1
|
Yang PX, Fan XX, Liu MX, Zhang XZ, Cao L, Wang ZZ, Tian JZ, Zhang YW, Xiao W. Longxuetongluo Capsule alleviate ischemia/reperfusion induced cardiomyocyte apoptosis through modulating oxidative stress and mitochondrial dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155993. [PMID: 39244943 DOI: 10.1016/j.phymed.2024.155993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 07/04/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Chinese dragon's blood, the red resin of Dracaena cochinchinensis (Lour.) S. C. Chen., is widely used to treat cardiovascular and cerebrovascular diseases in China. Longxuetongluo Capsule (LTC) is a total phenolic compound extracted from Chinese dragon's blood, currently used in treating ischemic stroke. Myocardial injury can be aggravated after reperfusion of ischemic myocardium, which is called myocardial ischemia-reperfusion injury (MIRI), and the mechanism of MIRI is complex. However, the exact effect and mechanism of LTC on MIRI are still unclear. We explore the effect of LTC on alleviating MIRI based on mitochondrial dysfunction and oxidative stress. AIM OF THE STUDY To explore the cardioprotective mechanism of LTC against MIRI. MATERIALS AND METHODS A rat MIRI model was constructed through ligation of the left anterior descending coronary artery, and LTC was given continuously for 28 days before surgery. The H9c2 cardiomyocyte injury model was induced by oxygen-glucose deprivation/reperfusion (OGD/R), and LTC was given 24 h before OGD. Myocardial ischemia areas were detected with 2,3,5-triphenyltetrazolium chloride (TTC) staining. Cardiac histopathological changes were detected with hematoxylin-eosin (HE) staining. And biochemical indexes were detected with serum biochemical kit. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining and flow cytometry were used to detect apoptosis. Fluorescent probes were used to observe reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), Ca2+and other indexes. MitoTracker staining and immunofluorescence were used to observe the morphology of mitochondria and translocation of dynamin-related protein 1 (Drp1). Finally, immunohistochemistry and Western blotting were used to examine the expression of proteins related to apoptosis, mitochondrial fission and fusion and oxidative stress. RESULTS LTC could ameliorate cardiac pathological changes, decrease myocardial infarct area and the content or level of relevant serum cardiac enzymes, indicating that LTC could alleviate MIRI. Meanwhile, LTC could inhibit cardiomyocyte apoptosis via regulating apoptosis-related protein expression, and it could restore mitochondrial morphology, maintain ΔΨm, inhibit mitochondrial ROS generation and Ca2+ accumulation, increase the expression of mitochondrial fusion protein 2 (Mfn2), decrease the level of phosphorylation dynamin-related protein 1 (p-Drp1), and regulate ATP synthesis, thereby significantly ameliorating mitochondrial dysfunction. Moreover, LTC significantly reduced the expression of NADPH oxidase 2 (NOX2), NADPH oxidase 4 (NOX4) and neutrophil cytosolic factor 2 (NOXA2/p67phox), and reduced ROS production. CONCLUSION The study demonstrated that LTC could inhibit MIRI induced cardiomyocyte apoptosis by inhibiting ROS generation and mitochondrial dysfunction, and these fundings suggested that LTC can be used to alleviate MIRI, which provides a potential therapeutic approach for future treatment of MIRI.
Collapse
Affiliation(s)
- Pei-Xun Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; Kanion School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue Qixia District, Nanjing 210046, PR China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Xiao-Xue Fan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Min-Xuan Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue Qixia District, Nanjing 210046, PR China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Xin-Zhuang Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Liang Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Zhen-Zhong Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Jin-Zhou Tian
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Yong-Wen Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue Qixia District, Nanjing 210046, PR China.
| | - Wei Xiao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China.
| |
Collapse
|
2
|
Yu Z, Xie S. Loureirin B improves H/R-induced hepatic ischemia-reperfusion injury by downregulating ALOX5 to regulate mitochondrial homeostasis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7561-7571. [PMID: 38662194 DOI: 10.1007/s00210-024-03079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
This study was conceived to explore the role and the mechanism of Loureirin B (LB) in hepatic IRI. The viability of LB-treated AML-12 cells was assessed using CCK-8 assay and inflammatory cytokines were detected using ELISA. The activities of ROS and oxidative stress markers MDA, SOD, and GSH-Px were detected using DCFH-DA and corresponding assay kits. The cell apoptosis and caspase3 activity were estimated with flow cytometry and caspase3 assay kits. The expressions of arachidonate 5-lipoxygenase (ALOX5) and apoptosis- and mitochondrial dynamics-related proteins were detected using western blot. The interaction between LB and ALOX5 was analyzed with molecular docking. The transfection efficacy of oe-ALOX5 was examined with RT-qPCR and western blot. Mitochondrial membrane potential was detected with JC-1 staining and immunofluorescence (IF) assay was employed to estimate mitochondrial fusion and fission. The present work found that LB revived the viability, inhibited inflammatory response, suppressed oxidative stress, repressed the apoptosis, and maintained mitochondrial homeostasis in H/R-induced AML-12 cells, which were all reversed by ALOX5 overexpression. Collectively, LB regulated mitochondrial homeostasis by downregulating ALOX5, thereby improving hepatic IRI.
Collapse
Affiliation(s)
- Zhaolong Yu
- Third Department of Internal Medicine, Yiwu Second People's Hospital, No. 1, Jiangbei Road, Fotang Town, Yiwu, 322000, Zhejiang, China.
| | - Shunying Xie
- Department of Emergency Medicine, Yiwu Second People's Hospital, Yiwu, Zhejiang, China
| |
Collapse
|
3
|
Ren J, Zhang X, Zhou L, Cao W, Zhang L, Chen X, Li G. Comprehensive evaluation of Dragon's Blood in combination with borneol in ameliorating ischemic/reperfusion brain injury using RNA sequencing, metabolomics, and 16S rRNA sequencing. Front Pharmacol 2024; 15:1372449. [PMID: 38783945 PMCID: PMC11112420 DOI: 10.3389/fphar.2024.1372449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Ischemia/reperfusion (IR) can induce deleterious responses such as apoptosis, inflammation, and oxidative stress; however, there are currently no efficient therapeutics to treat IR brain injury. Dragon's blood (DB) plays a significant role in treating ischemic stroke in China. Borneol (B) is an upper ushering drug that guides drugs to the target organs, including the brain. Therefore, we hypothesized that the combination of DB and B (DB + B) would provide cooperative therapeutic benefits for IR brain injury. To confirm this, we first investigated the protective effect of DB + B in an IR brain injury rat model using the modified neurological severity score (mNSS), infarction size measure, HE staining, and laser speckle contrast imaging. Then, we comprehensively evaluated the mechanism of DB + B in ameliorating IR brain injury based on RNA sequencing, serum untargeted metabolomics, and 16S rRNA sequencing. We have confirmed that DB + B enhanced the efficacy of the ischemic stroke treatment compared to DB or B alone for the first time. Our study provisionally confirms that the mechanism by which DB + B prevents IR brain injury is related to the maintenance of intestinal microecological balance and regulation of metabolic dysfunction, thereby suppressing inflammation and regulating immunity. DB + B may effectively regulate intestinal flora including o_Pseudomonadales, s_Bacteroides_caecimuris, o_unidentified_Bacilli, f-Pseudomonadaceae, and g-Pseudomonas, mainly regulate serum metabolites including improve the protective benefit of IR brain injury lysoPCs and lysoPEs, thus inhibiting TLR4/MyD88/NF-κB and IL-17 signing pathway to reduce inflammatory reactions. hat this mechanism is associated with the maintenance of intestinal flora balance and the regulation of metabolic dysfunction, thereby suppressing inflammation and regulating immunity. This provides scientific support for the clinical translation of DB + B in the prevention and treatment of ischemic stroke and establishes a basis for further investigation of its therapeutic mechanism.
Collapse
Affiliation(s)
- Jiahui Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
| | - Xue Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingjuan Zhou
- Xishuangbanna Dai Autonomous Prefecture People’s Hospital, Jinghong, China
| | - Wanyu Cao
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lixia Zhang
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
| | - Guang Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
| |
Collapse
|
4
|
Liang P, Bi T, Zhou Y, Wang C, Ma Y, Xu H, Shen H, Ren W, Yang S. Carbonized Platycladus orientalis Derived Carbon Dots Accelerate Hemostasis through Activation of Platelets and Coagulation Pathways. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303498. [PMID: 37607318 DOI: 10.1002/smll.202303498] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Indexed: 08/24/2023]
Abstract
Achieving rapid and effective hemostasis remains a multidisciplinary challenge. Here, distinctive functional carbon dots derived from carbonized Platycladus orientalis (CPO-CDs) are developed using one-step hydrothermal method. The negatively charged surface of CPO-CDs retains partial functional groups from CPO precursor, exhibiting excellent water solubility and high biocompatibility. Both rat liver injury model and tail amputation model have confirmed the rapid and effective hemostatic performance of CPO-CDs on exogenous hemorrhage. Further, on endogenous blood-heat hemorrhage syndrome rat model, CPO-CDs could inhibit hemorrhage and alleviate inflammation response. Interestingly, the excellent hemostasis performance of CPO-CDs is ascribed to activate exogenous coagulation pathway and common coagulation pathway. More importantly, metabolomics of rat plasma suggests that the hemostasis effect of CPO-CDs is closely related to platelet functions. Therefore, the designed in vitro experiments are performed and it is discovered that CPO-CDs significantly promote platelets adhesion, activation, and aggregation. Further, the underlying mechanism investigation suggests that Src/Syk signal pathway plays a key role in platelets activation triggered by CPO-CDs. Overall, CPO-CDs with rapid and excellent hemostatic performance are discovered for the first time, which could be an excellent candidate for the treatment of hemorrhagic diseases.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yanan Zhou
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Chengmei Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yining Ma
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Houping Xu
- Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
5
|
Wang S, Shi Y, Ma J, Ye Z, Yao M, Shang J, Liu J. Enhanced intradermal delivery of Dragon's blood in biocompatible nanosuspensions hydrogel patch for skin photoprotective effect. J Cosmet Dermatol 2023; 22:1046-1062. [PMID: 36575881 DOI: 10.1111/jocd.15515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/05/2022] [Accepted: 11/03/2022] [Indexed: 12/29/2022]
Abstract
Dragon's Blood is a member of the Chinese medicinal herb, having anti-oxygen and anti-inflammatory activity for the photoprotective effect. However, the poor water solubility of raw Dragon's Blood powder has limited its intradermal delivery process. In this study, we evaluated nanosuspensions to enhance intradermal delivery of Dragon's Blood exerting a photoprotective effect. The prepared nanosuspension was added to a composite hydrogel patch matrix for better skin application. In the present research, we used biocompatible materials hyaluronic acid and amino acid surfactants as nanosuspension stabilizers and agar/gelatin/sodium polyacrylate as hydrogel patch matrix. The prepared Dragon's Blood nanosuspension had a particle size of 447.0 ± 48.6 nm. The micro-structures morphology and viscoelasticity characteristics by SEM and rheological testing confirmed a sufficient crosslinked hydrogel network. The skin retention amount of Dragon's Blood nanosuspension was 1.48 times of raw Dragon's Blood powder water suspension, and the skin penetration amount of Dragon's Blood nanosuspension was only about 1/3 of Dragon's Blood DMSO solution. In the UVB-irradiated HaCaT cell phototoxicity model, Dragon's Blood nanosuspension also significantly increased cell viability by about 1 time of the model group and decreased the production of reactive oxygen species about 1/2 times of model group. In vivo safety and efficiency evaluation experiment illustrated that DB-NS hydrogel patch processes have favorable safety and photoprotective effect with no skin irritancy and phototoxicity. Furthermore, DB-NS and DB-NS hydrogel patches could protect skin from UVA and UVB irritating skin reactions. Overall, our study of the combined use of biocompatible and biodegradable materials as excipients of nanosuspension and hydrogel patch could be used as an effective additive of Intradermal delivery and skin photoprotection.
Collapse
Affiliation(s)
- Shasha Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuxin Shi
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiapeng Ma
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhuofei Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Miaomiao Yao
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Wu JY, Ding HY, Wang TY, Cai CZ, Chang TS. Enzymatically Biotransformed Compounds via a Predicted Data Mining Approach: Two Novel Flavonoids, 3’-Hydroxyloureirin A and 3’-Hydroxyloureirin B, Converted from Dragon’s Blood, the Chinese Medicine Extract with Potent Antioxidant and Anti-α-Glucosidase Activities. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Liu YS, Zhang GY, Hou Y. Theoretical and Experimental Investigation of the Antioxidation Mechanism of Loureirin C by Radical Scavenging for Treatment of Stroke. Molecules 2023; 28:380. [PMID: 36615573 PMCID: PMC9822359 DOI: 10.3390/molecules28010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 01/03/2023] Open
Abstract
Recent pharmacological studies have shown that dragon's blood has an anti-cerebral ischemia effect. Loureirin C (LC), a kind of dihydrochalcone compound in dragon's blood, is believed to be play an important role in the treatment of ischemia stroke, but fewer studies for LC have been done. In this paper, we report the first experimental and theoretical studies on the antioxidation mechanism of LC by radical scavenging. The experimental studies show that LC has almost no effect on cell viability under 15 μM for the SH-SY5Y cells without any treatments. For the SH-SY5Y cells with oxygen and glucose deprivation-reperfusion (OGD/R) treatment, LC increased the viability of SH-SY5Y cells. The results of 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSox Red experiments indicate that LC is very efficient in inhibiting the generation of the intracellular/mitochondrial reactive oxygen species (ROS) or removing these two kinds of generated ROS. The density functional theory (DFT) calculations allowed us to elucidate the antioxidation mechanisms of LC. Fukui function analysis reveals the radical scavenging of LC by hydrogen abstraction mechanism, the complex formation by e-transfer, and radical adduct formation (RAF) mechanism. Among the H-abstraction, the complex formation by e-transfer, and radical adduct formation (RAF) reactions on LC, the H-abstraction at O-H35 position by OH• is favorable with the smallest energy difference between the product and two reactants of the attack of OH• to LC of -0.0748 Ha. The bond dissociation enthalpies (BDE), proton affinities (PA), ionization potential (IP), proton dissociation enthalpy (PDE), and electron transfer enthalpy (ETE) were calculated to determine thermodynamically preferred reaction pathway for hydrogen abstraction mechanism. In water, IP and the lowest PDE value at O3-H35 position are lower than the lowest BDE value at O3-H35 position; 41.8986 and 34.221 kcal/mol, respectively, indicating that SEPT mechanism is a preferred one in water in comparison with the HAT mechanism. The PA value of O3-H35 of LC in water is -17.8594 kcal/mol, thus the first step of SPLET would occur spontaneously. The minimum value of ETE is higher than the minimum value of PDE at O3-H35 position and IP value, 14.7332 and 22.4108 kcal/mol, respectively, which suggests that the SEPT mechanism is a preferred one in water in comparison with the SPLET mechanism. Thus, we can draw a conclusion that the SEPT mechanism of is the most favorite hydrogen abstraction mechanism in water, and O-H35 hydroxyl group has the greatest ability to donate H-atoms.
Collapse
Affiliation(s)
- Ye-Shu Liu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110819, China
| | - Guo-Ying Zhang
- College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yue Hou
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110819, China
| |
Collapse
|
8
|
Transcriptomics and Metabolomics Analyses Reveal Defensive Responses and Flavonoid Biosynthesis of Dracaena cochinchinensis (Lour.) S. C. Chen under Wound Stress in Natural Conditions. Molecules 2022; 27:molecules27144514. [PMID: 35889387 PMCID: PMC9320494 DOI: 10.3390/molecules27144514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 12/27/2022] Open
Abstract
Dracaena cochinchinensis has special defensive reactions against wound stress. Under wound stress, D. cochinchinensis generates a resin that is an important medicine known as dragon’s blood. However, the molecular mechanism underlying the defensive reactions is unclear. Metabolomics and transcriptomics analyses were performed on stems of D. cochinchinensis at different timepoints from the short term to the long term after wounding. According to the 378 identified compounds, wound-induced secondary metabolic processes exhibited three-phase characteristics: short term (0–5 days), middle term (10 days–3 months), and long term (6–17 months). The wound-induced transcriptome profile exhibited characteristics of four stages: within 24 h, 1–5 days, 10–30 days, and long term. The metabolic regulation in response to wound stress mainly involved the TCA cycle, glycolysis, starch and sucrose metabolism, phenylalanine biosynthesis, and flavonoid biosynthesis, along with some signal transduction pathways, which were all well connected. Flavonoid biosynthesis and modification were the main reactions against wound stress, mainly comprising 109 flavonoid metabolites and 93 wound-induced genes. A group of 21 genes encoding CHS, CHI, DFR, PPO, OMT, LAR, GST, and MYBs were closely related to loureirin B and loureirin C. Wound-induced responses at the metabolome and transcriptome level exhibited phase characteristics. Complex responses containing primary metabolism and flavonoid biosynthesis are involved in the defense mechanism against wound stress in natural conditions, and flavonoid biosynthesis and modification are the main strategies of D. cochinchinensis in the long-term responses to wound stress.
Collapse
|
9
|
Loureirin B Alleviates Myocardial Ischemia/Reperfusion Injury via Inhibiting PAI-1/TGF- β1/Smad Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9128210. [PMID: 35535157 PMCID: PMC9078770 DOI: 10.1155/2022/9128210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury is a common clinical problem after myocardial infarction without effective therapy. Loureirin B (LrB) is a kind of flavonoid with anti-inflammatory and antifibrotic activities. However, the effect of LrB on MI/R and its underlying mechanism remains elusive. In the present study, a mouse model of MI/R was established by coronary artery occlusion. Administration of LrB (0.5 mg/kg or 1 mg/kg) for 4 weeks effectively improved left ventricular (LV) function and reduced myocardial infarction in MI/R mice. MI/R-induced expression of IL-6, TNF-α, and IL-1β in the hearts was reduced by LrB treatment. Histological analysis showed that LrB attenuated myocardial collagen deposition. LrB downregulated fibronectin, collagen I, collagen III, and α-SMA expression. Notably, LrB inhibited the expression of profibrotic plasminogen activator inhibitor-1 (PAI-1), transforming growth factor (TGF)-β1, TGF-β1R, and p-Smad2/3. Consistently, LrB inhibited the activation of TGF-β1/Smad signaling pathway and the expression of fibrosis-related proteins in angiotensin (Ang) II-treated cardiac fibroblasts (CFs). Overexpression of PAI-1 abolished the effects of LrB on Ang II-treated CFs, suggesting that LrB may function through regulating PAI-1. These results indicated that LrB may alleviate MI/R-induced myocardial fibrosis by inhibiting PAI-1/TGF-β1/Smad signaling pathway. Thus, LrB may be a potential drug in the treatment of MI/R injury.
Collapse
|
10
|
Zhao Y, Xiao S, You Y, Zhang Z, Zu L, Huang L. Total synthesis and biological evaluation of dracaenins A and B. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Li D, Xu KY, Zhao WP, Liu MF, Feng R, Li DQ, Bai J, Du WL. Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms. Front Pharmacol 2022; 13:815479. [PMID: 35281894 PMCID: PMC8906921 DOI: 10.3389/fphar.2022.815479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
The management of hemorrhagic diseases and other commonly refractory diseases (including gout, inflammatory diseases, cancer, pain of various forms and causes) are very challenging in clinical practice. Charcoal medicine is a frequently used complementary and alternative drug therapy for hemorrhagic diseases. However, studies (other than those assessing effects on hemostasis) on charcoal-processed medicines are limited. Carbon dots (CDs) are quasi-spherical nanoparticles that are biocompatible and have high stability, low toxicity, unique optical properties. Currently, there are various studies carried out to evaluate their efficacy and safety. The exploration of using traditional Chinese medicine (TCM) -based CDs for the treatment of common diseases has received great attention. This review summarizes the literatures on medicinal herbs-derived CDs for the treatment of the difficult-to-treat diseases, and explored the possible mechanisms involved in the process of treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun-yan Xu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei-peng Zhao
- Department of Traditional Chinese Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming-feng Liu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Feng
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - De-qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-li Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Mothana RA, Arbab AH, ElGamal AA, Parvez MK, Al-Dosari MS. Isolation and Characterization of Two Chalcone Derivatives with Anti-Hepatitis B Virus Activity from the Endemic Socotraen Dracaena cinnabari (Dragon’s Blood Tree). Molecules 2022; 27:molecules27030952. [PMID: 35164217 PMCID: PMC8838591 DOI: 10.3390/molecules27030952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatitis B virus (HBV) infection is prevalent and continues to be a global health concern. In this study, we determined the anti-hepatitis B virus (HBV) potential of the Socotra-endemic medicinal plant Dracaena cinnabari and isolated and characterized the responsible constituents. A bioassay-guided fractionation using different chromatographic techniques of the methanolic extract of D. cinnabari led to the isolation of two chalcone derivatives. Using a variety of spectroscopic techniques, including 1H-, 13C-, and 2D-NMR, these derivatives were identified as 2,4’-dihydroxy-4-methoxydihydrochalcone (compound 1) and 2,4’-dihydroxy-4-methoxyhydrochalcone (compound 2). Both compounds were isolated for the first time from the red resin (dragon’s blood) of D. cinnabari. The compounds were first evaluated for cytotoxicity on HepG2.2.15 cells and 50% cytotoxicity concentration (CC50) values were determined. They were then evaluated for anti-HBV activity against HepG2.2.15 cells by assessing the suppression of HBsAg and HBeAg production in the culture supernatants and their half maximum inhibitory concentration (IC50) and therapeutic index (TI) values were determined. Compounds 1 and 2 indicated inhibition of HBsAg production in a dose- and time-dependent manner with IC50 values of 20.56 and 6.36 μg/mL, respectively.
Collapse
|
13
|
Ghalloo BA, Khan KUR, Ahmad S, Aati HY, Al-Qahtani JH, Ali B, Mukhtar I, Hussain M, Shahzad MN, Ahmed I. Phytochemical Profiling, In Vitro Biological Activities, and In Silico Molecular Docking Studies of Dracaena reflexa. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030913. [PMID: 35164177 PMCID: PMC8838819 DOI: 10.3390/molecules27030913] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 01/07/2023]
Abstract
Dracaena reflexa, a traditionally significant medicinal plant, has not been extensively explored before for its phytochemical and biological potential. The present study was conducted to evaluate the bioactive phytochemicals and in vitro biological activities of D. reflexa, and perform in silico molecular docking validation of D. reflexa. The bioactive phytochemicals were assessed by preliminary phytochemical testing, total bioactive contents, and GC-MS analysis. For biological evaluation, the antioxidant (DPPH, ABTS, CUPRAC, and ABTS), antibacterial, thrombolytic, and enzyme inhibition (tyrosinase and cholinesterase enzymes) potential were determined. The highest level of total phenolic contents (92.72 ± 0.79 mg GAE/g extract) was found in the n-butanol fraction while the maximum total flavonoid content (110 ± 0.83 mg QE/g extract) was observed in methanolic extract. The results showed that n-butanol fraction exhibited very significant tyrosinase inhibition activity (73.46 ± 0.80) and acetylcholinesterase inhibition activity (64.06 ± 2.65%) as compared to other fractions and comparable to the standard compounds (kojic acid and galantamine). The methanolic extract was considered to have moderate butyrylcholinesterase inhibition activity (50.97 ± 063) as compared to the standard compound galantamine (53.671 ± 0.97%). The GC-MS analysis of the n-hexane fraction resulted in the tentative identification of 120 bioactive phytochemicals. Furthermore, the major compounds as identified by GC-MS were analyzed using in silico molecular docking studies to determine the binding affinity between the ligands and the enzymes (tyrosinase, acetylcholinesterase, and butyrylcholinesterase enzymes). The results of this study suggest that Dracaena reflexa has unquestionable pharmaceutical importance and it should be further explored for the isolation of secondary metabolites that can be employed for the treatment of different diseases.
Collapse
Affiliation(s)
- Bilal Ahmad Ghalloo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (B.A.G.); (S.A.); (M.N.S.); (I.A.)
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (B.A.G.); (S.A.); (M.N.S.); (I.A.)
- Correspondence: (K.-u.-R.K.); (H.Y.A.); Tel.: 92-3366708638 (K.-u.-R.K.)
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (B.A.G.); (S.A.); (M.N.S.); (I.A.)
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
- Correspondence: (K.-u.-R.K.); (H.Y.A.); Tel.: 92-3366708638 (K.-u.-R.K.)
| | - Jawaher H. Al-Qahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Barkat Ali
- National Agri Research Institute-NARC, Park Road Chack Shahzad Islamabad, Islamabad 45600, Pakistan;
| | - Imran Mukhtar
- Faculty of Medicine & Allied Health Sciences, Sir Sadiq Muhammad Khan Abbasi Post Graduate Medical College, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Musaddique Hussain
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (B.A.G.); (S.A.); (M.N.S.); (I.A.)
| | - Imtiaz Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (B.A.G.); (S.A.); (M.N.S.); (I.A.)
| |
Collapse
|
14
|
Phytochemistry and Pharmacological Activities of Dracaena cinnabari Resin. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8561696. [PMID: 34337055 PMCID: PMC8324360 DOI: 10.1155/2021/8561696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022]
Abstract
Dracaena cinnabari (D. cinnabari) is an endemic plant located in Socotra Island, Yemen. Deep red resin attained from different plant species including D. cinnabari is commonly known as dragon's blood. In folk medicine, it is prescribed for the treatment of traumatic dermal, dental, and eye injuries as well as blood stasis, pain, and gastrointestinal diseases in humans. Numerous studies have investigated that this resinous medicine has antidiarrheal, antiulcer, antimicrobial, antiviral, antitumor, anti-inflammatory, analgesic, wound healing, and antioxidant activity. Several phytochemicals have been isolated from D. cinnabari, including the biflavonoid cinnabarone, triflavonoids, metacyclophanes, chalcones, chalcanes, dihydrochalcones, sterols, and terpenoids. The present review highlights the structures and bioactivities of main phytochemicals isolated from D. cinnabari regarding the botany and pharmacological effects of the resin derived from this plant.
Collapse
|
15
|
Liu Y, Zhao X, Yao R, Li C, Zhang Z, Xu Y, Wei JH. Dragon's Blood from Dracaena Worldwide: Species, Traditional Uses, Phytochemistry and Pharmacology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1315-1367. [PMID: 34247562 DOI: 10.1142/s0192415x21500634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dragon's blood (DB) refers mainly to the crimson resin of many Dracaena spp. DB has been used by different traditional medicine systems worldwide, including Arabic medicine, African medicine, traditional Chinese medicine, Thai medicine, etc. DB are mainly used to heal wounds, kill pain, stop bleeding, and cure various diseases such as diarrhea, dysentery and ulcers for over 1000 years. 11 Dracaena spp. and 3 subspecies are reported to be able to produce red resin. However, the resources are extremely deficient. Several Dracaena spp. are in threatened status. Over 300 compounds have been isolated from Dracaena spp., mainly including flavonoids, steroids, and phenolics. DB exhibits anti-inflammatory, analgesic, antithrombotic, anti-oxidant, antimicrobial, antidiabetic, and anticancer properties, which explain its wound healing effects, preventive effects on cardiovascular and cerebrovascular diseases, dual-directional regulation of blood flow, neuroprotection and radioprotective effects. No apparent side effects or toxicity have been reported. DB are restricted from being exploited due to limited resources and unclear resin formation mechanism. It is necessary to expand the cultivation of Dracaena spp. and fully understand the mechanism underlying the resin formation process to develop an effective induction method for the sustainable utilization of DB.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China
| | - Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State, Administration of Traditional Chinese Medicine for Agarwood, Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Haikou 570311, P. R. China
| | - Ruyu Yao
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China
| | - Chuangjun Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, P. R. China
| | - Zhonglian Zhang
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, P. R. China
| | - Yanhong Xu
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China.,Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State, Administration of Traditional Chinese Medicine for Agarwood, Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Haikou 570311, P. R. China
| |
Collapse
|
16
|
A botanical medicine dragon's blood exhibited clinical antithrombosis efficacy similar to low molecular weight heparin. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1691-1701. [PMID: 33521854 DOI: 10.1007/s11427-020-1848-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Deep vein thrombosis (DVT) is a common complication following traumatic fracture with a 0.5%-1% annual incidence. Low molecular weight heparin (LMWH) is the most commonly used anticoagulation drug for DVT prevention, but treatment with LMWH is invasive. Our aim is to compare the antithrombotic effect of dragon's blood, an oral botanical anticoagulant medicine approved by the Chinese FDA, with LMWH in patients undergoing hip fracture surgery and to explore the molecular mechanisms of anticoagulation treatment. Our study recruited patients and divided them into LMWH and dragon's blood treatment group. Coagulation index tests, Doppler ultrasound and mRNA sequencing were performed before and after anticoagulation therapy. There was no significant difference in postoperative DVT incidence between the two groups (23.1% versus 15.4%, P=0.694). D-dimer (D-D) and fibrinogen degradation product (FDP) showed significant reductions in both groups after anticoagulation treatments. We identified SLC4A1, PROS1, PRKAR2B and seven other genes as being differentially expressed during anticoagulation therapy in both groups. Genes correlated with coagulation indexes were also identified. Dragon's blood and LMWH showed similar effects on DVT and produced similar gene expression changes in patients undergoing hip fracture surgery, indicating that dragon's blood is a more convenient antithrombosis medicine (oral) than LMWH (hypodermic injection).
Collapse
|
17
|
Lagopsis supina extract and its fractions exert prophylactic effects against blood stasis in rats via anti-coagulation, anti-platelet activation and anti-fibrinolysis and chemical characterization by UHPLC-qTOF-MS/MS. Biomed Pharmacother 2020; 132:110899. [DOI: 10.1016/j.biopha.2020.110899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
|
18
|
Resina Draconis Reduces Acute Liver Injury and Promotes Liver Regeneration after 2/3 Partial Hepatectomy in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2305784. [PMID: 33082819 PMCID: PMC7563078 DOI: 10.1155/2020/2305784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022]
Abstract
Aim To investigate the protective effects and possible mechanisms of action of resina draconis (RD) on acute liver injury and liver regeneration after 2/3 partial hepatectomy (PH) in mice. Methods 2/3 PH was used to induce acute liver injury. Mice were divided into three groups: sham, vehicle + 2/3 PH, and RD + 2/3 PH. Resina draconis was administered intragastrically after 2/3 PH into the RD + 2/3 PH group, and the same volume of vehicle (1% sodium carboxymethyl cellulose) was injected into the vehicle + 2/3 PH group and sham group mice. The index of liver to body weight (ILBW) and proliferating cell nuclear antigen (PCNA) were assayed to evaluate liver regeneration. Blood and liver tissues were collected for serological and western blotting analysis. Results Resina draconis protected against 2/3 PH-induced acute severe liver injury and promoted liver regeneration as shown by significantly increased ILBW compared with that of controls. 2/3 PH increased serum AST and ALT levels, which were significantly decreased by RD treatment, while 2/3 PH decreased serum TP and ALB, which were increased by RD treatment. In the RD + 2/3 PH group, PCNA expression was significantly increased compared with the 2/3 PH group. Further, hepatocyte growth factor (HGF), TNFα, and EGFR levels were increased in the RD group at postoperative days 2 and 4 compared with the those in the 2/3 PH group. Conclusion Our results suggest that RD ameliorates acute hepatic injury and promotes liver cell proliferation, liver weight restoration, and liver function after 2/3 PH, probably via HGF, TNFα, and EGFR signaling.
Collapse
|
19
|
Systems Pharmacology-Dissection of the Molecular Mechanisms of Dragon's Blood in Improving Ischemic Stroke Prognosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4858201. [PMID: 32508949 PMCID: PMC7251463 DOI: 10.1155/2020/4858201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/30/2022]
Abstract
Materials and Methods (1) Based on system-pharmacology platform, the potential active compounds of DB are screened out according to ADME. (2) The ischemic stroke-related targets are predicted by utilizing these active compounds as probes, mapping the targets to the CTD database to establish a molecular-target-disease network. (3) To analyze the mechanism of DB treatment for the prognosis of ischemic stroke, we used the Metascape and DAVID databases to construct "ischemic stroke pathways". (4) PC12 cells were used to explore the protective effect of loureirin B on oxygen-glucose deprivation/reperfusion (OGD/R) injury, and BV-2 cells were used to determine the anti-inflammation effect of 4',7-dihydroxyflavone. Results Finally, we obtained 38 active compounds and 58 stroke-related targets. Network and pathway analysis indicate that DB is effective in the treatment of ischemic stroke by enhancing cell survival and inhibiting inflammatory and antiplatelet activation. In in vitro experiments, the main component loureirin B promoted the expression of HO-1 and Bcl-2 via positive regulation of PI3K/AKT/CREB and Nrf2 signaling pathways in PC12 cells against OGD/R damage. And the anti-inflammatory activity of 4',7-dihydroxyflavone was related to the inhibition of COX-2, TNF-α, and IL-6 in LPS-induced BV-2 cells. Conclusions In our study, the results illustrated that DB in improving ischemic stroke prognosis may involve enhancing cell survival and antioxidant, anti-inflammation, and antiplatelet activities.
Collapse
|
20
|
Lang GZ, Li CJ, Gaohu TY, Li C, Ma J, Yang JZ, Zhou TT, Yuan YH, Ye F, Wei JH, Zhang DM. Bioactive flavonoid dimers from Chinese dragon's blood, the red resin of Dracaena cochinchinensis. Bioorg Chem 2020; 97:103659. [PMID: 32078940 DOI: 10.1016/j.bioorg.2020.103659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/12/2019] [Accepted: 02/10/2020] [Indexed: 11/25/2022]
Abstract
Seven flavonoid dimers, biflavocochins A-G, together with six known compounds were isolated from the red resins of Dracaena cochinchinensis (Chinese dragon's blood). Their structures were elucidated based on extensive spectroscopic analysis. The absolute configurations of 1-7 was assigned by experimental and quantum chemical calculated ECD spectra, and that of 4 was further established by X-ray diffraction analysis using Cu Kα radiation. Compounds 1-3 are novel dimers of homoisoflavonoid and dihydrochalcone with a unique dibenzopyran ring. Compounds 2, 6, 7 exhibited moderate PTP1B inhibitory activities in an enzyme assay. Compound 1 showed neuroprotective effect on serum deficiency-induced cellular damage in PC12 cells.
Collapse
Affiliation(s)
- Guang-Zhen Lang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Chuang-Jun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Tong-Yue Gaohu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Chuan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jing-Zhi Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Tian-Tian Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Fei Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jian-He Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Dong-Ming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| |
Collapse
|
21
|
Zhao Y, Zhang Y, Kong H, Zhang M, Cheng J, Luo J, Zhao Y, Qu H. Haemostatic Nanoparticles-Derived Bioactivity of from Selaginella tamariscina Carbonisata. Molecules 2020; 25:E446. [PMID: 31973222 PMCID: PMC7036756 DOI: 10.3390/molecules25030446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 11/17/2022] Open
Abstract
High-temperature carbonisation is used to prepare many traditional Chinese medicine charcoal drugs, but the bioactive haemostatic substances of these medicines and their mechanisms are still unknown. This study developed and evaluated nanoparticles (NPs) derived from Selaginella pulvinate Carbonisata (STC) for the first time. The haemostatic effect of STC-NPs prepared at 300, 350, and 400 °C were investigated in mouse tail amputation and liver scratch experiments. STC-NPs obtained at 400 °C had the strongest haemostatic effect, and were accordingly characterised by ultraviolet-visible spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, high resolution transmission electron microscopy, X-ray diffractometry, and X-ray photoelectron spectroscopy. STC-NPs averaged 1.4-2.8 nm and exhibited a quantum yield of 6.06% at a maximum excitation wavelength of 332 nm and emission at 432 nm. STC-NPs displayed low toxicity against mouse monocyte macrophage RAW 264.7 cells by CCK-8 assay, and STC-NP treatment significantly shortened bleeding time in rat and mouse models. Coagulation assays showed that the haemostatic effects of STC-NPs were related to improving the fibrinogen and platelet contents, as well as decreasing the prothrombin time that resulted from stimulating extrinsic blood coagulation and activating the fibrinogen system. The STC-NPs had remarkable haemostatic effects in the tail amputation and liver scratch models; these effects may be associated with the exogenous coagulation pathway and activation of the brinogen system, according to the evaluation of the mouse coagulation parameters. This novel evaluation supports the material basis of STC use in traditional Chinese medicine, and this article is worthy of study by authors of clinical pharmacy.
Collapse
Affiliation(s)
- Yusheng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (H.K.); (M.Z.); (J.C.); (J.L.); (Y.Z.)
| | - Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (H.K.); (M.Z.); (J.C.); (J.L.); (Y.Z.)
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (H.K.); (M.Z.); (J.C.); (J.L.); (Y.Z.)
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (H.K.); (M.Z.); (J.C.); (J.L.); (Y.Z.)
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (H.K.); (M.Z.); (J.C.); (J.L.); (Y.Z.)
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
22
|
Sun J, Liu JN, Fan B, Chen XN, Pang DR, Zheng J, Zhang Q, Zhao YF, Xiao W, Tu PF, Song YL, Li J. Phenolic constituents, pharmacological activities, quality control, and metabolism of Dracaena species: A review. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112138. [PMID: 31390529 DOI: 10.1016/j.jep.2019.112138] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/04/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dragon's blood (Chinese name: Xuejie), which comprises red resins obtained from several plants (27 species from 4 families), is drawing worldwide interests in medicinal applications owing to its broad pharmacological spectrum such as promoting blood circulation, regenerating muscle, relieving swelling and pain, maintaining hemostasis, etc. AIM OF THE STUDY: This work aims to evaluate current research progress on phenolic constituents, pharmacological activities, quality control, and metabolism of six Dracaena plants, namely, Dracaena cochinchinensis (Lour.) S.C.Chen, D. cambodiana Pierre ex Gagnep., D. cinnabari Balf. f., D. draco (L.) L., D. loureiroi Gagnep., and D. schizantha Baker, figure out the shortcomings of existing studies, and provide meaningful guidelines for future investigations. METHODS Extensive database retrieval, such as SciFinder, PubMed, CNKI, ChemSpider, etc., was performed by using the keywords "Dracaena," "dragon's blood," as well as the Latin names of the six Dracaena species. In addition, relevant textbooks, patents, reviews, and documents were also employed to ensure sufficient information is collected. RESULTS Flavonoids and their oligomers are the primary chemical clusters distributed in Dracaena plants. Pharmacological activities including analgesic, anti-inflammatory, antibacterial, hypolipidemic, hypoglycemic, and cytotoxic effects; bi-directional regulation effects on hemorheology; and cardiovascular and cerebrovascular effects have been disclosed by modern pharmacological evaluations. The chemical and metabolic profiles after oral administration of dragon's blood extract were preliminarily characterized. However, some of the pharmacological investigations reported only elementary methodologies and unreliable findings, and even worse, some important aspects were questionable or missing in these articles. CONCLUSIONS Dragon's blood is a valuable source of bioactive compounds, mainly flavonoids and their oligomers. Its potential therapeutic effects on different diseases are attractive, such as the notable effect on cardiovascular diseases. In future studies, there is an urgent need to test the effect of this extract on appropriate cell lines and animal models to analyze its ethnopharmacological applications; moreover, "composition-effect correlation" methods and omics technologies are demanded for identifying the effective material basis and therapeutic mechanisms before entering into clinical trials. Moreover, attention should be paid to the chemical profiling and quality evaluation of this precious herbal medicine.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jia-Ni Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Xiao-Nan Chen
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dao-Ran Pang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yun-Fang Zhao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Xiao
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222001, China
| | - Peng-Fei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China; National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222001, China
| | - Yue-Lin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
23
|
Kim KJ, Kim MS, Seok PR, Shin JH, Kim JY. Antithrombotic Effect of Artemisia princeps Pampanini Extracts in Vitro and in FeCl 3 -Induced Thrombosis Rats. J Food Sci 2019; 84:3037-3044. [PMID: 31509245 DOI: 10.1111/1750-3841.14786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
Extracts of several plants possess antithrombotic effects. Herein, we examined the antithrombotic effects of different extracts of Artemisia princeps Pampanini prepared using distilled water, hot distilled water, 70% ethanol, or subcritical water. The antithrombotic effects were determined using a co-culture system consisting of tumor necrosis factor-alpha (TNF-α)-treated EA.hy926 cells and THP-1 cells. In addition, the coagulation time of plasma collected from healthy volunteers was evaluated in terms of the prothrombin time and activated partial thromboplastin time. A carotid arterial thrombosis model was induced by ferric chloride in Sprague Dawley rats. The rats were treated with either sterile water or three different doses of the subcritical water extract for 2 weeks. The thrombus weight, gene expression of cell adhesion molecules, and histological characteristics were assessed. The results of in vitro studies revealed a significant inhibition in the adhesion of monocytes to EA.hy926 cells stimulated by TNF-α in the subcritical water extract-treated group. We also observed considerable suppression of the occlusion and mRNA expression of cell adhesion molecules in the in vivo experiments. This study suggests that Artemisia princeps Pampanini may have the potential to improve blood coagulation.
Collapse
Affiliation(s)
- Kyeong Jin Kim
- Dept. of Food Science and Technology, Seoul Natl. Univ. of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Min Seo Kim
- Dept. of Food Science and Technology, Seoul Natl. Univ. of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Pu Reum Seok
- Dept. of Biomedical Laboratory Science, Eulji Univ., Seongnam-si, Gyeonggi-do, 13135, Republic of Korea
| | - Jae-Ho Shin
- Dept. of Biomedical Laboratory Science, Eulji Univ., Seongnam-si, Gyeonggi-do, 13135, Republic of Korea
| | - Ji Yeon Kim
- Dept. of Food Science and Technology, Seoul Natl. Univ. of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| |
Collapse
|
24
|
Keshavarzi Z, Shakeri F, Barreto GE, Bibak B, Sathyapalan T, Sahebkar A. Medicinal plants in traumatic brain injury: Neuroprotective mechanisms revisited. Biofactors 2019; 45:517-535. [PMID: 31206893 DOI: 10.1002/biof.1516] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/05/2019] [Indexed: 01/31/2023]
Abstract
Traumatic brain injury (TBI) is the most prevalent health problem affecting all age groups, and leads to many secondary problems in other organs especially kidneys, gastrointestinal tract, and heart function. In this review, the search terms were TBI, fluid percussion injury, cold injury, weight drop impact acceleration injury, lateral fluid percussion, cortical impact injury, and blast injury. Studies with Actaea racemosa, Artemisia annua, Aframomum melegueta, Carthamus tinctorius, Cinnamomum zeylanicum, Crocus sativus, Cnidium monnieri, Curcuma longa, Gastrodia elata, Malva sylvestris, Da Chuanxiong Formula, Erigeron breviscapus, Panax ginseng, Salvia tomentosa, Satureja khuzistanica, Nigella sativa, Drynaria fortune, Dracaena cochinchinensis, Polygonum cuspidatum, Rosmarinus officinalis, Rheum tanguticum, Centella asiatica, and Curcuma zedoaria show a significant decrease in neuronal injury by different mechanisms such as increasing superoxide dismutase and catalase activities, suppressing nuclear factor kappa B (NF-κB), interleukin 1 (IL-1), glial fibrillary acidic protein, and IL-6 expression. The aim of this study was to evaluate the neuroprotective effects of medicinal plants in central nervous system pathologies by reviewing the available literature.
Collapse
Affiliation(s)
- Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
UPLC-Q-TOF/MS-Based Plasma Metabolomics to Evaluate the Effects of Aspirin Eugenol Ester on Blood Stasis in Rats. Molecules 2019; 24:molecules24132380. [PMID: 31252591 PMCID: PMC6651160 DOI: 10.3390/molecules24132380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 11/17/2022] Open
Abstract
Aspirin eugenol ester (AEE) is a novel compound that is formed from the esterification of aspirin (acetylsalicylic acid (ASA)) and eugenol. This study aimed to investigate the effects of AEE on blood stasis in rats and to characterize the underlying mechanisms using a plasma metabolomic study. The results indicate that AEE and ASA could modulate whole blood viscosity (WBV), plasma viscosity (PV), blood coagulation parameters, platelet count, platelet aggregation, lactate dehydrogenase (LDH), creatinine (CR) and the levels of thromboxane A2 (TXA2) and 6-keto prostaglandin F1α (6-keto-PGF1α). The metabolic profiles of the plasma samples from all groups were clearly separated in the score plots. Nineteen potential metabolites were selected and identified, and disordered levels of these metabolites could be regulated by AEE and ASA. Pathway analysis showed that the mechanism of action of AEE on blood stasis might be principally related to the metabolism of amino acid, fatty acid, energy and glycerophospholipid. The above results indicate that AEE protected the rats against blood stasis, and that this effect might have been caused by the anticoagulation activity of AEE and its abilities to maintain a balance between TXA2 and PGI2, reduce blood viscosity, inhibit platelet aggregation and normalize the plasma metabolic profile.
Collapse
|
26
|
Resina draconis inhibits the endoplasmic-reticulum-induced apoptosis of myocardial cells via regulating miR-423-3p/ERK signaling pathway in a tree shrew myocardial ischemia–reperfusion model. J Biosci 2019. [DOI: 10.1007/s12038-019-9872-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Suheryani I, Li Y, Chen B, Li P, Liu X, Ansari IT, Saeed O, Dai R, Deng Y. Gastroprotective Effects of Dracaena cochinchinensis (Lour.) Against Aspirin-Induced Gastric Ulcers in Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.343.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Cheng J, Zhang M, Sun Z, Lu F, Xiong W, Luo J, Kong H, Wang Q, Qu H, Zhao Y. Hemostatic and hepatoprotective bioactivity of Junci Medulla Carbonisata-derived Carbon Dots. Nanomedicine (Lond) 2019; 14:431-446. [PMID: 30698498 DOI: 10.2217/nnm-2018-0285] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To explore the hemostatic and hepatoprotective bioactivity of Junci Medulla Carbonisata-derived Carbon Dots (JMC-CDs). MATERIALS & METHODS The JMC-CDs were characterized using transmission electron microscopy, HPLC, Fourier transform IR, UV, fluorescence and x-ray photoelectron spectroscopy. The hemostatic effect of JMC-CDs was evaluated and confirmed by trauma hemorrhagic animal models and internal hemorrhage animal model induced by Deinagkistrodon acutus venom. RESULTS The JMC-CDs ranged in diameter from 1.0 to 8 nm and had a yield of 0.12%. Moreover, JMC-CDs not only possessed remarkable hemostatic efficacy but could also prevent hemorrhage-induced liver injury, as demonstrated by the reduced serum levels of biochemical indicators of liver damage such as aspartate aminotransferase, alanine amino transferase, alkaline phosphatase, total bilirubin and direct bilirubin. CONCLUSION The JMC-CDs may have great potentials in clinical practice.
Collapse
Affiliation(s)
- Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ziwei Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fang Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Xiong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huihua Qu
- Beijing Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
29
|
Shang Y, Lu S, Chen Y, Sun X. Chinese herbal medicines for the treatment of non-structural abnormal uterine bleeding in perimenopause: A systematic review and a meta-analysis. Complement Ther Med 2018; 41:252-260. [DOI: 10.1016/j.ctim.2018.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/13/2023] Open
|
30
|
Tang Y, Su G, Li N, Li W, Chen G, Chen R, Zhou D, Hou Y. Preventive agents for neurodegenerative diseases from resin of Dracaena cochinchinensis attenuate LPS-induced microglia over-activation. J Nat Med 2018; 73:318-330. [DOI: 10.1007/s11418-018-1266-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
|
31
|
Luo J, Zhang M, Cheng J, Wu S, Xiong W, Kong H, Zhao Y, Qu H. Hemostatic effect of novel carbon dots derived from Cirsium setosum Carbonisata. RSC Adv 2018; 8:37707-37714. [PMID: 35558604 PMCID: PMC9089398 DOI: 10.1039/c8ra06340k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/25/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, for the first time, we discovered novel water-soluble carbon dots (CDs, named CSC-CDs) from aqueous extracts of Cirsium setosum Carbonisata (CSC), which were uniform in size and possessed a nearly spherical shape, and the CDs exhibited low toxicity against RAW 264.7 cells by CCK-8 assay. Most importantly, tail hemorrhaging and liver hemorrhaging experiments showed that CSC-CD-treated mice had significantly shorter bleeding times than normal saline-treated mice. Coagulation assays suggested that the CSC-CDs could stimulate the extrinsic blood coagulation system and activate the fibrinogen system. These results suggested that the CSC-CDs have a remarkable hemostatic effect. The study provides evidence to support the further investigation of the considerable potential of carbon dots.
Collapse
Affiliation(s)
- Juan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100029 China
| | - Meiling Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine Beijing 100029 China
| | - Jinjun Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine Beijing 100029 China
| | - Shuhong Wu
- Military General Hospital of Beijing PLA China
| | - Wei Xiong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100029 China
| | - Hui Kong
- School of Basic Medical Sciences, Beijing University of Chinese Medicine Beijing 100029 China
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine Beijing 100029 China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine 11 Beisanhuandong Road, Chaoyang District Beijing 100029 China +86 10 6428 6821 +86 10 6428 6705
| |
Collapse
|
32
|
Pang DR, Pan B, Sun J, Sun H, Yao HN, Song YL, Zhao YF, Tu PF, Huang WZ, Zheng J, Li J. Homoisoflavonoid derivatives from the red resin of Dracaena cochinchinensis. Fitoterapia 2018; 131:105-111. [PMID: 30339923 DOI: 10.1016/j.fitote.2018.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022]
Abstract
Five new homoisoflavonoid derivatives, including three meta-homoisoflavanes (1-3), one homoisoflavanone (4), and one homoisoflavan (5), along with five known analogues (6-10), were isolated from the red resin of Dracaena cochinchinensis (Chinese dragon's blood). Their structures were elucidated by analysis of spectroscopic data (1D and 2D NMR, IR, and HRESIMS). The absolute configuration of compound 1 was determined by single-crystal X-ray crystallographic analysis, and those of 2-5 were established on the basis of experimental and computed ECD data. Compounds 4, 6, and 9 exhibited moderate inhibition of nitric oxide production in lipopolysaccharide-stimulated BV-2 microglial cells with IC50 values of 60.4-75.6 μM.
Collapse
Affiliation(s)
- Dao-Ran Pang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bo Pan
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Sun
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Chinese Academy of Agricultural Sciences, Institute of Food Science and Technology, Beijing 100193, China
| | - Hui Sun
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui-Na Yao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue-Lin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yun-Fang Zhao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng-Fei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu 222001, China
| | - Wen-Zhe Huang
- Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu 222001, China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
33
|
Rapid Evaluation of Chemical Consistency of Artificially Induced and Natural Resina Draconis Using Ultra-Performance Liquid Chromatography Quadrupole-Time-of-Flight Mass Spectrometry-Based Chemical Profiling. Molecules 2018; 23:molecules23081850. [PMID: 30044430 PMCID: PMC6222434 DOI: 10.3390/molecules23081850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 12/24/2022] Open
Abstract
Resina Draconis is a highly valued traditional medicine widely used in Arabia since ancient times, and it has been commonly used as an antidiarrheic, antimicrobial, antiulcer, blood circulation promoter as well as an anti-inflammatory agent. The tree source from which this medicine orignates grows extremely slowly, producing a very low yield of Resina Draconis. To meet the increasing market demand, artificial methods for stimulating Resina Draconis formation have been developed and applied. However, the chemical differences between artificially induced Resina Draconis (AIRD) and natural Resina Draconis (NRD) have been rarely studied. The aim of this research was to explore and identify the chemical constituents of AIRD and NRD using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS) based chemical profiling. A total of 56 chromatographic peaks were detected in AIRD, of these, 44 peaks have had their structures tentatively characterized based on high-resolution mass spectra (HRMS) data, fragmentation ions information, reference standards data and literature review. In total, 40 peaks were found both in AIRD and NRD. The potential chemical transformation mechanisms active in Resina Draconis during formation were explored. To the best of our knowledge, this is the first evaluation of the chemical profiles of both AIRD and NRD. Furthermore, these findings are expected to provide a rational basis for the quality assessment of AIRD and the use of AIRD as a substitute for NRD.
Collapse
|
34
|
Sun J, Huo H, Song Y, Zheng J, Zhao Y, Huang W, Wang Y, Zhu J, Tu P, Li J. Method development and application for multi-component quantification in rats after oral administration of Longxuetongluo Capsule by UHPLC-MS/MS. J Pharm Biomed Anal 2018; 156:252-262. [PMID: 29729639 DOI: 10.1016/j.jpba.2018.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/20/2022]
Abstract
Although wide applications towards ischemic stroke in clinic, the therapeutic materials of Longxuetongluo Capsule (LTC) that is composed of total phenolic extract of Chinese dragon's blood, are still largely unclear. Exposure pattern characterization of those drug-derived components in vivo, notably in circulation system has been recommended as a viable approach to disclose the effective components of a given herbal medicine. Herein, we aimed to develop a robust method being capable of multi-component quantification in either rat plasma or tissues following oral administration of LTC, and to clarify the kinetic profiles of 11 primary drug-derived phenolic derivatives. Proteins precipitation was carried out for the plasma as well as homogenized tissue samples with acetonitrile. Chromatographic separations were achieved using UHPLC equipped with a shim-pack XR-ODS II column, and confidence-enhanced detection was accomplished through the joint employment of selected-reaction monitoring and tandem mass spectrometry (SRM-MS/MS) on a hybrid triple quadrupole-linear ion trap mass spectrometer. Diverse validation assays proved the method to be sensitive, precise, and rapid for simultaneous determination of those 11 components. Pharmacokinetic and tissue distribution investigations were subsequently conducted in rat after a single 500 mg/kg oral dose. Rapid absorption (Tmax, 11.53-68.27 min) and elimination (T1/2, 6.893-57.90 min) occurred for all analytes-of-interest. Extensive occurrences were observed for 7,4'-dihydroxy-5-methoxyhomoisoflavanone (Cmax, 340.0 ng/mL), thevetiaflavone (Cmax, 42.86 ng/mL), 5,7,4'-trihydroxyhomoisoflavanone (Cmax, 41.55 ng/mL), and pterostilbene (Cmax, 25.49 ng/mL) in plasma. Significant distributions occurred for all analytes in the liver as well as kidney, and several compounds could be found in brain. The findings described are envisioned to provide promising information for the in-depth clarification of the therapeutic entities, and also to offer a practical approach for therapeutic drug monitoring of LTC in clinic.
Collapse
Affiliation(s)
- Jing Sun
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huixia Huo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenzhe Huang
- Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu 222001, China
| | - Yonghua Wang
- Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu 222001, China; College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jingbo Zhu
- Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu 222001, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu 222001, China.
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
35
|
Liu X, Wang Y, Yan X, Zhang M, Zhang Y, Cheng J, Lu F, Qu H, Wang Q, Zhao Y. Novel Phellodendri Cortex (Huang Bo)-derived carbon dots and their hemostatic effect. Nanomedicine (Lond) 2018; 13:391-405. [PMID: 29338619 DOI: 10.2217/nnm-2017-0297] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To explore the hemostatic effect of Phellodendri Cortex-derived carbon dots. MATERIALS & METHODS Transmission electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, fluorescence spectroscopy, x-ray photoelectron spectroscopy and a cell counting kit-8 assay were studied. Hemostatic effect of Phellodendri Cortex Carbonisatus-carbon dots (PCC-CDs) was studied in mouse bleeding models. To explore their related hemostatic mechanism, coagulation parameters and platelets were measured. RESULTS The PCC-CDs ranged in diameter from 1.2 to 4.8 nm and had a quantum yield of 9.62%. They exhibited no toxicity up to concentrations of 1000 μg/ml. After administration, mice had a significantly shortened bleeding time and coagulation parameters and platelets significantly increased. CONCLUSION These results showed the definite hemostatic effect of PCC-CDs.
Collapse
Affiliation(s)
- Xiaoman Liu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yongzhi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinjun Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Lu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
36
|
Zhou J, Song Z, Han M, Yu B, Lv G, Han N, Liu Z, Yin J. Evaluation of the antithrombotic activity of Zhi-Xiong Capsules, a Traditional Chinese Medicinal formula, via the pathway of anti-coagulation, anti-platelet activation and anti-fibrinolysis. Biomed Pharmacother 2018; 97:1622-1631. [DOI: 10.1016/j.biopha.2017.11.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022] Open
|
37
|
Zhang M, Zhao Y, Cheng J, Liu X, Wang Y, Yan X, Zhang Y, Lu F, Wang Q, Qu H. Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1562-1571. [PMID: 28925715 DOI: 10.1080/21691401.2017.1379015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Schizonepetae Herba Carbonisata (SHC) has been used in traditional Chinese medicine (TCM) to treat haemorrhagic diseases for more than 1000 years. However, little information is available on its haemostatic components and mechanism. In this study, we developed novel water-soluble carbon dots (CDs) in aqueous extracts of SHC for the first time and a modified pyrolysis method was used to prepare the SHC using Schizonepetae Herba (SH) as the sole precursor. The SHC-CDs were characterized using transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-Vis) and fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and high-performance liquid chromatography (HPLC). Furthermore, the CDs with a quantum yield (QY) around 2.26% exhibited no toxicity within approximately 0.84 mg/mL in the CCK-8 assay. More interestingly, tail haemorrhaging and liver haemorrhaging experiments showed that CDs-treated mice had significantly shorter bleeding time than did normal saline (NS)-treated control group. Coagulation assays suggested that SHC-CDs could stimulate the extrinsic blood coagulation system and activate the fibrinogen system. These results suggested that SHC-CDs possess a remarkable haemostatic property, which provides evidence to support the further investigation of the considerable potential and effective material basis of TCM.
Collapse
Affiliation(s)
- Meiling Zhang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yan Zhao
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| | - Jinjun Cheng
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| | - Xiaoman Liu
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| | - Yongzhi Wang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Xin Yan
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yue Zhang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Fang Lu
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| | - Qingguo Wang
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| | - Huihua Qu
- c Center of Scientific Experiment, Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
38
|
Bioactivity-Guided Fractionation of the Traditional Chinese Medicine Resina Draconis Reveals Loureirin B as a PAI-1 Inhibitor. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9425963. [PMID: 29234445 PMCID: PMC5634571 DOI: 10.1155/2017/9425963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 01/07/2023]
Abstract
Thrombotic diseases have become a global burden due to morbidity, mortality, and disability. Traditional Chinese medicine has been proven effective in removing blood stasis and promoting blood circulation, but the exact mechanisms remain unclear. Plasminogen activator inhibitor-1 (PAI-1) is a natural inhibitor of tissue-type and urokinase-type plasminogen activators. In this study, we screened four fractions of Resina Draconis (a traditional Chinese medicine) extract for PAI-1 inhibitory activity. Bioactivity-guided purification and chromogenic substrate-based assay led to the identification of loureirin B as the major PAI-1 inhibitor, with an IC50 value of 26.10 μM. SDS-PAGE analysis showed that formation of the PAI-1/uPA complex was inhibited by loureirin B, and the inhibitory effect of loureirin B on PAI-1 was also confirmed by clot lysis assay. In vivo studies showed that loureirin B significantly prolonged the tail bleeding time and reduced the weight and size of arterial thrombus, reduced hydroxyproline level, and partly cured liver fibrosis in mice. Taken together, the results revealed loureirin B as a PAI-1 inhibitor, adding a new pharmacological target for loureirin B and uncovering a novel mechanism underlying the antithrombotic property of Resina Draconis, which might be useful in the treatment of cardiovascular diseases such as thrombosis and fibrosis.
Collapse
|
39
|
Yan X, Zhao Y, Luo J, Xiong W, Liu X, Cheng J, Wang Y, Zhang M, Qu H. Hemostatic bioactivity of novel Pollen Typhae Carbonisata-derived carbon quantum dots. J Nanobiotechnology 2017; 15:60. [PMID: 28870210 PMCID: PMC5584017 DOI: 10.1186/s12951-017-0296-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/29/2017] [Indexed: 11/21/2022] Open
Abstract
Background Pollen Typhae Carbonisata (PTC) is a type of calcined herb drug that has been used as a hemostatic medicine to promote hemostasis for thousands of years. In this study, we discovered and separated novel water-soluble carbon quantum dots (CQDs, named PTC-CQDs) from aqueous extracts of PTC. These PTC-CDs were characterized using transmission electron microscopy (TEM) and high-resolution TEM, as well as Fourier transform infrared, ultraviolet–visible, and fluorescence spectroscopy. Then, we assessed the anti-hemorrhagic effects and related hemostatic mechanisms of the obtained PTC-CQDs. Results The PTC-CQDs separated from PTC are spherical, monodisperse, and have a narrow size distribution between 2 and 8 nm. In the pharmacology experiment, remarkable anti-hemorrhage effects of PTC-CQDs were revealed. Additionally, the rats showed a profound decrease in activated partial thromboplastin time and increase in fibrinogen and PLT after PTC-CQDs treatment. Conclusions These results indicated the explicit hemostasis effect of PTC-CQDs, which not only provided a new idea for the material research of PTC, but have also provided new insights into potential biomedical and healthcare applications of CQDs in the field of haemorrhage control and laid a solid foundation for future drug discovery.
Collapse
Affiliation(s)
- Xin Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Juan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Xiong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoman Liu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinjun Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yongzhi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meiling Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
40
|
Lv JL, Li ZZ, Zhang LB. Two new flavonoids from Artemisia argyi with their anticoagulation activities. Nat Prod Res 2017; 32:632-639. [PMID: 28539062 DOI: 10.1080/14786419.2017.1332603] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A new flavone glycoside, eupatilin 7-O-β-d-glucopyranoside (1) and a new flavone, 5,6,2',4'-tetrahydroxy-7,5'-dimethoxyflavone (2), were isolated from Artemisia argyi. Their structures were unambiguously elucidated by extensive spectroscopic analysis. Both flavonoids were evaluated for in vitro anticoagulation activities. Compound 1 significantly extended thrombin time. Compound 2 had obvious effect in increasing prothrombin time.
Collapse
Affiliation(s)
- Jie-Li Lv
- a School of Pharmacy , Xinxiang Medical University , Xinxiang , People's Republic of China
| | - Zhen-Zhen Li
- a School of Pharmacy , Xinxiang Medical University , Xinxiang , People's Republic of China
| | - Lai-Bin Zhang
- a School of Pharmacy , Xinxiang Medical University , Xinxiang , People's Republic of China
| |
Collapse
|
41
|
Li Y, Zhang Y, Wang R, Wei L, Deng Y, Ren W. Metabolic profiling of five flavonoids from Dragon's Blood in human liver microsomes using high-performance liquid chromatography coupled with high resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1052:91-102. [PMID: 28376352 DOI: 10.1016/j.jchromb.2017.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Although much is known about the pharmacological activities of Dragon's Blood (DB, a traditional Chinese herb), its metabolism in human liver microsomes (HLMs) and the cytochrome P450 (CYP) enzymes has not been studied. This study aims to identify the metabolic profile of five flavonoids (loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone) from DB in HLMs as well as the CYP enzymes that are involved in the metabolism of them. High-resolution mass spectrometry was used to characterize the structures of their metabolites and 10 cDNA-expressed CYP enzymes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) were used to verify which isozymes mediate in the metabolism of the metabolites. Totally, 29 metabolites including 10 metabolites of loureirin A, 10 metabolites of loureirin B, 4 metabolites of loureirin C, 2 metabolites of 7,4'-dihydroxyflavone and 3 metabolites of 5,7,4'-trihydroxyflavanone were elucidated and identified on the basis of the high-resolution MSn data. The metabolic profile of the five flavonoids in HLMs involved hydroxylation, oxidation and demethylation. Among them, hydroxylation was the predominant biotransformation of the five flavonoids in HLMs, occurring in combination with other metabolic reactions. Assay with recombinant P450s revealed that CYP2C9 and CYP2C19 played an important role in the hydroxylation of flavonoids in HLMs. To the best of our knowledge, this is the first in vitro evaluation of the metabolic profile of loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone in HLMs.
Collapse
Affiliation(s)
- Yujuan Li
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| | - Yushi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lizhong Wei
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Wei Ren
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
42
|
Effects of Sanguis Draconis on Perforator Flap Survival in Rats. Molecules 2016; 21:molecules21101262. [PMID: 27681718 PMCID: PMC6273294 DOI: 10.3390/molecules21101262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 11/18/2022] Open
Abstract
Sanguis draconis, a resin known to improve blood circulation, relieve pain, stimulate tissue regeneration, and heal wounds, is widely used in clinical practice. In this study, we prepared an ethanol extract of sanguis draconis (EESD) containing 75.08 mg/g of dracorhodin. The experiment was carried out on 20 rats that were divided into two groups, a control group (n = 10) and an EESD group (n = 10). All the rats underwent a perforator flap surgery, after which post-operative abdominal compressions of EESD were given to the EESD group for seven days, while the control group received saline. Flap survival percentages were determined after seven days, and were found to be significantly higher in the EESD group than in the control group. Results of laser Doppler flowmetry (LDF) showed that perforator flaps in the EESD group had higher perfusion values than those of the control group. The flap tissues were stained with hematoxylin and eosin, followed by immunohistochemical evaluation. Superoxide dismutase (SOD) expression and micro-vessel development markedly increased in the EESD group, while malondialdehyde (MDA) levels decreased. This is the first study to investigate the effect of sanguis draconis on perforator flap survival. Our results demonstrate that sanguis draconis can improve perforator flap survival in rats by promoting microvessel regeneration and blood perfusion.
Collapse
|
43
|
Ding DD, Wang YH, Chen YH, Mei RQ, Yang J, Luo JF, Li Y, Long CL, Kong Y. Amides and neolignans from the aerial parts of Piper bonii. PHYTOCHEMISTRY 2016; 129:36-44. [PMID: 27452451 DOI: 10.1016/j.phytochem.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/28/2016] [Accepted: 07/13/2016] [Indexed: 05/26/2023]
Abstract
Six amides, piperbonamides A-F, three neolignans piperbonins A-C, and 11 known compounds were isolated from the aerial parts of Piper bonii (Piperaceae). The structures of piperbonamides A-F and piperbonins A-C were elucidated based on the analysis of 1D and 2D NMR and MS data. Piperbonin A, (+)-trans-acuminatin, (+)-cis-acuminatin, (+)-kadsurenone, and pipernonaline showed weak activity against platelet aggregation with IC50 values of 118.2, 108.5, 90.02, 107.3, and 116.3 μM, respectively, as compared with the positive control, tirofiban, with an IC50 value of 5.24 μM. Piperbonamides A-F were inactive against five tumor cell lines at concentrations up to 40 μM.
Collapse
Affiliation(s)
- Duo-Duo Ding
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ya-Hui Chen
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ren-Qiang Mei
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jun Yang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ji-Feng Luo
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chun-Lin Long
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China.
| | - Yi Kong
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
44
|
Liu X, Wang C, Ding X, Liu X, Li Q, Kong Y. A novel selective inhibitor to thrombin-induced platelet aggregation purified from the leech Whitmania pigra. Biochem Biophys Res Commun 2016; 473:349-354. [DOI: 10.1016/j.bbrc.2016.03.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 11/26/2022]
|
45
|
Development and application of an UHPLC–MS method for comparative pharmacokinetic study of phenolic components from dragon’s blood in rats under simulated microgravity environment. J Pharm Biomed Anal 2016; 121:91-98. [DOI: 10.1016/j.jpba.2016.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 01/28/2023]
|
46
|
Longxuetongluo Capsule Improves Erythrocyte Function against Lipid Peroxidation and Abnormal Hemorheological Parameters in High Fat Diet-Induced ApoE-/- Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:2603219. [PMID: 26649134 PMCID: PMC4663336 DOI: 10.1155/2016/2603219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/10/2015] [Accepted: 07/12/2015] [Indexed: 12/20/2022]
Abstract
Chinese dragon's blood, the red resin of Dracaena cochinchinensis, one of the renowned traditional medicines, has been used to facilitate blood circulation and disperse blood stasis for thousands of years. Phenolic compounds are considered to be responsible for its main biological activities. In this study, total phenolic compounds of Chinese dragon's blood were made into capsule (Longxuetongluo Capsule, LTC) and their effects on the abnormal hemorheological properties were examined by high fat diet (HFD) induced ApoE−/− mice. Compared to the model group, LTC recovered the abnormal hemorheological parameters in HFD-induced ApoE−/− mice by reducing whole blood viscosity (WBV) at high rate and improving erythrocyte function. In conclusion, LTC could ameliorate erythrocyte deformability and osmotic fragility through the reduction of lipid peroxidation on plasma and erythrocyte membranes in HFD-induced ApoE−/− mice, which supported the traditional uses of Chinese dragon's blood as an effective agent for improving blood microcirculation in hypercholesterolemia.
Collapse
|
47
|
HPLC-ESI-MS analysis of flavonoids obtained from tissue culture of Dracaena cambodiana. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-4184-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Hao HZ, He AD, Wang DC, Yin Z, Zhou YJ, Liu G, Liang ML, Da XW, Yao GQ, Xie W, Xiang JZ, Ming ZY. Antiplatelet activity of loureirin A by attenuating Akt phosphorylation: In vitro studies. Eur J Pharmacol 2015; 746:63-9. [PMID: 25445049 DOI: 10.1016/j.ejphar.2014.10.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 02/05/2023]
Abstract
Loureirin A is a flavonoid extracted from Dragon׳s Blood that has been used to promote blood circulation and remove stasis in Chinese traditional medicine. However, the mechanisms of these effects are not fully understood. We explored the anti-platelet activity and underlying mechanism of loureirin A in vitro. Our results indicated that loureirin A negatively affected agonist-induced platelet aggregation such as collagen, collagen-related peptide (CRP), ADP and thrombin. Loureirin A inhibited collagen-induced platelet ATP secretion and thrombin-stimulated P-selectin expression in a dose-dependent manner. Platelet spreading on immobilized fibrinogen was significantly impaired in the presence of loureirin A. Immunoblotting analysis indicated that 100μM of loureirin A almost completely eliminated collagen-induced Akt phosphorylation at Ser473. Interestingly, a submaximal dose (50μM) of loureirin A had an additive inhibitory effect with the phosphoinositide 3-kinase (PI3K) inhibitor Ly294002 on collage-induced Akt phosphorylation in platelets. Taken together, loureirin A had an inhibitory effect on platelet activation, perhaps through an impairment of PI3K/Akt signaling.
Collapse
Affiliation(s)
- Hong-Zhen Hao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Ao-Di He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Dao-Chun Wang
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhao Yin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Ya-Jun Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Gang Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Ming-Lu Liang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Xing-Wen Da
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Guang-Qiang Yao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Wen Xie
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Ji-Zhou Xiang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Zhang-Yin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| |
Collapse
|
49
|
Su XQ, Song YL, Zhang J, Huo HX, Huang Z, Zheng J, Zhang Q, Zhao YF, Xiao W, Li J, Tu PF. Dihydrochalcones and homoisoflavanes from the red resin of Dracaena cochinchinensis (Chinese dragon's blood). Fitoterapia 2014; 99:64-71. [DOI: 10.1016/j.fitote.2014.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
50
|
Tian Y, Zhao Y, Zheng W, Zhang W, Jiang X. Antithrombotic functions of small molecule-capped gold nanoparticles. NANOSCALE 2014; 6:8543-8550. [PMID: 24965704 DOI: 10.1039/c4nr01937g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we report the antithrombotic functions of pyrimidinethiol-capped gold nanoparticles (Au_DAPT NPs). They can prolong coagulation parameters when injected intravenously in normal mice. Applied in two typical thrombosis models, mice tail thrombosis and pulmonary thromboembolism, gold NPs can inhibit both thrombosis and improve the survival rates of mice tremendously, without increasing the bleeding risk. The anticoagulant mechanisms include inhibiting the platelet aggregation as well as interfering with thrombin and fibrin generation.
Collapse
Affiliation(s)
- Yue Tian
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 Beiyitiao, ZhongGuanCun, Beijing, 100190, China.
| | | | | | | | | |
Collapse
|