometry. The T-cell subsets were assessed using a fluorescence-activated cell sorter (FACS). Western blot analysis was used to estimate the protein expression levels of specific transcription factors for T helper cells (Th1, Th2 and Th17) and key molecules of the Janus-activated kinase (Jak)/signal transducer and activator of transcription (Stat3) signaling pathway. DGBX treatment could significantly increase the production of whole blood cells in peripheral blood (PB); inhibit the expansion of Th1 and Th17 cells; increase the differentiation of Th2 and Tregs cells; regulate the expression levels of T-bet, GATA-3, RORγ and proinflammatory cytokines; and decrease the expression levels of key molecules in the Jak/Stat signaling pathway. These results indicate that DGBX can regulate the differentiation of T lymphocytes, resulting in immunosuppressive and hematogenic functions on AA mice. DGBX might be a good candidate for inclusion in a randomized study for AA with more data on the possible side effects and doses used in humans. Ultimately, it may be used for applications of traditional medicine against AA in modern complementary and alternative immunosuppressive therapeutics.
Collapse
|
31
|
Managing Chronic Kidney Disease and Chemotherapy-Induced Peripheral Neuropathy with Acupuncture and Herbal Medicine: A Case Study. J Acupunct Meridian Stud 2017; 10:139-142. [DOI: 10.1016/j.jams.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/03/2017] [Indexed: 11/22/2022] Open
|
32
|
Lin PL, Li ZC, Xie RF, Wang YH, Zhou X. Compatibility Study of Danggui Buxue Tang on Chemical Ingredients, Angiogenesis and Endothelial Function. Sci Rep 2017; 7:45111. [PMID: 28327640 PMCID: PMC5361164 DOI: 10.1038/srep45111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/16/2017] [Indexed: 12/28/2022] Open
Abstract
Danggui Buxue Tang (DBT) is a classic Chinese herbal formula which consists of Astragali mongholici Radix and Angelica sinensis Radix (ASR). For chemical ingredients, HPLC were performed. Results showed compared with single herbs, DBT decoction could promote the dissolution of ingredients such as ferulic acid and calycosin. Furthermore, when ratio of AMR to ASR was 5 to 1, synthetic score was the best. For angiogenesis, normal and injured zebrafish model were applied. Results showed DBT and its ingredients had angiogenesis effects on Sub Intestinal vessels (SIVs) of normal zebrafish. Meanwhile, DBT and its single herbs could also recover Inter-Segmental Vessels (ISVs) injured by VRI. Angiogenesis effects of DBT on ISVs were better than single herbs. AMR extract, Total Saponins of AMR, Polysaccharide of ASR, ferulic acid, calycosin and calycosin-7-glucoside could be effective ingredients for angiogenisis. For endothelium functions, Lysoph-Osphatidyl choline was used to damage rat endothelial function of thoracic aorta. The results showed DBT and its single herbs could improve endothelial dysfunctions in dose-dependence. Both ferulic acid and calycosin-7-glucoside could also improve endothelium dysfunction in dose dependence. Therefore, compatibility of DBT was reasonable. Compared with single herbs, DBT could promote dissolution of effective ingredients, enhance angiogenesis and relieve endothelial dysfunction.
Collapse
Affiliation(s)
- Ping-Lan Lin
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Cheng Li
- Shanghai Pu Dong Hospital affiliated to FuDan University, Shanghai, China
| | - Rui-Fang Xie
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - You-Hua Wang
- Hypertension lab, Cardiovascular Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhou
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Chen ST, Lee TY, Tsai TH, Lin YC, Lin CP, Shieh HR, Hsu ML, Chi CW, Lee MC, Chang HH, Chen YJ. The Traditional Chinese Medicine DangguiBuxue Tang Sensitizes Colorectal Cancer Cells to Chemoradiotherapy. Molecules 2016; 21:molecules21121677. [PMID: 27929437 PMCID: PMC6273051 DOI: 10.3390/molecules21121677] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022] Open
Abstract
Chemotherapy is an important treatment modality for colon cancer, and concurrent chemoradiation therapy (CCRT) is the preferred treatment route for patients with stage II and III rectal cancer. We examined whether DangguiBuxue Tang (DBT), a traditional Chinese herbal extract, sensitizes colorectal cancer cells to anticancer treatments. The polysaccharide-depleted fraction of DBT (DBT-PD) contains greater amounts of astragaloside IV (312.626 µg/g) and ferulic acid (1.404 µg/g) than does the original formula. Treatment of the murine colon carcinoma cell line (CT26) with DBT-PD inhibits growth, whereas treatment with comparable amounts of purified astragaloside IV and ferulic acid showed no significant effect. Concurrent treatment with DBT-PD increases the growth inhibitory effect of 5-fluorouracil up to 4.39-fold. DBT-PD enhances the effect of radiation therapy (RT) with a sensitizer enhancement ratio (SER) of up to 1.3. It also increases the therapeutic effect of CCRT on CT26 cells. Cells treated with DBP-PD showed ultrastructural changes characteristic of autophagy, including multiple cytoplasmic vacuoles with double-layered membranes, vacuoles containing remnants of degraded organelles, marked swelling and vacuolization of mitochondria, and autolysosome-like vacuoles. We conclude that DBT-PD induces autophagy-associated cell death in CT26 cells, and may have potential as a chemotherapy or radiotherapy sensitizer in colorectal cancer treatment.
Collapse
Affiliation(s)
- Shun-Ting Chen
- Department of Chinese Medicine, Buddhist Tzu Chi General Hospital, Taipei Branch, New Taipei City 23142, Taiwan.
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yin-Cheng Lin
- Department of Medical Research, Mackay Memorial Hospital, Taipei 25160, Taiwan.
| | - Chin-Ping Lin
- Department of Medical Research, Mackay Memorial Hospital, Taipei 25160, Taiwan.
| | - Hui-Ru Shieh
- Department of Medical Research, Mackay Memorial Hospital, Taipei 25160, Taiwan.
| | - Ming-Ling Hsu
- Department of Medical Research, Mackay Memorial Hospital, Taipei 25160, Taiwan.
| | - Chih-Wen Chi
- Department of Medical Research, Mackay Memorial Hospital, Taipei 25160, Taiwan.
| | - Ming-Cheng Lee
- Department of Research, Buddhist Tzu Chi General Hospital, Taipei Branch, New Taipei City 23141, Taiwan.
| | - Hen-Hong Chang
- School of Post-Baccalaureate Chinese Medicine, and Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan.
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Yu-Jen Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei 25160, Taiwan.
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40402, Taiwan.
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei 25160, Taiwan.
| |
Collapse
|
34
|
Hong J, Chen X, Huang J, Li C, Zhong L, Chen L, Wu J, Huang O, He J, Zhu L, Chen W, Li Y, Wan H, Shen K. Danggui Buxue Decoction, a Classical Formula of Traditional Chinese Medicine, Fails to Prevent Myelosuppression in Breast Cancer Patients Treated With Adjuvant Chemotherapy: A Prospective Study. Integr Cancer Ther 2016; 16:406-413. [PMID: 28818031 PMCID: PMC5759943 DOI: 10.1177/1534735416675952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Danggui Buxue Decoction (DBD), a classical formula of traditional Chinese medicine (TCM), has an impact on promoting hematopoiesis. The aim of our study was to determine whether DBD can prevent myelosuppression in breast cancer patients treated with adjuvant chemotherapy. We conducted a phase II randomized prospective controlled clinical study. From December 2013 to February 2015, 106 patients were enrolled and randomly assigned (1:1) to the TCM group and control group. The primary end point was incidence of grade 3-4 neutropenia. The secondary end points included incidence of grade 3-4 neutropenia in each cycle, incidence of anemia, and incidence of thrombopenia during 4 cycles. Seventeen patients withdrew from this study, and 89 patients were included in the final analysis. Incidences of grade 3-4 neutropenia during 4 cycles were 57.1% in the TCM group and 59.6% in the control group, and there was no significant difference ( P = .816). Similarly, no significant differences were observed between the 2 groups for incidence of grade 3-4 neutropenia in each cycle. While incidences of anemia were 54.8% and 66.6% for the TCM group and control group, respectively ( P = .280), incidences of thrombopenia were 11.9% for the TCM group and 4.3% for the control group ( P = .248). No significant differences were observed for the incidence of other nonhematological toxicities between the 2 groups. DBD failed to prevent myelosuppression in breast cancer patients treated with adjuvant chemotherapy. Further studies are warranted to validate the efficacy of DBD in selected patients.
Collapse
Affiliation(s)
- Jin Hong
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples' Republic of China
| | - Xiaosong Chen
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples' Republic of China
| | - Jiahui Huang
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples' Republic of China
| | - Chunqing Li
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples' Republic of China
| | - Li Zhong
- 2 Shuguang Hospital, affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, Peoples' Republic of China
| | - Leying Chen
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples' Republic of China
| | - Jiayi Wu
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples' Republic of China
| | - Ou Huang
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples' Republic of China
| | - Jianrong He
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples' Republic of China
| | - Li Zhu
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples' Republic of China
| | - Weiguo Chen
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples' Republic of China
| | - Yafen Li
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples' Republic of China
| | - Hua Wan
- 2 Shuguang Hospital, affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, Peoples' Republic of China
| | - Kunwei Shen
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples' Republic of China
| |
Collapse
|
35
|
A Nucleotide Signature for the Identification of Angelicae Sinensis Radix (Danggui) and Its Products. Sci Rep 2016; 6:34940. [PMID: 27713564 PMCID: PMC5054691 DOI: 10.1038/srep34940] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
Abstract
It is very difficult to identify Angelicae sinensis radix (Danggui) when it is processed into Chinese patent medicines. The proposed internal transcribed spacer 2 (ITS2) is not sufficient to resolve heavily processed materials. Therefore, a short barcode for the identification of processed materials is urgently needed. In this study, 265 samples of Angelicae sinensis radix and adulterants were collected. The ITS2 region was sequenced, and based on one single nucleotide polymorphism(SNP) site unique to Angelica sinensis, a nucleotide signature consisting of 37-bp (5′-aatccgcgtc atcttagtga gctcaaggac ccttagg-3′) was developed. It is highly conserved and specific within Angelica sinensis while divergent among other species. Then, we designed primers (DG01F/DG01R) to amplify the nucleotide signature region from processed materials. 15 samples procured online were analysed. By seeking the signature, we found that 7 of them were counterfeits. 28 batches of Chinese patent medicines containing Danggui were amplified. 19 of them were found to contain the signature, and adulterants such as Ligusticum sinense, Notopterygium incisum, Angelica decursiva and Angelica gigas were detected in other batches. Thus, this nucleotide signature, with only 37-bp, will broaden the application of DNA barcoding to identify the components in decoctions, Chinese patent medicines and other products with degraded DNA.
Collapse
|
36
|
Choi EK, Kim SM, Hong SW, Moon JH, Shin JS, Kim JH, Hwang IY, Jung SA, Lee DH, Lee EY, Lee S, Kim H, Kim D, Kim YS, Choi YK, Kim HI, Choi HS, Cho SG, Kim JE, Kim KP, Hong YS, Lee WK, Lee JS, Kim TW, Ko SG, Jin DH. SH003 selectively induces p73‑dependent apoptosis in triple‑negative breast cancer cells. Mol Med Rep 2016; 14:3955-60. [PMID: 27599791 DOI: 10.3892/mmr.2016.5722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/12/2016] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a breast cancer subtype that has an aggressive phenotype, is highly metastatic, has limited treatment options and is associated with a poor prognosis. In addition, metastatic TNBC has no preferred standard chemotherapy due to resistance to anthracyclines and taxanes. The present study demonstrated that a herbal extract, SH003, reduced cell viability and induced apoptosis in TNBC without cell cytotoxicity. Cell viability was examined using trypan blue exclusion and colony formation assays, which revealed a decrease in the cell viability. Additionally, apoptosis was determined using flow cytometry and a sub‑G1 assay, which revealed an increase in the proportion of cells in the sub‑G1 phase. The present study investigated the anticancer effect of SH003 in the Hs578T, MDA‑MB‑231 and ZR‑751 TNBC cell lines, and in the MCF7 and T47D non‑TNBC cell lines. Western blot analysis revealed that the expression levels of poly‑ADP‑ribose polymerase (PARP) cleavage protein in cells treated with SH003 were increased dose‑dependent manner, indicating that SH003 induced apoptosis via a caspase‑dependent pathway. Pre‑treatment with the caspase inhibitor Z‑VAD reduced SH003‑induced apoptosis was examined using trypan blue exclusion. Moreover, SH003 treatment enhanced the p73 levels in MDA‑MB‑231 cells but not in MCF7 cells. Transfection of p73 small interfering RNA (siRNA) in MDA‑MB0231 cells revealed that the apoptotic cell death induced by SH003 was significantly impaired in comparison with scramble siRNA transfected MDA‑MB‑231 cells. This was examined using trypan blue exclusion and flow cytometry analysis (sub‑G1). In addition, SH003 and paclitaxel exhibited synergistic anticancer effects on TNBC cells. The results indicate that SH003 exerts its anticancer effect via p73 protein induction and exhibits synergistic anticancer effects when combined with paclitaxel.
Collapse
Affiliation(s)
- Eun Kyoung Choi
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Seung-Mi Kim
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Seung-Woo Hong
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Jai-Hee Moon
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Jae-Sik Shin
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Jeong Hee Kim
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Ih-Yeon Hwang
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Soo-A Jung
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Dae-Hee Lee
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Eun Young Lee
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Seul Lee
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Hyunwoo Kim
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Daejin Kim
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Pusan 614‑735, Republic of Korea
| | - Yeong Seok Kim
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Pusan 614‑735, Republic of Korea
| | - Youn Kyung Choi
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Hyo In Kim
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Hyeong Sim Choi
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Sung-Gook Cho
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Jeong Eun Kim
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Kyu Pyo Kim
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Yong Sang Hong
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Won Keun Lee
- Division of Biosciences and Bioinformatics, Myongji University, Youngin, Kyunggi‑Do 449‑728, Republic of Korea
| | - Jung Shin Lee
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Tae Won Kim
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Dong-Hoon Jin
- Innovative Cancer Research, ASAN Institute for Life Science, Asan Medical Center, Seoul 138‑736, Republic of Korea
| |
Collapse
|
37
|
Chen M, May BH, Zhou IW, Sze DMY, Xue CC, Zhang AL. Oxaliplatin-based chemotherapy combined with traditional medicines for neutropenia in colorectal cancer: A meta-analysis of the contributions of specific plants. Crit Rev Oncol Hematol 2016; 105:18-34. [DOI: 10.1016/j.critrevonc.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/06/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022] Open
|
38
|
Medicinal Herbals with Antiplatelet Properties Benefit in Coronary Atherothrombotic Diseases. THROMBOSIS 2016; 2016:5952910. [PMID: 27051529 PMCID: PMC4808659 DOI: 10.1155/2016/5952910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/10/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Coronary atherothrombotic diseases such as coronary artery disease, peripheral vascular disease, cerebrovascular disease, and heart failure are the serious concerns of the thrombus formed in blood vessels. Anticoagulant and antiplatelet drugs are the cornerstones of the management of these diseases. To prevent the recurrence of these diseases, double antiplatelet drugs such as aspirin and clopidogrel has been the standard management in most hospitals. However, aspirin resistance and clopidogrel inefficient effects due to noncompliance with double drugs regimen can cause a sinister effect on patients. Medicinal plants serve as a greater resource for new medication and their potential currently became a topic of interest to the researchers all over the world. Traditionally, certain herbs have been used as a treatment for heart diseases but have been investigated for their antiplatelet properties. This current review explained few traditional antithrombotic herbals and their antiplatelet properties in vitro and in vivo and this is to be deeply discussed in further research.
Collapse
|
39
|
Effect of Dangguibohyul-Tang, a Mixed Extract of Astragalus membranaceus and Angelica sinensis, on Allergic and Inflammatory Skin Reaction Compared with Single Extracts of Astragalus membranaceus or Angelica sinensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5936354. [PMID: 27051450 PMCID: PMC4802015 DOI: 10.1155/2016/5936354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/30/2016] [Accepted: 02/17/2016] [Indexed: 11/27/2022]
Abstract
Dangguibohyul-tang (DBT), herbal formula composed of Astragalus membranaceus (AM) and Angelica sinensis (AS) at a ratio of 5 : 1, has been used for the treatment of various skin diseases in traditional medicine. We investigated the effect of DBT on allergic and inflammatory skin reaction in atopic dermatitis-like model compared to the single extract of AM or AS. DBT treatment showed the remission of clinical symptoms, including decreased skin thickness and scratching behavior, the total serum IgE level, and the number of mast cells compared to DNCB group as well as the single extract of AM- or AS-treated group. Levels of cytokines (IL-4, IL-6, IFN-γ, TNF-α, and IL-1β) and inflammatory mediators (NF-κB, phospho-IκBα, and phospho-MAPKs) were significantly decreased in AM, AS, and DBT groups. These results demonstrated that AM, AS, and DBT may have the therapeutic property on atopic dermatitis by inhibition of allergic and inflammatory mediators and DBT formula; a mixed extract of AM and AS based on the herb pairs theory especially might be more effective on antiallergic reaction as compared with the single extract of AM or AS.
Collapse
|
40
|
Ye JY, Liang EY, Cheng YS, Chan GCF, Ding Y, Meng F, Ng MHL, Chong BH, Lian Q, Yang M. Serotonin enhances megakaryopoiesis and proplatelet formation via p-Erk1/2 and F-actin reorganization. Stem Cells 2015; 32:2973-82. [PMID: 24980849 DOI: 10.1002/stem.1777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/19/2014] [Indexed: 11/06/2022]
Abstract
Our previous studies have shown that serotonin (5-hydroxytryptamine; 5-HT) is a growth factor for hematopoietic stem/progenitor cells. In this study, we proposed a possible mechanism: 5-HT may enhance megakaryopoiesis and proplatelet formation via Erk1/2 pathway and cytoskeleton reorganization. Here, 5-HT(2B)R was first identified in megakaryocytic cells. 5-HT also promoted the megakaryocytes (MKs) proliferation and reduced the cell apoptosis via the activation of 5-HT(2B)R and Akt pathway. The effects were reduced by the 5-HT2B R inhibitor ketanserin. The effect of 5-HT on proplatelet formation in bone marrow MKs were further confirmed: the 5-HT treated group had more proplatelet bearing MKs compared with the control group. To determine whether 5-HT has effects on cytoskeleton reorganization of MKs, and whether these effects could be reduced by ketanserin or Erk1/2 inhibitor PD98059, MKs were stained with the F-actin specific binder rhodamine-phalloidin. The polymerized actin level was lower in the control group than the 5-HT group and was distributed throughout the cytoplasm with occasional aggregations. Our data demonstrated that Erk1/2 was activated in MKs treated with 5-HT. This study suggests that 5-HT has a potent effect on platelet formation and this effect is likely mediated via 5HT(2B)R with subsequent activation of p-Erk1/2 and consequent F-actin reorganization and proplatelet formation. We also demonstrated that melatonin, the metabolite of 5-HT, exerts a protective effect on MK and platelet recovery in the irradiated mouse model. This study suggested that 5-HT plays an important role in platelet formation via 5HT(2B)R, p-Erk1/2, and F-actin reorganization.
Collapse
Affiliation(s)
- Jie Yu Ye
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou Avenue, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Inhibiting effect of Radix Hedysari Polysaccharide (HPS) on endotoxin-induced uveitis in rats. Int Immunopharmacol 2014; 21:361-8. [DOI: 10.1016/j.intimp.2014.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/08/2014] [Accepted: 05/14/2014] [Indexed: 12/19/2022]
|
42
|
Herbal extract SH003 suppresses tumor growth and metastasis of MDA-MB-231 breast cancer cells by inhibiting STAT3-IL-6 signaling. Mediators Inflamm 2014; 2014:492173. [PMID: 24976685 PMCID: PMC4058205 DOI: 10.1155/2014/492173] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/31/2022] Open
Abstract
Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic abilities of MDA-MB-231 cells in vitro. Furthermore, SH003 inhibited STAT3 activation, which resulted in a reduction of IL-6 production. Therefore, we conclude that SH003 suppresses highly metastatic breast cancer growth and metastasis by inhibiting STAT3-IL-6 signaling path.
Collapse
|
43
|
Chemical profile analysis and comparison of two versions of the classic TCM formula Danggui Buxue Tang by HPLC-DAD-ESI-IT-TOF-MSn. Molecules 2014; 19:5650-73. [PMID: 24786849 PMCID: PMC6270708 DOI: 10.3390/molecules19055650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/10/2014] [Accepted: 04/19/2014] [Indexed: 01/02/2023] Open
Abstract
Danggui Buxue Tang (DBT) is a Traditional Chinese Medicine (TCM) formula primarily used to treat symptoms associated with menopause in women. Usually, DBT is composed of one portion of Radix Angelicae Sinensis (RAS) and five portions of Radix Astragali (RA). Clinically, Radix Hedysari (RH) is sometimes used by TCM physicians to replace RA in DBT. In order to verity whether the chemical constituents of the DBT1 (RA:RAS = 5:1, w/w) and DBT2 (RH:RAS = 5:1, w/w) share similarities the chemical profiles of the two DBTs crude extracts and urine samples were analyzed and compared with the aid of HPLC-DAD-ESI-IT-TOF-MSn, which determines the total ion chromatogram (TIC) and multi-stage mass spectra (MSn). Then, the DBT1 and DBT2 were identified and compared on the basis of the TIC and the MSn. In the first experiment (with crude extracts), 69 compounds (C1–C69) were identified from the DBT1; 46 compounds (c1–c46) were identified from the DBT2. In the second experiment(with urine samples), 44 compounds (M1–M44) were identified from the urine samples of rats that had been administered DBT1, and 34 compounds (m1–m34) were identified from the urine samples of rats that had been administered DBT2. Identification and comparison of the chemical compositions were carried out between the DBT1 and DBT2 of the crude extracts and urine samples respectively. Our results showed that the two crude extracts of the DBTs have quite different chemical profiles. The reasons for their differences were that the special astragalosides in DBT1 and the isoflavonoid glycosides formed the malonic acid esters undergo single esterification and acetyl esters undergo acetylation in DBT1. In contrast, the urine from DBT1-treated rats strongly resembled that of DBT2-treated rats. These metabolites originate mainly from formononetin, calycosin and their related glycosides, and they were formed mainly by the metabolic process of reduction, deglycosylation, demethylation, hydrogenation and sulfation. The HPLC-DAD-ESI-IT-TOF-MSn method was successfully applied for the rapid chemical profiles evaluation of two DBTs and their related urine samples.
Collapse
|
44
|
Yang X, Huang CG, Du SY, Yang SP, Zhang X, Liu JY, Xu JH. Effect of Danggui Buxue Tang on immune-mediated aplastic anemia bone marrow proliferation mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:640-646. [PMID: 24290471 DOI: 10.1016/j.phymed.2013.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/05/2013] [Accepted: 10/17/2013] [Indexed: 06/02/2023]
Abstract
To investigate the pharmacological effects of Danggui Buxue Tang (DBT) on immune-mediated aplasia anemia mice. The model of immune-mediated aplasia anemia mice was induced by means of (60)Co γ-ray irradiation and mixed cells of thymus and lymphnode of DBA/2 mice infusion through tail vein, the parameters tested indices were as following: blood picture, bone marrow nucleated cell count (BMNC), murine colony-forming unit-megakaryocytes (CFU-GM) of bone marrow cells, murine colony-forming unit-erthroid (CFU-E) and burst forming unit-erythroid (BFU-E). The results showed that DBT could not only withstand significantly decreation of blood cells by immune-mediated, but also stimulate on the growth of bone marrow colony cell and increase the weight of hemopoietic progenitor of bone marrow. Therefore, DBT had an obvious treat effect on immune-mediated aplasia anemia models mice.
Collapse
Affiliation(s)
- Xian Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China; College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Chong-Gang Huang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China
| | - Shou-Ying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Shui-Ping Yang
- College of Resources and Environment, Southwest University, Chongqing 400716, PR China
| | - Xue Zhang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China
| | - Jian-Yi Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China
| | - Jia-Hong Xu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China
| |
Collapse
|
45
|
Shi X, Tang Y, Zhu H, Li W, Li W, Li Z, Luo N, Duan JA. Pharmacokinetic comparison of seven major bio-active components in normal and blood deficiency rats after oral administration of Danggui Buxue decoction by UPLC-TQ/MS. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:169-177. [PMID: 24583239 DOI: 10.1016/j.jep.2014.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 01/09/2014] [Accepted: 02/07/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blood deficiency is commonly encountered among women, and is the root of many gynecological disorders. Danggui Buxue Decoction (DBD), a classical traditional Chinese formula which is composed of Astragali Radix (AR) and Angelicae Sinensis Radix (ASR) at the ratio of 5:1 (w/w), is widely used in TCM clinics for treatment of blood deficiency syndrome. This study is to compare the in vivo pharmacokinetic properties of seven major bio-active components in normal and blood deficiency rats after oral administration of DBD. MATERIALS AND METHODS Blood deficiency rats were induced by bleeding from orbit at the dosages of 5.0mL/kg each day for 12 days. Normal and blood deficiency rats were administrated of DBD on the 12th day at the dosage of 20g/kg, and blood was collected at different time points after then. Concentrations of ferulic acid, caffeic acid, butylphthalide, ligustilide, calycosin-7-O-β-glucoside, ononin, and astragaloside IV in plasma were quantified by UPLC-TQ/MS, and the main pharmacokinetic parameters were calculated by DAS 2.0. RESULTS It was found that Cmax, Tmax and MRT0~T of astragaloside IV, Cmax, T1/2Z, AUC0~T and MRT0~T of calycosin-7-O-β-glucoside, T1/2Z and AUC0~T of ferulic acid, T1/2Z, AUC0~T and MRT0~T of ononin, and MRT0~T of ligustilide, butylphthalide, and caffeic acid in blood deficiency rats was significantly different (P<0.05) from normal rats. CONCLUSIONS This study was the first report about pharmacokinetic investigation in blood deficiency animals which was conducted by bleeding. And the results demonstrated that the seven DBD constituents in normal and blood deficiency rats had obvious differences in some pharmacokinetic characteristics, suggesting that the rate and extent of drug metabolism were altered in blood deficiency animals.
Collapse
Affiliation(s)
- Xuqin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engeering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engeering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engeering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weixia Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engeering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engeering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenhao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engeering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Niancui Luo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engeering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engeering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
46
|
Su JY, Xie QF, Liu WJ, Lai P, Liu DD, Tang LH, Dong TTX, Su ZR, Tsim KWK, Lai XP, Li KY. Perimenopause Amelioration of a TCM Recipe Composed of Radix Astragali, Radix Angelicae Sinensis, and Folium Epimedii: An In Vivo Study on Natural Aging Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:747240. [PMID: 24454513 PMCID: PMC3876910 DOI: 10.1155/2013/747240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 11/29/2022]
Abstract
Traditional Chinese medicine (TCM) has been extensively applied as preferable herbal remedy for menopausal symptoms. In the present work, the potential of a TCM recipe named RRF, composed of Radix Astragali, Radix Angelicae Sinensis, and Folium Epimedii, was investigated on a natural aging rat model. After administration of RRF (141, 282, and 564 mg/kg/d), the circulated estradiol (E2) level increased accompanied by a reduction of serum follicle stimulating hormone (FSH). But no significant impact on serum lutenizing hormone (LH) level was observed. As a result of the E2-FSH-LH adjustment, the histomorphology degenerations of ovary, uterus, and vagina of the 11.5-month female rats were alleviated. And lumbar vertebrae trabecular microstructure was also restored under RRF exposure by means of increasing the trabecular area and area rate. Moreover, levels of hypothalamic dopamine (DA) and norepinephrine (NE) rallied significantly after RRF treatment. Results from our studies suggest that RRF possesses a positive regulation on the estrogen imbalance and neurotransmitter disorder, thereby restoring reproductive organ degeneration and skeleton deterioration. The above-mentioned benefits of RRF on the menopause syndromes recommend RRF as a potential candidate for the treatment of perimenopausal syndrome.
Collapse
Affiliation(s)
- Ji-Yan Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qing-Feng Xie
- Central Laboratory of the Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Wei-Jin Liu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ping Lai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Dan-Dan Liu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Li-Hai Tang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Tina T. X. Dong
- Department of Biology and Center for Chinese Medicine, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong
| | - Zi-Ren Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, Guangdong 523808, China
| | - Karl W. K. Tsim
- Department of Biology and Center for Chinese Medicine, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong
| | - Xiao-Ping Lai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, Guangdong 523808, China
| | - Kun-Yin Li
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| |
Collapse
|
47
|
Kinetic changes and antihypertensive effect of aqueous extract of Danggui (Angelica sinensis radix) after stir-fry processing. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0143-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
48
|
Ren JW, Chan KM, Lai PKK, Lau CBS, Yu H, Leung PC, Fung KP, Yu WFX, Cho CH. Extracts from Radix Astragali and Radix Rehmanniae promote keratinocyte proliferation by regulating expression of growth factor receptors. Phytother Res 2012; 26:1547-54. [PMID: 22359405 DOI: 10.1002/ptr.4615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 02/04/2023]
Abstract
Chinese herbal medicine has long been used as a treatment for wounds. However, the underlying cellular and molecular mechanisms remain largely unknown. In this study it was shown that the proliferation of keratinocytes, which is known to play an important role in wound healing as the major cell type in the epidermis, was promoted by three herbal extracts/natural compounds: NF3 (an extract from the mixture of Radix Astragali (RA) and Radix Rehmanniae (RR) in the ratio of 2:1), stachyose (an isolated compound from Radix Rehmanniae) and extract P2-2 (a sub-fraction from the extract of Radix Astragali). The effect of the herbal extracts/natural compounds on the growth of keratinocytes was not influenced by a high glucose level, a condition similar to diabetic patients who usually suffer from diabetic foot ulcers. Real time RT-PCR results showed that the expression of epidermal growth factor (EGF) receptor, but not transforming growth factor-β (TGF-β) receptor, was up-regulated by NF3. Moreover, treatments with the EGF receptor kinase inhibitor AG1478 and the MEK inhibitor U0126 resulted in the diminishment of the effect of the three herbal extracts/natural compounds on keratinocyte proliferation, indicating that EGF receptor might have a significant role in this action. This study has further elucidated the molecular mechanism under which herbal extracts/natural compounds exert their effects on the wound healing process.
Collapse
Affiliation(s)
- J W Ren
- School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Linn YC, Lu J, Lim LC, Sun H, Sun J, Zhou Y. Traditional Chinese herbal medicine in the supportive management of patients with chronic cytopaenic marrow diseases – A phase I/II clinical study. Complement Ther Clin Pract 2011; 17:152-6. [DOI: 10.1016/j.ctcp.2011.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Liu Y, Zhang HG, Li XH. A Chinese herbal decoction, Danggui Buxue Tang, improves chronic fatigue syndrome induced by food restriction and forced swimming in rats. Phytother Res 2011; 25:1825-32. [PMID: 21495102 DOI: 10.1002/ptr.3499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/06/2011] [Accepted: 03/14/2011] [Indexed: 11/06/2022]
Abstract
Danggui Buxue Tang (DBT), a Chinese medicinal decoction that contains Radix Angelicae sinensis (Danggui) and Radix Astragali (Huangqi) at a ratio of 1:5, is used commonly for treating women's ailments. The present study explored the effects of this preparation on chronic fatigue syndrome (CFS). Rats were subjected to a combination of food restriction and forced swimming to induce CFS, and rats were gavaged once daily with either 12 or 24 g/kg DBT for 28 days. Body weights, T-cell subset counts, (3) H-TdR incorporation measurements and mRNA levels of IL-1β, TNF-α, NF-кB, p38MAPK and JNK were determined on days 14 and 28. The swimming endurance capacity was measured on day 28. Rats that received DBT exhibited increased body weight and endurance capacity, corrected T cell subsets counts, increased (3) H-TdR incorporation and decreased mRNA levels of IL-1β, TNF-α, NF-кB, p38MAPK and JNK compared with rats that did not receive DBT. The results indicate that DBT can ameliorate CFS through immune modulation and may act to normalize cytokines and their related signaling pathways.
Collapse
Affiliation(s)
- Ya Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | | | | |
Collapse
|