1
|
Oliveira KAD, Araújo HN, Lima TID, Oliveira AG, Favero-Santos BC, Guimarães DSP, Freitas PAD, Neves RDJD, Vasconcelos RP, Almeida MGGD, Ramos MV, Silveira LR, Oliveira ACD. Phytomodulatory proteins isolated from Calotropis procera latex promote glycemic control by improving hepatic mitochondrial function in HepG2 cells. Saudi Pharm J 2021; 29:1061-1069. [PMID: 34588851 PMCID: PMC8463474 DOI: 10.1016/j.jsps.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/04/2021] [Indexed: 12/03/2022] Open
Abstract
The medicinal uses of Calotropis procera are diverse, yet some of them are based on effects that still lack scientific support. Control of diabetes is one of them. Recently, latex proteins from C. procera latex (LP) have been shown to promote in vivo glycemic control by the inhibition of hepatic glucose production via AMP-activated protein kinase (AMPK). Glycemic control has been attributed to an isolated fraction of LP (CpPII), which is composed of cysteine peptidases (95%) and osmotin (5%) isoforms. Those proteins are extensively characterized in terms of chemistry, biochemistry and structural aspects. Furthermore, we evaluated some aspects of the mitochondrial function and cellular mechanisms involved in CpPII activity. The effect of CpPII on glycemic control was evaluated in fasting mice by glycemic curve and glucose and pyruvate tolerance tests. HepG2 cells was treated with CpPII, and cell viability, oxygen consumption, PPAR activity, production of lactate and reactive oxygen species, mitochondrial density and protein and gene expression were analyzed. CpPII reduced fasting glycemia, improved glucose tolerance and inhibited hepatic glucose production in control animals. Additionally, CpPII increased the consumption of ATP-linked oxygen and mitochondrial uncoupling, reduced lactate concentration, increased protein expression of mitochondrial complexes I, III and V, and activity of peroxisome-proliferator-responsive elements (PPRE), reduced the presence of reactive oxygen species (ROS) and increased mitochondrial density in HepG2 cells by activation of AMPK/PPAR. Our findings strongly support the medicinal use of the plant and suggest that CpPII is a potential therapy for prevention and/or treatment of type-2 diabetes. A common epitope sequence shared among the proteases and osmotin is possibly the responsible for the beneficial effects of CpPII.
Collapse
Key Words
- AMPK, AMP-activated kinase protein
- AUC, Area under the curve
- Bioactive proteins
- CTL, Control
- Calotropis procera
- CpPII, Major peptidase fraction treated with iodoacetamide
- DHE, Dihydroethidium
- DMEM, Dulbecco’s minimal essential medium
- DMSO, Dimethyl sulfoxide
- FCCP, Oligomycin carbonyl cyanide 4 (trifluoromethoxy) phenylhydrazine
- Folk medicine
- Glycemia
- HGP, Hepatic glucose production
- LP, Soluble latex proteins from Calotropis procera
- Latex
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- OCR, Oxygen consumption rate
- OXPHOS, Oxidative phosphorylation
- PPAR, Peroxisome proliferator-activated receptor
- PPRE, PPAR response element
- ROS, Reactive oxygen species
- TBS-T, Tris buffered saline solution containing 0.1% Tween 20
- UCP2, Mitochondrial uncoupling protein 2
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ariclecio Cunha de Oliveira
- Superior Institute of Biomedical Sciences, State University of Ceara, Fortaleza, Brazil
- Corresponding author.at: Superior Institute of Biomedical Sciences, State University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
2
|
Tavares LS, Ralph MT, Batista JEC, Sales AC, Ferreira LCA, Usman UA, da Silva Júnior VA, Ramos MV, Lima-Filho JV. Perspectives for the use of latex peptidases from Calotropis procera for control of inflammation derived from Salmonella infections. Int J Biol Macromol 2021; 171:37-43. [PMID: 33418044 DOI: 10.1016/j.ijbiomac.2020.12.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Anti-inflammatory properties have been attributed to latex proteins of the medicinal plant Calotropis procera. PURPOSE A mixture of cysteine peptidases (LPp2) from C. procera latex was investigated for control of inflammatory mediators and inflammation in a mouse model of Salmonella infection. METHODS LPp2 peptidase activity was confirmed by the BANA assay. Cytotoxicity assays were conducted with immortalized macrophages. Peritoneal macrophages (pMØ) from Swiss mice were stimulated with lipopolysaccharide (LPS) in 96-well plates and then cultured with nontoxic concentrations of LPp2. Swiss mice intravenously received LPp2 (10 mg/kg) and then were challenged intraperitoneally with virulent Salmonella enterica Ser. Typhimurium. RESULTS LPp2 was not toxic at dosages lower than 62.2 μg/mL. LPp2 treatments of pMØ stimulated with LPS impaired mRNA expression of pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and IL-10. LPp2 increased the intracellular bacterial killing in infected pMØ. Mice given LPp2 had a lower number of leukocytes in the peritoneal cavity in comparison to control groups 6 h after infection. The bacterial burden and histological damage were widespread in target organs of mice receiving LPp2. CONCLUSION We conclude that LPp2 contains peptidases with strong anti-inflammatory properties, which may render mice more susceptible to early disseminated infection caused by Salmonella.
Collapse
Affiliation(s)
| | - Maria Taciana Ralph
- Department of Biology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - Ana Clarissa Sales
- Department of Biology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - Usman Abdulhadi Usman
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - Marcio Viana Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | |
Collapse
|
3
|
Sousa BF, Silva AFBD, Lima-Filho JV, Agostinho AG, Oliveira DN, de Alencar NMN, de Freitas CDT, Ramos MV. Latex proteins downregulate inflammation and restores blood-coagulation homeostasis in acute Salmonella infection. Mem Inst Oswaldo Cruz 2020; 115:e200458. [PMID: 33237133 PMCID: PMC7682140 DOI: 10.1590/0074-02760200458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Calotropis procera latex protein fraction (LP) was previously shown to protect animals from septic shock. Further investigations showed that LP modulate nitric oxide and cytokines levels. OBJECTIVES To evaluate whether the protective effects of LP, against lethal bacterial infection, is observed in its subfractions (LPPII and LPPIII). METHODS Subfractions (5 and 10 mg/kg) were tested by i.p. administration, 24 h before challenging with lethal injection (i.p.) of Salmonella Typhimurium. LPPIII (5 mg/kg) which showed higher survival rate was assayed to evaluate bacterial clearance, histopathology, leukocyte recruitment, plasma coagulation time, cytokines and NO levels. FINDINGS LPPIII protected 70% of animals of death. The animals given LPPIII exhibited reduced bacterial load in blood and peritoneal fluid after 24 h compared to the control. LPPIII promoted macrophage infiltration in spleen and liver. LPPIII restored the coagulation time of infected animals, increased IL-10 and reduced NO in blood. MAIN CONCLUSIONS LPPIII recruited macrophages to the target organs of bacterial infection. This addressed inflammatory stimulus seems to reduce bacterial colonisation in spleen and liver, down regulate bacterial spread and contribute to avoid septic shock.
Collapse
Affiliation(s)
- Brandon Ferraz Sousa
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brasil
| | | | - José Vitor Lima-Filho
- Universidade Federal Rural de Pernambuco, Departamento de Biologia, Recife, PE, Brasil
| | - Anderson Gomes Agostinho
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brasil
| | | | | | | | - Márcio Viana Ramos
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brasil
| |
Collapse
|
4
|
Ramos MV, Freitas APF, Leitão RFC, Costa DVS, Cerqueira GS, Martins DS, Martins CS, Alencar NMN, Freitas LBN, Brito GAC. Anti-inflammatory latex proteins of the medicinal plant Calotropis procera: a promising alternative for oral mucositis treatment. Inflamm Res 2020; 69:951-966. [PMID: 32488316 DOI: 10.1007/s00011-020-01365-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE AND DESIGN Oral mucositis (OM) is an intense inflammatory reaction progressing to tissue damage and ulceration. The medicinal uses of Calotropis procera are supported by anti-inflammatory capacity. PII-IAA, a highly homogenous cocktail of laticifer proteins (LP) prepared from the latex of C. procera, with recognized pharmacological properties was tested to treat OM. MATERIALS AND SUBJECTS Male Golden Sirius hamsters were used in all treatments. TREATMENT The latex protein samples were injected i.p. (5 mg/Kg) 24 h before mucositis induction (mechanical trauma) and 24 h later. METHODS Histology, cytokine measurements [ELISA], and macroscopic evaluation [scores] were performed. RESULTS PII-IAA eliminated OM, accompanied by total disappearance of myeloperoxidase activity and release of IL-1b, as well as reduced TNF-a. Oxidative stress was relieved by PII-IAA treatment, as revealed by MDA and GSH measurements. PII-IAA also reduced the expression of adhesion molecules (ICAM-1) and Iba-1, two important markers of inflammation, indicating modulatory effects. Histological analyses of the cheek epithelium revealed greater deposition of type I collagen fibers in animals given PII-IAA compared with the control group. This performance was only reached when LPPII was treated with iodoacetamide (IAA), an irreversible inhibitor of proteolytic activity of cysteine proteases. The endogenous proteolytic activity of LPPII induced adverse effects in animals. Candidate proteins involved in the phytomodulatory activity are proposed. CONCLUSIONS Therapy was successful in treating OM with the laticifer protein fraction, containing peptidases and osmotin, from Calotropis procera. The effective candidate from the latex proteins for therapeutic use is PII-IAA.
Collapse
Affiliation(s)
- Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Ana Paula F Freitas
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB), Redenção, Ceará, Brazil
| | - Renata F C Leitão
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Deiziane V S Costa
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Gilberto S Cerqueira
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Dainesy S Martins
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Conceição S Martins
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Nylane M N Alencar
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Larissa Barbosa N Freitas
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Gerly Anne C Brito
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
5
|
Santana LDAB, Aragão DP, Araújo TDSL, Sousa NAD, Souza LKMD, Oliveira LES, Pereira ACTDC, Ferreira GP, Oliveira NVDM, Souza BDS, Sousa FBM, Ramos MV, Freitas CDTD, Medeiros JVR, Oliveira JSD. Antidiarrheal effects of water-soluble proteins from Plumeria pudica latex in mice. Biomed Pharmacother 2018; 97:1147-1154. [DOI: 10.1016/j.biopha.2017.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/29/2022] Open
|
6
|
Latex proteins from Calotropis procera: Toxicity and immunological tolerance revisited. Chem Biol Interact 2017; 274:138-149. [DOI: 10.1016/j.cbi.2017.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/20/2017] [Accepted: 07/07/2017] [Indexed: 01/23/2023]
|
7
|
Cytotoxicity against tumor cell lines and anti-inflammatory properties of chitinases from Calotropis procera latex. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1005-1013. [DOI: 10.1007/s00210-017-1397-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/28/2017] [Indexed: 01/10/2023]
|
8
|
In Vivo Efficacy of Latex from Calotropis procera in Ameliorating Fever—Biochemical Characteristics and Plausible Mechanism. Appl Biochem Biotechnol 2017; 182:1229-1239. [DOI: 10.1007/s12010-016-2395-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/29/2016] [Indexed: 01/06/2023]
|
9
|
de Alencar NMN, da Silveira Bitencourt F, de Figueiredo IST, Luz PB, Lima-Júnior RCP, Aragão KS, Magalhães PJC, de Castro Brito GA, Ribeiro RA, de Freitas APF, Ramos MV. Side-Effects of Irinotecan (CPT-11), the Clinically Used Drug for Colon Cancer Therapy, Are Eliminated in Experimental Animals Treated with Latex Proteins fromCalotropis procera(Apocynaceae). Phytother Res 2016; 31:312-320. [DOI: 10.1002/ptr.5752] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | - Patrícia Bastos Luz
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Roberto César P. Lima-Júnior
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Karoline Sabóia Aragão
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Pedro Jorge Caldas Magalhães
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | | | - Ronaldo Albuquerque Ribeiro
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Ana Paula Fragoso de Freitas
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Marcio Viana Ramos
- Departamento de Bioquímica e Biologia Molecular/UFC; Campus do Pici, Caixa Postal 6033 60451-970 Ceará Brazil
| |
Collapse
|
10
|
Nascimento DCDO, Ralph MT, Batista JEC, Silva DMF, Gomes-Filho MA, Alencar NM, Leal NC, Ramos MV, Lima-Filho JV. Latex protein extracts from Calotropis procera with immunomodulatory properties protect against experimental infections with Listeria monocytogenes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:745-753. [PMID: 27235713 DOI: 10.1016/j.phymed.2016.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The latex from the medicinal plant Calotropis procera is often used in folk medicine against infectious and inflammatory diseases. PURPOSE In this study, we investigate a protein fraction with immunomodulatory properties, named LPPI, against experimental infections, in vitro and in vivo, with a virulent strain of Listeria monocytogenes. STUDY DESIGN LPPI was exposed to cultured macrophages or Swiss mice and then challenged with L. monocytogenes. METHODS Peritoneal macrophages were obtained from Swiss mice, and cultured in 96-well microplates. Soluble latex proteins (LP) were subjected to fractionation by ion-exchange chromatography. The major peak (LPPI) was added into wells at 10 or 100µg/ml. Albumin (100µg/ml) was used for comparison between protein treatments. After incubation for 1h at 5% CO2/ 37°C, the supernatant was discarded and 0.2ml of L. monocytogenes overnight culture was added in the wells. Following 4h and 24h infection, the cytokine mRNA expression was evaluated as well as the number of intracellular colony forming units. Swiss mice (n=16) were injected intraperitoneally (i.p.) with LPPI (5 and 10mg/kg) while the control mice received albumin (10mg/kg) or LP (10mg/kg). After 24h, all animal groups were challenged with L. monocytogenes (10(6) CFU/ ml), also by i.p. route. RESULTS LPPI was not toxic to uninfected macrophages (pMØ) and significantly increased mRNA expression of TNF-α, IL-6, IL-1β and iNOS. Following infection, cell viability was reduced by 50% in albumin-treated pMØ (control); but only 17% in pMØ treated with LPPI at 100µg/ml. In this case, LPPI increased expression of TNF-α and IL-6 whereas the number of bacterial colony-forming units was reduced 100-fold in comparison to control groups. Swiss mice pretreated with LPPI showed dose-dependent survival rates that reached 80%, while mice that received albumin died 1-3 days after infection. After 24h infection, leukocyte migration to the infectious foci was high in LPPI-treated mice whereas the number of viable bacteria in the peritoneal fluid, liver and bloodstream were significantly reduced. CONCLUSION We conclude that LPPI present immunomodulatory properties that are beneficial for prevention of systemic bacterial infections caused by the intracellular bacteria L. monocytogenes.
Collapse
Affiliation(s)
| | - Maria Taciana Ralph
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | | | - Diogo Manoel Farias Silva
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - Manoel Adrião Gomes-Filho
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - Nylane Maria Alencar
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza-CE, Brazil
| | - Nilma Cintra Leal
- Departamento de Microbiologia, Centro de Pesquisa Aggeu Magalhães, Fiocruz, Recife, PE
| | - Márcio Viana Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, Brazil
| | - Jose Vitor Lima-Filho
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil.
| |
Collapse
|
11
|
Chaudhary P, Ramos MV, Vasconcelos MDS, Kumar VL. Protective Effect of High Molecular Weight Protein Sub-fraction of Calotropis procera Latex in Monoarthritic Rats. Pharmacogn Mag 2016; 12:S147-51. [PMID: 27279699 PMCID: PMC4883071 DOI: 10.4103/0973-1296.182151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/16/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Proteins present in the latex of Calotropis procera have been shown to produce anti-inflammatory effect and to afford protection in various disease models. Objectives: To determine the efficacy of high molecular weight protein sub-fraction (LPPI) of latex of C. procera in ameliorating joint inflammation and hyperalgesia in a preclinical model of arthritis. Materials and Methods: Monoarthritis was induced in rats by intra-articular injection of Freund's complete adjuvant (FCA) and the effect of two doses of LPPI (5 and 25 mg/kg) and diclofenac (5 mg/kg) was evaluated on joint swelling, stair climbing ability, motility, and dorsal flexion pain on day 3. The rats were sacrificed on day 3 to measure tissue levels of reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS). Evaluation of joint histology was also made. Results: Intra-articular injection of FCA produced joint swelling and difficulty in stair climbing ability, motility, and pain on flexion of the joint as revealed by scores obtained for these functional parameters. LPPI produced a dose-dependent decrease in joint swelling and improved joint functions. Arthritic rats also revealed altered oxidative homeostasis where joint tissue GSH levels were decreased and TBARS levels were increased as compared to normal rats. The levels of these oxidative stress markers were near normal in arthritic rats treated with LPPI. Moreover, treatment with LPPI also maintained the structural integrity of the joint. The protective effect of LPPI was comparable to the standard anti-inflammatory drug, diclofenac. Conclusion: The findings of the present study show that LPPI fraction comprising high molecular weight proteins could be used for the alleviation of arthritic symptoms. SUMMARY High molecular weight protein sub-fraction of latex of Calotropis procera (LPPI) reduced joint swelling and hyperalgesia in arthritic rats LPPI produced a significant improvement in stair climbing ability and motility in arthritic rats LPPI normalized the levels of oxidative stress markers in the arthritic joints Treatment with LPPI reduced neutrophil influx and edema in the arthritic joints
Abbreviations used: FCA: Freund's complete adjuvant, GSH: Glutathione, TBARS: Thiobarbituric acid reactive substances, TBA: Thiobarbituric acid, MDA: Malondialdehyde, LPPI: Latex protein fraction PI.
Collapse
Affiliation(s)
- Priyanka Chaudhary
- Department of Plant Molecular Biology, Delhi University South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India; Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Marcio V Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60451-970 Fortaleza, CE, Brazil
| | | | - Vijay L Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
12
|
Abdel-Mageed WM, Mohamed NH, Liu M, El-Gamal AA, Basudan OA, Ismail MA, Quinn RJ, Liu X, Zhang L, Shoreit AAM. Lipoxygenase inhibitors from the latex of Calotropis Procera. Arch Pharm Res 2016:10.1007/s12272-016-0725-9. [PMID: 26960736 DOI: 10.1007/s12272-016-0725-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/23/2016] [Indexed: 01/10/2023]
Abstract
A radical-scavenging, guided phytochemical study of the latex of Calotropis Procera afforded five lignans (1-5), including a new one (4). The structural determination was accomplished using 1D- and 2D-NMR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and correlation with known compounds. Among the isolated compounds, acylated lignans (3-5) showed stronger antioxidant activity than non-acylated derivatives (1,2). Anti-inflammatory activity was evaluated by determining the inhibitory potential against 5- and 15-lipoxygenase enzymes. The highest anti-inflammatory activity was observed in compound 4, with IC50s values of 7.6 µM and 2.7 µM against 5-LOX and 15-LOX, respectively.
Collapse
Affiliation(s)
- Wael M Abdel-Mageed
- Pharmacognosy Department, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Nadia H Mohamed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
- Department of Biology, Faculty of Science and Art, Samtah, Jazan University, Jazan, Saudi Arabia
| | - Miaomiao Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ali A El-Gamal
- Pharmacognosy Department, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Omer A Basudan
- Pharmacognosy Department, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mady Ahmed Ismail
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Ronald J Quinn
- Eskitis Institute, Griffith University, Brisbane, QLD, 4111, Australia
| | - Xueting Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lixin Zhang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ahmed A M Shoreit
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt.
| |
Collapse
|
13
|
Mohamed NH, Liu M, Abdel-Mageed WM, Alwahibi LH, Dai H, Ismail MA, Badr G, Quinn RJ, Liu X, Zhang L, Shoreit AAM. Cytotoxic cardenolides from the latex of Calotropis procera. Bioorg Med Chem Lett 2015; 25:4615-20. [PMID: 26323871 DOI: 10.1016/j.bmcl.2015.08.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022]
Abstract
Three new cardenolides (3, 9 and 10), along with eight known ones, were isolated from the latex of Calotropis procera. The structural determination was accomplished by the 1D- and 2D-NMR spectra as well as HRESIMS analysis. The growth inhibitory activity of the latex and its sub-fractions as well as isolated compounds was evaluated against human A549 and Hela cell lines. The results exhibited that latex had strong growth inhibitory activity with IC50s of (3.37 μM, A-549) and (6.45 μM, Hela). Among the four extracts (hexane, chloroform, ethyl acetate and aqueous), chloroform extract displayed the highest potential cytotoxic activity, with IC50s of (0.985 μM, A-549) and (1.471 μM, Hela). All the isolated compounds displayed various degrees of cytotoxic activity and the highest activity was observed by calactin (1) with IC50s values of (0.036 μM, A-549) and (0.083 μM, Hela). None of these isolated compounds exhibited good antimicrobial activity evaluated by determination of their MICs using the broth microdilution method against various infectious pathogens. The structure-activity relationships for cytotoxic activity were also discussed.
Collapse
Affiliation(s)
- Nadia H Mohamed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt; Department of Biology, Faculty of Science and Art, Samtah, Jazan University, Saudi Arabia
| | - Miaomiao Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Wael M Abdel-Mageed
- Pharmacognosy Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Pharmacognosy Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Lamya H Alwahibi
- Chemistry Department, Science College, Princess Nora Bint Abdul Rahman University, Riyadh 11671, Saudi Arabia
| | - Huanqin Dai
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mady Ahmed Ismail
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Gamal Badr
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Ronald J Quinn
- Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Xueting Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lixin Zhang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ahmed A M Shoreit
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt.
| |
Collapse
|
14
|
Fernandes HB, Machado DL, Dias JM, Brito TV, Batista JA, Silva RO, Pereira AC, Ferreira GP, Ramos MV, Medeiros JVR, Aragão KS, Ribeiro RA, Barbosa AL, Oliveira JS. Laticifer proteins from Plumeria pudica inhibit the inflammatory and nociceptive responses by decreasing the action of inflammatory mediators and pro-inflammatory cytokines. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Kumar VL, Guruprasad B, Chaudhary P, Fatmi SMA, Oliveira RSB, Ramos MV. Protective effect of proteins derived from Calotropis procera latex against acute inflammation in rat. ACTA ACUST UNITED AC 2015; 35:1-8. [PMID: 25882716 DOI: 10.1111/aap.12022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 12/23/2022]
Abstract
The non-dialysable proteins present in the latex of plant Calotropis procera possess anti-inflammatory and analgesic properties. The aim of this study was to evaluate the effect of latex proteins (LP) on the level of inflammatory mediators, oxidative stress markers and tissue histology in the rat model of carrageenan-induced acute inflammation. This study also aimed at evaluating the anti-inflammatory efficacy of LP against different mediators and comparing it with their respective antagonists. Paw inflammation was induced by subplantar injection of carrageenan, and the effect of LP was evaluated on oedema volume, level of TNF-α, PGE(2), myeloperoxidase, nitric oxide, reduced glutathione, thiobarbituric acid-reactive substances and tissue histology at the time of peak inflammation. Paw inflammation was also induced by histamine, serotonin, bradykinin and PGE(2), and the inhibitory effect of LP against these mediators was compared with their respective antagonists at the time of peak effect. Treatment with LP produced a dose-dependent inhibition of oedema formation, and its anti-inflammatory effect against carrageenan-induced paw inflammation was accompanied by reduction in the levels of inflammatory mediators, oxidative stress markers and normalization of tissue architecture. LP also produced a dose-dependent inhibition of oedema formation induced by different inflammatory mediators, and its efficacy was comparable to their respective antagonists and more pronounced than that of diclofenac. Thus, our study shows that LP has a potential to be used for the treatment of various inflammatory conditions where the role of these mediators is well established.
Collapse
Affiliation(s)
- V L Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - B Guruprasad
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - P Chaudhary
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - S M A Fatmi
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - R S B Oliveira
- Centro Universitário Estácio de Sá Via Corpus Rua Eliseu Uchoa Becco, n°600 - Bairro Água Fria CEP:, 60810-270, Fortaleza, Ceará, Brazil
| | - M V Ramos
- Departmento de Bioquimica de Biologia Molecular, Universidade Federal do Ceara, Campus do Pici, Cx. Postal 6033, Fortaleza-Ce Brasil, CEP, 60451-970, Brazil
| |
Collapse
|
16
|
Chaudhary P, de Araújo Viana C, Ramos MV, Kumar VL. Antiedematogenic and antioxidant properties of high molecular weight protein sub-fraction of Calotropis procera latex in rat. J Basic Clin Pharm 2015; 6:69-73. [PMID: 25767367 PMCID: PMC4357003 DOI: 10.4103/0976-0105.152098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives: The aim was to evaluate the effect of high molecular weight protein fraction of Calotropis procera latex on edema formation and oxidative stress in carrageenan-induced paw inflammation. Methods: A sub-plantar injection of carrageenan was given to induce edema in the hind paw of the rat. The inhibitory effect of high molecular weight protein fraction of C. procera latex was evaluated following intravenous administration (5 and 25 mg/kg body weight) and was compared with that of diclofenac given orally (5 mg/kg). The levels of reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS) and myeloperoxidase (MPO) were measured in the inflamed paw tissue at the end of the study. Results: The high molecular weight protein fraction obtained from the latex of C. procera produced a dose-dependent inhibition of edema formation that was accompanied by normalization of levels of oxidative stress markers (GSH and TBARS) and MPO, a marker for neutrophils in the paw tissue. Conclusions: The high molecular weight protein fraction of C. procera latex ameliorates acute inflammation in the paw through its antioxidant effect.
Collapse
Affiliation(s)
- Priyanka Chaudhary
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Carolina de Araújo Viana
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60451-970 Fortaleza, CE, Brazil
| | - Marcio V Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60451-970 Fortaleza, CE, Brazil
| | - Vijay L Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
17
|
Duwaerts CC, Sun EP, Cheng CW, van Rooijen N, Gregory SH. Cross-activating invariant NKT cells and kupffer cells suppress cholestatic liver injury in a mouse model of biliary obstruction. PLoS One 2013; 8:e79702. [PMID: 24260285 PMCID: PMC3829879 DOI: 10.1371/journal.pone.0079702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/04/2013] [Indexed: 12/15/2022] Open
Abstract
Both Kupffer cells and invariant natural killer T (iNKT) cells suppress neutrophil-dependent liver injury in a mouse model of biliary obstruction. We hypothesize that these roles are interdependent and require iNKT cell-Kupffer cell cross-activation. Female, wild-type and iNKT cell-deficient C57Bl/6 mice were injected with magnetic beads 3 days prior to bile duct ligation (BDL) in order to facilitate subsequent Kupffer cell isolation. On day three post-BDL, the animals were euthanized and the livers dissected. Necrosis was scored; Kupffer cells were isolated and cell surface marker expression (flow cytometry), mRNA expression (qtPCR), nitric oxide (NO.) production (Griess reaction), and protein secretion (cytometric bead-array or ELISAs) were determined. To address the potential role of NO. in suppressing neutrophil accumulation, a group of WT mice received 1400W, a specific inducible nitric oxide synthase (iNOS) inhibitor, prior to BDL. To clarify the mechanisms underlying Kupffer cell-iNKT cell cross-activation, WT animals were administered anti-IFN-γ or anti-lymphocyte function-associated antigen (LFA)-1 antibody prior to BDL. Compared to their WT counterparts, Kupffer cells obtained from BDL iNKT cell-deficient mice expressed lower iNOS mRNA levels, produced less NO., and secreted more neutrophil chemoattractants. Both iNOS inhibition and IFN-γ neutralization increased neutrophil accumulation in the livers of BDL WT mice. Anti-LFA-1 pre-treatment reduced iNKT cell accumulation in these same animals. These data indicate that the LFA-1-dependent cross-activation of iNKT cells and Kupffer cells inhibits neutrophil accumulation and cholestatic liver injury.
Collapse
Affiliation(s)
- Caroline C. Duwaerts
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| | - Eric P. Sun
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Chao-Wen Cheng
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Nico van Rooijen
- Department of Cell Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Stephen H. Gregory
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
18
|
Ramos MV, Viana CA, Silva AFB, Freitas CDT, Figueiredo IST, Oliveira RSB, Alencar NMN, Lima-Filho JVM, Kumar VL. Proteins derived from latex of C. procera maintain coagulation homeostasis in septic mice and exhibit thrombin- and plasmin-like activities. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:455-63. [PMID: 22315016 DOI: 10.1007/s00210-012-0733-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/21/2012] [Indexed: 10/14/2022]
Abstract
The proteins derived from the latex (LP) of Calotropis procera are well known for their anti-inflammatory property. In view of their protective effect reported in the sepsis model, they were evaluated for their efficacy in maintaining coagulation homeostasis in sepsis. Intraperitoneal injection of LP markedly reduced the procoagulation and thrombocytopenia observed in mice infected with Salmonella; while in normal mice, LP produced a procoagulant effect. In order to understand its mechanism of action, the LP was subjected to ion-exchange chromatography, and the three subfractions (LPPI, LPPII, and LPPIII) thus obtained were tested for their proteolytic effect and thrombin- and plasmin-like activities in vitro. Of the three subfractions tested, LPPII and LPPIII exhibited proteolytic effect on azocasein and exhibited procoagulant effect on human plasma in a concentration-dependent manner. Like trypsin and plasmin, these subfractions produced both fibrinogenolytic and fibrinolytic effects that were mediated through the hydrolysis of the Aα, Bβ, and γ chains of fibrinogen and α-polymer and γ-dimer of fibrin clot, respectively. This study shows that the cysteine proteases present in the latex of C. procera exhibit thrombin- and plasmin-like activities and suggests that these proteins have therapeutic potential in various conditions associated with coagulation abnormalities.
Collapse
Affiliation(s)
- Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Campus do Pici, Bloco 907, Universidade Federal do Ceará, Fortaleza, Ceará CEP 60.451-970, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Protein fraction of Calotropis procera latex protects against 5-fluorouracil-induced oral mucositis associated with downregulation of pivotal pro-inflammatory mediators. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:981-90. [DOI: 10.1007/s00210-012-0778-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/25/2012] [Indexed: 01/05/2023]
|
20
|
In vitro tissue culture of the medicinal shrub Calotropis procera to produce pharmacologically active proteins from plant latex. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.01.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Kumar VL, Chaudhary P, Ramos MV, Mohan M, Matos MPV. Protective effect of proteins derived from the latex of Calotropis procera against inflammatory hyperalgesia in monoarthritic rats. Phytother Res 2011; 25:1336-41. [PMID: 21328619 DOI: 10.1002/ptr.3428] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/31/2010] [Accepted: 01/05/2011] [Indexed: 11/12/2022]
Abstract
Calotropis procera (family: Apocynaceae) is a plant growing in the wild and has been used in the traditional medicinal system for the treatment of various diseases. The plant produces milky latex that possesses potent antiinflammatory and analgesic properties. In present study the non-dialysable protein fraction isolated from the latex (LP) of this plant was evaluated for its efficacy against inflammation in rats where paw edema was induced by sub-plantar injection of carrageenin or monoarthritis was induced by intra-articular injection of Freund's complete adjuvant (FCA). The effect of LP was evaluated on edema volume in the paw model and on joint diameter, stair climbing ability, motility, dorsal flexion pain, levels of oxidative stress markers and joint histology in arthritis model. The protection afforded by LP was compared with that of standard antiinflammatory drug, diclofenac (5 mg/kg). LP exhibited a dose-dependent antiinflammatory effect and produced 32% and 60% inhibition of paw edema at 10 and 25 mg/kg doses and 12% and 36% inhibition of joint inflammation at 50 and 150 mg/kg doses. The protective effect of LP was associated with normalization of joint functions, histology and levels of oxidative stress markers in joint tissue. The findings of this study suggest that the protein fraction of latex of Calotropis procera has the potential to relieve inflammation and pain associated with various arthritic conditions.
Collapse
Affiliation(s)
- Vijay L Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | | | | | | | | |
Collapse
|
22
|
Lima-Filho JV, Patriota JM, Silva AFB, Filho NT, Oliveira RSB, Alencar NMN, Ramos MV. Proteins from latex of Calotropis procera prevent septic shock due to lethal infection by Salmonella enterica serovar Typhimurium. JOURNAL OF ETHNOPHARMACOLOGY 2010; 129:327-334. [PMID: 20371281 DOI: 10.1016/j.jep.2010.03.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/11/2010] [Accepted: 03/27/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY The latex of Calotropis procera has been used in traditional medicine to treat different inflammatory diseases. The anti-inflammatory activity of latex proteins (LP) has been well documented using different inflammatory models. In this work the anti-inflammatory protein fraction was evaluated in a true inflammatory process by inducing a lethal experimental infection in the murine model caused by Salmonella enterica Subsp. enterica serovar Typhimurium. MATERIALS AND METHODS Experimental Swiss mice were given 0.2 ml of LP (30 or 60 mg/kg) by the intraperitoneal route 24 h before or after lethal challenge (0.2 ml) containing 10(6) CFU/ml of Salmonella Typhimurium using the same route of administration. RESULTS All the control animals succumbed to infection within 6 days. When given before bacterial inoculums LP prevented the death of mice, which remained in observation until day 28. Even, LP-treated animals exhibited only discrete signs of infection which disappeared latter. LP fraction was also protective when given orally or by subcutaneous route. Histopathological examination revealed that necrosis and inflammatory infiltrates were similar in both the experimental and control groups on days 1 and 5 after infection. LP activity did not clear Salmonella Typhimurium, which was still present in the spleen at approximately 10(4) cells/g of organ 28 days after challenge. However, no bacteria were detected in the liver at this stage. LP did not inhibit bacterial growth in culture medium at all. In the early stages of infection bacteria population was similar in organs and in the peritoneal fluid but drastically reduced in blood. Titration of TNF-alpha in serum revealed no differences between experimental and control groups on days 1 and 5 days after infection while IL-12 was only discretely diminished in serum of experimental animals on day 5. Moreover, cultured macrophages treated with LP and stimulated by LPS released significantly less IL-1beta. CONCLUSIONS LP-treated mice did not succumb to septic shock when submitted to a lethal infection. LP did not exhibit in vitro bactericidal activity. It is thought that protection of LP-treated mice against Salmonella Typhimurium possibly involves down-regulation of pro-inflammatory cytokines (other than TNF-alpha). LP inhibited IL-1beta release in cultured macrophages and discretely reduced IL-12 in serum of animals given LP. Results reported here support the folk use of latex to treat skin infections by topic application.
Collapse
Affiliation(s)
- José V Lima-Filho
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Campus Dois Irmãos, Recife, PE, Brazil.
| | | | | | | | | | | | | |
Collapse
|
23
|
Oliveira JS, Costa-Lotufo LV, Bezerra DP, Alencar NMN, Marinho-Filho JDB, Figueiredo IST, Moraes MO, Pessoa C, Alves APNN, Ramos MV. In vivo growth inhibition of sarcoma 180 by latex proteins from Calotropis procera. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2010; 382:139-49. [PMID: 20517595 DOI: 10.1007/s00210-010-0525-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/08/2010] [Indexed: 10/19/2022]
Abstract
Latex of Calotropis procera has been described as a relevant source of pharmacologically active proteins, including proteins with anticancer activity. A previous in vitro study of laticifer proteins (LP) from C. procera reported that they had selective cytotoxic effects on human cancer cell lines. The aim of this study was to determine the effects of LP in vivo using mice transplanted with sarcoma 180. Biochemical, hematological, histopathological, and morphological analyses were performed in animals given LP by oral or intraperitoneal routes. LP significantly reduced tumor growth (51.83%) and augmented the survival time of animals for up to 4 days. Tumor growth inhibitory activity was lost when LP fraction was submitted to proteolysis, acidic treatment, or pretreated with iodoacetamide. However, LP retained its inhibitory activities on sarcoma 180 growth after heat treatment. Thus, it seems that heat-stable proteins are involved in tumor suppression. Biochemical parameters, such as the enzymatic activity of aspartate aminotransferase and alanine aminotransferase and urea content in serum were not affected in treated mice. It is worth noting that LP completely eliminated the 5-FU-induced depletion of leukocytes in mice even when given orally. The active proteins were recovered in a single fraction by ion exchange chromatography and still exhibited anticancer activity. This study confirms the pharmacological potential of proteins from the latex of C. procera to control sarcoma cell proliferation.
Collapse
Affiliation(s)
- Jefferson S Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6033, 60.451-970, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Silva MCC, da Silva AB, Teixeira FM, de Sousa PCP, Rondon RMM, Honório JER, Sampaio LRL, Oliveira SL, Holonda ANM, de Vasconcelos SMM. Therapeutic and biological activities of Calotropis procera (Ait.) R. Br. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60081-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|