1
|
The Characterization and Differential Analysis of m 6A Methylation in Hycole Rabbit Muscle and Adipose Tissue and Prediction of Regulatory Mechanism about Intramuscular Fat. Animals (Basel) 2023; 13:ani13030446. [PMID: 36766336 PMCID: PMC9913852 DOI: 10.3390/ani13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
N6-methyladenosine (m6A) widely participates in various life processes of animals, including disease, memory, growth and development, etc. However, there is no report on m6A regulating intramuscular fat deposition in rabbits. In this study, m6A modification of Hycole rabbit muscle and adipose tissues were detected by MeRIP-Seq. In this case, 3 methylases and 12 genes modified by m6A were found to be significantly different between muscle and adipose tissues. At the same time, we found 3 methylases can regulate the expression of 12 genes in different ways and the function of 12 genes is related to fat deposition base on existing studies. 12 genes were modified by m6A methylase in rabbit muscle and adipose tissues. These results suggest that 3 methylases may regulate the expression of 12 genes through different pathways. In addition, the analysis of results showed that 6 of the 12 genes regulated eight signaling pathways, which regulated intramuscular fat deposition. RT-qPCR was used to validate the sequencing results and found the expression results of RT-qPCR and sequencing results are consistent. In summary, METTL4, ZC3H13 and IGF2BP2 regulated intramuscular fat by m6A modified gene/signaling pathways. Our work provided a new molecular basis and a new way to produce rabbit meat with good taste.
Collapse
|
2
|
Ameliorating Effect on Glycolipid Metabolism of Spirulina Functional Formulation Combination from Traditional Chinese Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3910116. [PMID: 35873798 PMCID: PMC9300286 DOI: 10.1155/2022/3910116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/16/2022] [Indexed: 12/27/2022]
Abstract
Insulin resistance is the major factor involved in the pathogenesis of type 2 diabetes. Although the oral drug metformin (MH) is widely used to reduce hyperglycemia, it is associated with adverse effects. Therefore, there is an urgent need to search for safe and natural foods that do not cause adverse effects as alternatives to commercial drugs. In this study, the active substances from Spirulina platensis, Grifola frondosa, Panax ginseng, and chromium-rich yeast were used to obtain Spirulina functional formulations (SFFs), and its therapeutic effects on mice with glycolipid metabolism disorder (GLD) were investigated. Results showed that SFFs not only improved glycolipid metabolism and reduced inflammation in mice with GLD but also showed good regenerative effects on the liver, jejunum, and cecum tissues. Moreover, SFFs could inhibit the growth of harmful microbes in the intestine and promote the proliferation of beneficial bacteria, thereby promoting the production of short-chain fatty acids and further regulating GLD. Additionally, SFFs significantly increased the expression of INS, INSR, IRS-1, PI3K, AKT-1, and GLUT-4 genes and significantly decreased that of GSK-3β in the INS/PI3K/GLUT-4 signaling pathway. Therefore, the findings of this study suggest that SFFs can be further developed as a new class of therapeutic agents against GLD.
Collapse
|
3
|
Wei H, Peng Z, Chen Y, Guo J, Chen L, Shao K. cPKCγ ameliorates ischemic injury in cultured neurons exposed to oxygen glucose deprivation/reoxygenation by inhibiting ferroptosis. Neurosci Res 2022; 181:95-104. [DOI: 10.1016/j.neures.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 12/27/2022]
|
4
|
Antidiabetic activity of galactomannan from Chinese Sesbania cannabina and its correlation of regulating intestinal microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
5
|
Guzmán TJ, Gurrola-Díaz CM. Glucokinase activation as antidiabetic therapy: effect of nutraceuticals and phytochemicals on glucokinase gene expression and enzymatic activity. Arch Physiol Biochem 2021; 127:182-193. [PMID: 31210550 DOI: 10.1080/13813455.2019.1627458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Diabetes represents an important public health problem. Recently, new molecular targets have been identified and exploited to treat this disease. Due to its pivotal role in glucose homeostasis, glucokinase (GCK) is a promising target for the development of novel antidiabetic drugs; however, pharmacological agents that modulate GCK activity have been linked to undesirable side-effects, limiting its use. Interestingly, plants might be a valuable source of new therapeutic compounds with GCK-activating properties and presumably no adverse effects. In this review, we describe biochemical characteristics related to the physiological and pathological importance of GCK, as well as the mechanisms involved in its regulation at different molecular levels. Posteriorly, we present a compendium of findings supporting the potential use of nutraceuticals and phytochemicals in the management of diabetes through modulation of GCK expression and activity. Finally, we propose critical aspects to keep in mind when designing experiments to evaluate GCK modulation properly.
Collapse
Affiliation(s)
- Tereso J Guzmán
- Departamento de Biología Molecular y Genómica, Instituto Transdisciplinar de Investigación e Innovación en Salud/Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Carmen M Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Instituto Transdisciplinar de Investigación e Innovación en Salud/Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
6
|
Hypolipidemic and Hepatoprotective Effects of Polysaccharides Extracted from Liriope spicata Var. Prolifera in C57BL/6J Mice with High-Fat Diet-Induced Hyperlipidemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8013189. [PMID: 33376498 PMCID: PMC7746456 DOI: 10.1155/2020/8013189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
In this study, C57BL/6J mice with high-fat diet- (HFD-) induced hyperlipidemia were treated with total Liriope spicata var. prolifera polysaccharides (TLSP: 200, 400, and 800 mg/kg body weight), simvastatin (3 mg/kg body weight), or saline for 8 weeks, respectively. The results showed that TLSP had strong lipid-lowering and hepatoprotective effects on C57BL/6J mice with HFD-induced hyperlipidemia. TLSP administration significantly reduced serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels and downregulated the expressions of peroxisome proliferator-activated receptor (PPAR)γ and fatty acid synthase (FAS) in the adipose and liver tissues of the mice. TLSP exerted hypolipidemic and hepatoprotective effects by activating lipid/bile acid metabolism via the FXH-SHP/CYP7A1 and SEBP-1c/FAC/ACC signaling pathways. Thus, TLPS is a promising natural polymer with hepatoprotective and hypolipidemic properties.
Collapse
|
7
|
Zhou X, He Y, Jiang Y, He B, Deng X, Zhang Z, Yuan X, Li J. MiR-126-3p inhibits apoptosis and promotes proliferation by targeting phosphatidylinositol 3-kinase regulatory subunit 2 in porcine ovarian granulosa cells. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:879-887. [PMID: 31480138 PMCID: PMC7206374 DOI: 10.5713/ajas.19.0290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022]
Abstract
Objective Numerous studies have indicated that the apoptosis and proliferation of granulosa cells (GCs) are closely related to the normal growth and development of follicles and ovaries. Previous evidence has suggested that miR-126-3p might get involved in the apoptosis and proliferation of GCs, and phosphatidylinositol 3-kinase regulatory subunit 2 (PIK3R2) gene has been predicted as one target of miR-126-3p. However, the molecular regulation of miR-126-3p on PIK3R2 and the effects of PIK3R2 on porcine GCs apoptosis and proliferation remain virtually unexplored. Methods In this study, using porcine GCs as a cellular model, luciferase report assay, mutation and deletion were applied to verify the targeting relationship between miR-126-3p and PIK3R2. Annexin-V/PI staining and 5-ethynyl-2′-deoxyuridine assay were applied to explore the effect of PIK3R2 on GCs apoptosis and proliferation, respectively. Real-time quantitative polymerase chain reaction and Western Blot were applied to explore the regulation of miR-126-3p on PIK3R2 expression. Results We found that miR-126-3p targeted at PIK3R2 and inhibited its mRNA and protein expression. Knockdown of PIK3R2 significantly inhibited the apoptosis and promoted the proliferation of porcine GCs, and significantly down-regulated the mRNA expression of several key genes of PI3K pathway such as insulin-like growth factor 1 receptor (IGF1R), insulin receptor (INSR), pyruvate dehydrogenase kinase 1 (PDK1), and serine/threonine kinase 1 (AKT1). Conclusion MiR-126-3p might target and inhibit the mRNA and protein expressions of PIK3R2, thereby inhibiting GC apoptosis and promoting GC proliferation by down-regulating several key genes of the PI3K pathway, IGF1R, INSR, PDK1, and AKT1. These findings would provide great insight into further exploring the molecular regulation of miR-126-3p and PIK3R2 on the functions of GCs during the folliculogenesis in female mammals.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yingting He
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yao Jiang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Bo He
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xi Deng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
8
|
Fang J, Wang X, Lu M, He X, Yang X. Recent advances in polysaccharides from Ophiopogon japonicus and Liriope spicata var. prolifera. Int J Biol Macromol 2018; 114:1257-1266. [PMID: 29634971 DOI: 10.1016/j.ijbiomac.2018.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023]
Abstract
O. japonicus and L. spicata var. prolifera are distinguished as sources of highly promising yin-tonifying medicinals, namely Ophiopogonis Radix and Liriopes Radix. Liriopes Radix is generally medicinally used as a substitute for Ophiopogonis Radix in various prescriptions due to their extremely similar nature. Ophiopogonis Radix and Liriopes Radix are both very rich in bioactive polysaccharides, especially β‑fructans. Over the past twelve years, except for work on physical entrapment and chemical modification of obtained β‑fructans, the vast majority of studies are carried out to investigate the bioactivities of O. japonicus polysaccharides (OJP) and L. spicata var. prolifera polysaccharides (LSP), mainly including anti-diabetes, immunomodulation, anti-inflammation, antioxidation, anti-obesity, cardiovascular protection, etc. In addition, OJP and LSP are considered to have the potential to regulate intestinal flora. The main purpose of this review is to provide systematically reorganized information on structural characteristics and bioactivities of OJP and LSP to support their further therapeutic potentials and sanitarian functions.
Collapse
Affiliation(s)
- Jiacheng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China.
| | - Xiaoxiao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Mengxin Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Xirui He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China; Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Xinhua Yang
- Chongqing Jiangbei Hospital of Traditional Chinese Medicine, Chongqing 400020, PR China
| |
Collapse
|
9
|
Wang PC, Zhao S, Yang BY, Wang QH, Kuang HX. Anti-diabetic polysaccharides from natural sources: A review. Carbohydr Polym 2016; 148:86-97. [PMID: 27185119 DOI: 10.1016/j.carbpol.2016.02.060] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/13/2016] [Accepted: 02/20/2016] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease attracted worldwide concerns, which severely impairs peoples' quality of life and is attributed to several life-threatening complications, including atherosclerosis, nephropathy and retinopathy. The current therapies for DM include mainly oral anti-diabetic drugs and insulin. However, continuous use of these causes insulin resistance and side-effects, and the demand of effective, nontoxic and affordable drugs for DM patients is eager. Several previous studies have shown that non-toxic biological macromolecules, mainly polysaccharides, possess prominent efficacies on DM. Based on these encouraging observations, a great deal of efforts have been focused on discovering anti-diabetic polysaccharides for the development of effective therapeutics for DM. This review focuses on the advancements in the anti-diabetic efficacy of various natural polysaccharides and polysaccharide complexes from 2010 to 2015.
Collapse
Affiliation(s)
- Peng-Cheng Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Shan Zhao
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Qiu-Hong Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| |
Collapse
|
10
|
Li S, Chen H, Wang J, Wang X, Hu B, Lv F. Involvement of the PI3K/Akt signal pathway in the hypoglycemic effects of tea polysaccharides on diabetic mice. Int J Biol Macromol 2015; 81:967-74. [DOI: 10.1016/j.ijbiomac.2015.09.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/12/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
|
11
|
Tsai YC, Hsu CC, El-Shazly M, Chiang SY, Wu CC, Wu CC, Lai WC, Yen MH, Wu YC, Chang FR. Phytochemicals and Estrogen-Receptor Agonists from the Aerial Parts of Liriope platyphylla. Molecules 2015; 20:6844-55. [PMID: 25913925 PMCID: PMC6272546 DOI: 10.3390/molecules20046844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 11/16/2022] Open
Abstract
One new benzofuran, (2R)-(2',4'-dihydroxybenzyl)-6,7-methylenedioxy-2,3-dihydrobenzofuran (1), one new phenylisocoumarin, 3-(2'-hydroxyphenyl)-6,8-dihydroxy-7-methoxy-isocoumarin (2), and one new benzofuroisocoumarin, platyphyllarin C (3), were isolated from the ethanolic extract of Liriope platyphylla aerial parts, along with seventeen known compounds. The structures of the isolates were established by spectroscopic analysis and comparison with the literature data. The results indicated that structures 1-3 are uncommon in Nature. Benzofuroisocoumarin 4, flavonoids 9, 10, and 13-15, and homoisoflavonoids 19 and 20 exhibited significant binding activity to estrogen-receptor α and/or β as demonstrated by the SEAP reporter assay system in an MCF-7 cell-line.
Collapse
Affiliation(s)
- Yu-Chi Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Chun Hsu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Laboratory Medicine, Paochien Care Cooperation Paochien Hospital, Pingtung 900, Taiwan.
| | - Mohamed El-Shazly
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt.
| | - Shang-Yu Chiang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chau-Chung Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wan-Chun Lai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Research Center for Natural Product and New Drug, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 807, Taiwan.
| |
Collapse
|
12
|
Xu WD, Yang XY, Li DH, Zheng KD, Qiu PC, Zhang W, Li CY, Lei KF, Yan GQ, Jin SW, Wang JG. Up-regulation of fatty acid oxidation in the ligament as a contributing factor of ankylosing spondylitis: A comparative proteomic study. J Proteomics 2014; 113:57-72. [PMID: 25281561 DOI: 10.1016/j.jprot.2014.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/29/2014] [Accepted: 09/20/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The present study first utilized a standardized shotgun proteomic analysis method to determine differences in protein expression of fibroblasts in the ligament between AS patients and healthy controls. METHODS Proteins extracted from primarily cultured FLLs from 35 AS patients and 10 normal subjects were analyzed by automated 2D-Nano-LC-ESI-MS/MS. Differentially expressed proteins were screened by 2-sample t-test and fold change. Bioinformatics analysis of differentially expressed proteins was based on the IPA. Fatty acid β-oxidation-related proteins and INSR pathway-related proteins in the ligament were confirmed by real-time PCR and Western blot. RESULTS A total of 556 differential proteins were screened in AS. Of them, 322 proteins were up-regulated and the remaining 234 proteins were down-regulated. GO and pathway analyses showed that six fatty acid β-oxidation-related proteins (HADHB, ECHS1, ACSL4, ACADM, ACSL1 and HADH) were up-regulated in FLL cells, which was consistent with the results obtained from real-time PCR, Western blot and MS, while INSR pathway-related proteins (INSR, IRS1, PI3K and PKC) was low in the ligament of AS as compared with that in healthy controls. CONCLUSION The lower body fat level in AS maybe due to up-regulation of fatty acid β-oxidation-related enzymes regulated by INSR/PI3K/PKC pathway. BIOLOGICAL SIGNIFICANCE Ankylosing spondylitis (AS), a common spondyloarthropathy, is an inflammatory rheumatic disease with a predilection for the axial skeleton. Clinical hallmarks of AS include sacroiliitis, uveitis, enthesitis and persistent spinal inflammation. The pathogenic mechanism of disease causation and perpetuation remains poorly understood. In this study, we primarily cultured fibroblast cells from ligament biopsies, knowing that fibroblast cells are dominant cells in the diseased ligament. One of the characteristic pathologic changes in AS is inflammation of the attachment points, including the muscle, ligament and bone or joint capsule. Inflammation of the tendon attachment point is usually non-bacterial and can lead to pain and swelling of the tendon ligament. To obtain more information, we used Shotgun proteomic analysis based on multidimensional liquid chromatography tandem mass spectrometry (LC-MS/MS). we firstly mixed the lysates of FLL cells derived from the ligaments of 35 AS patients and 10 normal subjects, identified proteins by automated 2D-Nano-LC-ESI-MS/MS method, GO and pathway analyses showed that six fatty acid β-oxidation-related proteins (HADHB, ECHS1, ACSL4, ACADM, ACSL1 and HADH) were up-regulated in the ligament, which was consistent with the results obtained from real-time PCR, Western blot and MS, while INSR pathway-related proteins (INSR, IRS1, PI3K and PKC) was low in the ligament of AS as compared with that in healthy controls. We also find that AS subjects had significantly lower body mass index (BMI) and BMI Z-scores compared with that in healthy controls. The results remind us that up-regulation of fatty acid β-oxidation-related proteins lower the body fat content, which is a new discovery contributing to the progression of AS. This is the first report on fatty acid oxidation in AS. It was found that the body fat level was low in AS due to high fatty acid oxidation, suggesting that insulin signaling may play an important role in the metabolic switch from predominant to fatty acid metabolism that characterizes the ligament of AS. One mechanism for this transition is increased expression of genes that regulate the rate of fatty acid oxidation. This effect may be mediated by PI3K, a downstream mediator of many receptor tyrosine kinases, including the INSR. This is a newly discovered factor contributing to the progression of AS.
Collapse
Affiliation(s)
- Wei-Dong Xu
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Xin-Yu Yang
- Department of Medicinal Chemistry, College of Pharmacy Sciences, Wenzhou Medical University, Wenzhou, China
| | - Da-He Li
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Kai-Di Zheng
- Department of Biochemistry, College of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peng-Cheng Qiu
- Department of Biochemistry, College of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Department of Biochemistry, College of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chun-Yang Li
- Department of Biochemistry, College of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kang-Fu Lei
- Department of Biochemistry, College of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guo-Quan Yan
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, China
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jian-Guang Wang
- Department of Biochemistry, College of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
13
|
Anti-viral effect of a compound isolated from Liriope platyphylla against hepatitis B virus in vitro. Virus Res 2014; 192:16-24. [PMID: 25150190 DOI: 10.1016/j.virusres.2014.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022]
Abstract
The compound LPRP-Et-97543 was isolated from Liriope platyphylla roots and was observed to have potential anti-viral effects in HepG2.2.15 cells against hepatitis B virus (HBV). The antiviral mode was further clarified, and the HBV-transfected Huh7 cells were used as the platform. During viral gene expression, LPRP-Et-97543 treatment had apparent effects on the viral precore/pregenomic and S/preS RNA. Promoter activity analysis demonstrated that LPRP-Et-97543 significantly reduced Core, S, and preS but not X promoter activities. Further examination showed that putative signaling pathways were involved in this inhibitory effect, indicating that NF-κB may serve a putative mediator of HBV gene regulation with LPRP-Et-97543. In addition, the nuclear expression of p65/p50 NF-κB member proteins was attenuated with LPRP-Et-97543 and augmented cytoplasmic IκBα protein levels but without affecting the expression of these proteins in HBV non-transfected cells during treatment. Moreover, LPRP-Et-97543 reduced the binding activity of NF-κB protein to CS1 element of HBV surface gene in a gel retardation analysis and inhibited CS1 containing promoter activity in HBV expressed cells. However, HBV transfection significantly enhances CS1 containing promoter activity without compound treatment in cells. Finally, transfection of the p65 expression plasmid significantly reversed the inhibitory effect of LPRP-Et-97543 on the replicated HBV DNA level in HBV positive cells. In conclusion, this study suggests that the mechanism of HBV inhibition by LPRP-Et-97543 may involve the feedback regulation of viral gene expression and viral DNA replication by HBV viral proteins, which interferes with the NF-κB signaling pathway.
Collapse
|
14
|
Lu HJ, Tzeng TF, Liou SS, Lin SD, Wu MC, Liu IM. Polysaccharides from Liriopes Radix ameliorate streptozotocin-induced type I diabetic nephropathy via regulating NF-κB and p38 MAPK signaling pathways. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:156. [PMID: 24886259 PMCID: PMC4041058 DOI: 10.1186/1472-6882-14-156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/30/2014] [Indexed: 12/15/2022]
Abstract
Background The polysaccharides from Liriopes Radix (PSLR) has been indicated to ameliorate insulin signaling transduction and glucose metabolism. We aimed to investigate whether PSLR exerts an ameliorative effect on renal damage in diabetes induced by streptozotocin. Methods Diabetes was induced with STZ (60 mg/kg) by intraperitoneal injection in rats. Two weeks after STZ injection, rats in the treatment group were orally dosed with PSLR (200 and 300 mg/kg/day for 8 weeks. The normal rats were chosen as nondiabetic control group. Changes in renal function-related parameters in plasma and urine were analyzed at the end of the study. Kidneys were isolated for pathology histology, immunohistochemistry, and Western blot analyses. Results Diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, blood urea nitrogen and proteinuria, along with marked elevation in the ratio of kidney weight to body weight. All of these abnormalities were significantly reversed by PSLR. The histological examinations revealed amelioration of diabetes-induced glomerular pathological changes following treatment with PSLR. The less protein expressions of renal nephrin and podocin in diabetic rats were increased following treatment with PSLR. PSLR reduced the accumulation of ED-1-expressing macrophages in renal tissue of diabetic rats. PSLR almost completely abolished T cells infiltration and attenuated the expression of proinflammatory cytokines. PSLR treatments not only reduced the degradation of inhibitory kappa B kinase, but also downregulated the protein expression of nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) in diabetic kidney. Conclusions The results suggest that the renal protective effects of PSLR occur through improved glycemic control and renal structural changes, which are involved in the inhibition of NF-κB and p-38 MAPK mediated inflammation.
Collapse
|
15
|
Xiao ZQ, Wang YL, Gan SR, Chen JC. Polysaccharides from Liriopes Radix ameliorates hyperglycemia via various potential mechanisms in diabetic rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:975-82. [PMID: 23939938 DOI: 10.1002/jsfa.6347] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND Liriopes Radix, which is regarded as both drug and healthy diet, is drunk as tea and used in traditional Chinese medicine to treat diabetes. Based on our previous studies, investigated the hypoglycemic effects and explored the mechanisms of total polysaccharides from Liriope spicata var. prolifera (Liriopes Radix) in a diabetic rat model. RESULTS TLSP reduced hyperglycemia in diabetic rats. The oral glucose tolerance test showed that TLSP could improve the glucose tolerance of diabetic rats. Damage to liver and pancreas tissue was inhibited after treatment with TLSP. Moreover, TLSP increased glycogen content, glucokinase (GK) and glycogen synthetase (GS) activities, and suppressed the elevation of glucose-6-phosphatase (G6Pase) and glycogen phosphorylase (GP) activities in liver. Compared with the diabetic control group, GK and GS mRNA expression were significantly elevated, while G6Pase and GP mRNA expression were decreased in TLSP groups. In addition, TLSP could inhibit glycogen synthase kinase-3β expression and increase insulin receptor, insulin receptor substrate-1, phosphoinositide 3-kinase, protein kinase B and glucose transport protein-4 expression in liver. CONCLUSION TLSP showed hypoglycemic function. Improvement of glucose metabolism and insulin-signaling transduction were possible mechanisms.
Collapse
Affiliation(s)
- Zuo-qi Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji School of Pharmaceutical Sciences, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Xiao ZQ, Wang YL, Yue YD, Zhang YT, Chen CP, Wan LS, Deng B, Liu ZX, Chen JC. Preventive effects of polysaccharides from Liriope spicata var. prolifera on diabetic nephropathy in rats. Int J Biol Macromol 2013; 61:114-20. [DOI: 10.1016/j.ijbiomac.2013.06.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/03/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022]
|
17
|
The oestrogenic and anti-platelet activities of dihydrobenzofuroisocoumarins and homoisoflavonoids from Liriope platyphylla roots. Food Chem 2013; 140:305-14. [DOI: 10.1016/j.foodchem.2013.02.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/04/2013] [Accepted: 02/14/2013] [Indexed: 11/23/2022]
|
18
|
An Aqueous-Ethanol Extract of Liriope spicata var. prolifera Ameliorates Diabetic Nephropathy through Suppression of Renal Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:201643. [PMID: 24027593 PMCID: PMC3762134 DOI: 10.1155/2013/201643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/27/2013] [Accepted: 07/12/2013] [Indexed: 12/01/2022]
Abstract
The tuberous root of Liriope spicata var. prolifera (TRLS; Liliaceae family) is valued for the ability to promote glucose homeostasis, and it may therefore be utilized as an adjuvant therapy in the control of diabetic complications. The aim of the present study was to examine the effects of an aqueous ethanol extract from TRLS (TRLS-ext) (100 or 200 mg kg−1 per day for eight weeks) on rats with streptozotocin-induced diabetic nephropathy (DN). Renal dysfunction in diabetic rats was ameliorated by TRLS-ext as evidenced by reduced creatinine clearance, as well as increased blood urea nitrogen and proteinuria. Treatment with TRLS-ext was found to markedly improve histological architecture in the diabetic kidney. Hyperglycemia induced degradation of inhibitory kappa B and reduced nuclear factor kappa B activation, leading to increased infiltration of macrophages and increased levels of proinflammatory cytokines, including interleukin-1 and tumor necrosis factor-α. All of the above abnormalities were reversed by TRLS-ext treatment, which also decreased the expression of intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and fibronectin in the diabetic kidneys. These findings provide a perspective on the renoprotective effects of TRLS-ext in DN.
Collapse
|
19
|
Antidiabetic Activity of Polysaccharides from Tuberous Root of Liriope spicata var. prolifera in KKAy Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:349790. [PMID: 23762123 PMCID: PMC3677662 DOI: 10.1155/2013/349790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 03/13/2013] [Accepted: 04/18/2013] [Indexed: 11/18/2022]
Abstract
Tuberous root of Liriope spicata var. prolifera has been widely used as a traditional Chinese medicine for the treatment of diabetes. The present study investigated the antidiabetic effect and the potential mechanisms of two new polysaccharides (LSP1, LSP2) and the total polysaccharides (TLSP), isolated from the tuberous roots. Upon the intragastric administration in obese insulin-resistant diabetic KKAy mice for 28 days, TLSP, LSP1, and LSP2 all caused a remarkable decrease of fasting blood glucose and significant improvement of insulin resistance and serum lipid metabolism in diabetic mice. In addition, liver histological analysis showed that TLSP, LSP1, and LSP2 significantly ameliorated the hepatocyte hypertrophy and decreased the lipid accumulation in the mice liver. Further experiments suggested that TLSP, LSP1, and LSP2 effectively inhibited hepatic gluconeogenesis and increased hepatic glycolysis and hepatic glycogen content. Furthermore, the mechanistic analysis showed the increased expression of insulin-receptor α subunit, insulin-receptor substrate-1, phosphatidylinositol 3-kinase, and peroxisome proliferators-activated receptors γ. These results suggested that TLSP, LSP1, and LSP2 manifest strong antidiabetic activity, therefore hold a great promise for therapeutic application in diabetic therapy and other related metabolic disorders.
Collapse
|
20
|
Active Constituents from Liriope platyphylla Root against Cancer Growth In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:857929. [PMID: 23762164 PMCID: PMC3670517 DOI: 10.1155/2013/857929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/22/2013] [Indexed: 11/27/2022]
Abstract
Liriope spicata is a well-known herb in traditional Chinese medicine, and its root has been clinically demonstrated to be effective in the treatment of metabolic and neural disorders. The constituents isolated from Liriope have also recently been shown to possess anticancer activity, although the mechanism of which remains largely unknown. Here, we illustrate the anticancer activity of LPRP-9, one of the active fractions we fractionated from the Liriope platyphylla root part (LPRP) extract. Treatment with LPRP-9 significantly inhibited proliferation of cancer cell lines MCF-7 and Huh-7 and down-regulated the phosphorylation of AKT. LPRP-9 also activates the stress-activated MPAK, JNK, p38 pathways, the p53 cell-cycle checkpoint pathway, and a series of caspase cascades while downregulating expression of antiapoptotic factors Bcl-2, Bcl-XL, and survivin. Such activities strongly suggest a role for LPRP-9 in apoptosis and autophagy. We further purified and identified the compound (−)-Liriopein B from LPRP-9, which is capable of inhibiting AKT phosphorylation at low concentration. The overall result highlights the anticancer property of LPRP-9, suggests its mechanism for inhibition of proliferation and promotion of cell death for cancer cells via regulation of multitarget pathways, and denotes the importance of purifying components of fraction LPRP-9 to aid cancer therapy.
Collapse
|