1
|
Huang J, Wen Y, Yang T, Song H, Meyboom R, Yang X, Teng L, Duez P, Zhang L. Safety and efficacy evaluation of Simo decoction and Arecae semen in herbal medicine practice. Heliyon 2024; 10:e31373. [PMID: 38841513 PMCID: PMC11152707 DOI: 10.1016/j.heliyon.2024.e31373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Objective The traditional Chinese patent medicine (TCPM), Simo decoction (Simo decoction oral solution), with its primary ingredient Arecae semen (Binglang, Areca catechu L.), known for its potential carcinogenic effects, is the subject of this study. The research aims to analyze the effectiveness and potential risks of Simo decoction, particularly as a carcinogen, and to suggest a framework for evaluating the risks and benefits of other herbal medicines. Methods The study is based on post-marketing research of Simo decoction and Arecae semen. It utilized a wide range of sources, including ancient and modern literature, focusing on the efficacy and safety of Simo decoction. The research includes retrospective data on the sources, varieties, and toxicological studies of Arecae semen from databases such as Pubmed, Clinical Trials, Chinese Clinical Trial Registry, China National Knowledge Infrastructure, WHO-UMC Vigibase, and China National Center for ADR Monitoring. Results Common adverse drug reactions (ADRs) associated with Simo decoction include skin rash, nausea, vomiting, abdominal pain, and diarrhea. However, no studies exist reporting the severe ADRs, such as carcinogenic effects. Arecae semen is distributed across approximately 60 varieties in tropical Asia and Australia. According to the WHO-UMC Vigibase and the National Adverse Drug Reaction Monitoring System databases, there are currently no reports of toxicity related to Arecae semen in the International System for Classification of ADRs (ISCR) or clinical studies. Conclusion Risk-benefit analysis in TCPM presents more challenges compared to conventional drugs. The development of a practical pharmacovigilance system and risk-benefit analysis framework is crucial for marketing authorization holders, researchers, and regulatory bodies. This approach is vital for scientific supervision and ensuring the safety and efficacy of drug applications, thus protecting public health.
Collapse
Affiliation(s)
- Jukai Huang
- Department of Endocrinology, Beijing University of Chinese Medicine, Dongzhimen Hospital, PR China
| | - Yalu Wen
- Department of Respiratory Medicine, Beijing Hepingli Hospital, PR China
| | - Tianyi Yang
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30329, United States
| | - Haibo Song
- Center for Drug Reevaluation, National Medical Products Administration, Beijing, PR China
| | - Ronald Meyboom
- Department of Pharmacoepidemiology and Clinical Pharmacology, University of Utrecht, the Netherlands
| | - Xiaohui Yang
- Department of Endocrinology, Beijing University of Chinese Medicine, Dongzhimen Hospital, PR China
| | - Lida Teng
- Department of Health Economics and Outcomes Research, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Université de Mons (UMONS), Mons, Belgium
| | - Li Zhang
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, No. 6, District 1, Fangxingyuan, Fangzhuang, Fengtai District, Beijing, PR China
| |
Collapse
|
2
|
Campelo MDS, Câmara Neto JF, Magalhães HCR, Alves Filho EG, Zocolo GJ, Leal LKAM, Ribeiro MENP. GC/MS and 2D NMR-based approach to evaluate the chemical profile of hydroalcoholic extract from Agaricus blazei Murill and its anti-inflammatory effect on human neutrophils. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117676. [PMID: 38159823 DOI: 10.1016/j.jep.2023.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Agaricus blazei Murill (AbM) is one of the main mushrooms used for medicinal purposes. The use of AbM in the preparation of teas is widespread mainly in Asian countries, while in Brazil it is used as a functional food to combat inflammatory diseases and cancer. AIM OF THE STUDY The main focus of this study was the characterization of the chemical profile of the hydroalcoholic extract of Agaricus blazei Murill (AbE), as well as the evaluation of its cytotoxic and anti-inflammatory potential using human neutrophils. MATERIALS AND METHODS The extract was prepared by dynamic maceration using a mixture of ethanol and water (70/30, v v-1) as solvent. The chemical profile characterization was carried out by 2D NMR and GC-MS techniques. The cytotoxicity of AbE was evaluated through studies of hemolytic potential, cell viability and membrane integrity. The anti-inflammatory activity was analyzed by a PMA-induced neutrophil degranulation assay. RESULTS Chemical analysis of AbE revealed the presence of 28 metabolites in its composition, with mannitol as the major compound. AbE at 1-200 μg mL-1 and mannitol at 4-160 μg mL-1, showed low hemolytic and cytotoxic potential against human red blood cells and neutrophils. Furthermore, both were able to significantly reduce the release of myeloperoxidase. CONCLUSIONS These results indicate that AbE is a promising natural product to be incorporated into pharmaceutical dosage forms intended for the adjuvant treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Matheus da Silva Campelo
- Laboratório de Polímeros e Inovação de Materiais, Centro de Ciências, Departamento de Química Orgânica e Inorgânica, Universidade Federal Do Ceará, Campus Do Pici, Fortaleza, CEP: 60440-900, Brazil; Centro de Estudos Farmacêuticos e Cosméticos, Departamento de Farmácia, Universidade Federal Do Ceará, Campus Porangabuçu, Fortaleza, CEP: 60430-160, Brazil
| | - João Francisco Câmara Neto
- Laboratório de Polímeros e Inovação de Materiais, Centro de Ciências, Departamento de Química Orgânica e Inorgânica, Universidade Federal Do Ceará, Campus Do Pici, Fortaleza, CEP: 60440-900, Brazil
| | | | - Elenilson Godoy Alves Filho
- Departamento de Engenharia de Alimentos, Universidade Federal Do Ceará, Campus Do Pici, Fortaleza, CEP: 60440-900, Brazil
| | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2270, Fortaleza, CEP: 60511-110, Brazil
| | - Luzia Kalyne Almeida Moreira Leal
- Centro de Estudos Farmacêuticos e Cosméticos, Departamento de Farmácia, Universidade Federal Do Ceará, Campus Porangabuçu, Fortaleza, CEP: 60430-160, Brazil.
| | - Maria Elenir Nobre Pinho Ribeiro
- Laboratório de Polímeros e Inovação de Materiais, Centro de Ciências, Departamento de Química Orgânica e Inorgânica, Universidade Federal Do Ceará, Campus Do Pici, Fortaleza, CEP: 60440-900, Brazil.
| |
Collapse
|
3
|
Gou X, Ma C, Ji H, Yan L, Wang P, Wang Z, Lin Y, Chatterjee N, Yu H, Zhang X. Prediction of zebrafish embryonic developmental toxicity by integrating omics with adverse outcome pathway. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130958. [PMID: 36860045 DOI: 10.1016/j.jhazmat.2023.130958] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/09/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
New approach methodologies (NAMs), especially omics-based high-throughput bioassays have been developed rapidly, providing rich mechanistic information such as molecular initiation events (MIEs) and (sub)cellular key events (KEs) in adverse outcome pathways (AOPs). However, how to apply the knowledge of MIEs/KEs to predict adverse outcomes (AOs) induced by chemicals represents a new challenge for computational toxicology. Here, an integrated method named ScoreAOP was developed and evaluated to predict chemicals' developmental toxicity for zebrafish embryos by integrating four related AOPs and dose-dependent reduced zebrafish transcriptome (RZT). The rules of ScoreAOP included 1) sensitivity of responsive KEs demonstrated by point of departure of KEs (PODKE), 2) evidence reliability and 3) distance between KEs and AOs. Moreover, eleven chemicals with different modes of action (MoAs) were tested to evaluate ScoreAOP. Results showed that eight of the eleven chemicals caused developmental toxicity at tested concentration in apical tests. All the tested chemicals' developmental defects were predicted using ScoreAOP, whereas eight out of the eleven chemicals predicted by ScoreMIE which was developed to score MIEs disturbed by chemicals based on in vitro bioassays data. Finally, in terms of mechanism explanation, ScoreAOP clustered chemicals with different MoAs while ScoreMIE failed, and ScoreAOP revealed the activation of aryl hydrocarbon receptor (AhR) plays a significant role in dysfunction of cardiovascular system, resulting in zebrafish developmental defects and mortality. In conclusion, ScoreAOP represents a promising approach to apply mechanism information obtained from omics to predict AOs induced by chemicals.
Collapse
Affiliation(s)
- Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Cong Ma
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Huimin Ji
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Pingping Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zhihao Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yishan Lin
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Nivedita Chatterjee
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China.
| |
Collapse
|
4
|
Saher U, Omer MO, Javeed A, Anjum AA, Rehman K, Awan T, Saleem G, Mobeen A. Functional Studies of Cytogenotoxic Potential of Laticifer Proteins of Calotropis procera against Viral Disease. ACS OMEGA 2023; 8:7119-7127. [PMID: 36844567 PMCID: PMC9948205 DOI: 10.1021/acsomega.2c08102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/03/2023] [Indexed: 05/28/2023]
Abstract
Plant products are widely used for health and disease management. However, besides their therapeutic effects, some plants also have potential toxic activity. Calotropis procera is a well-known laticifer plant having pharmacologically active proteins playing a therapeutically significant role in curing diseases like inflammatory disorders, respiratory diseases, infectious diseases, and cancers. The present study was aimed to investigate the antiviral activity and toxicity profile of the soluble laticifer proteins (SLPs) obtained from C. procera. Different doses of rubber free latex (RFL) and soluble laticifer protein (ranging from 0.019 to 10 mg/mL) were tested. RFL and SLPs were found to be active in a dose-dependent manner against NDV (Newcastle disease virus) in chicken embryos. Embryotoxicity, cytotoxicity, genotoxicity, and mutagenicity of RFL and SLP were examined on chicken embryos, BHK-21 cell lines, human lymphocytes, and Salmonella typhimurium, respectively. It was revealed that RFL and SLP possess embryotoxic, cytotoxic, genotoxic, and mutagenic activity at higher doses (i.e., 1.25-10 mg/mL), while low doses were found to be safe. It was also observed that SLP showed a rather safer profile as compared to RFL. This might be due to the filtration of some small molecular weight compounds at the time of purification of SLPs through a dialyzing membrane. We suggest that SLPs could be used therapeutically against viral disorders but the dose should be critically monitored.
Collapse
Affiliation(s)
- Uzma Saher
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Department
of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Muhammad Ovais Omer
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Aqeel Javeed
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Aftab Ahmad Anjum
- Department
of Microbiology, University of Veterinary
and Animal Sciences, Lahore 54000, Pakistan
| | - Kanwal Rehman
- Department
of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Tanzeela Awan
- Department
of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Gulbeena Saleem
- Department
of Pathology, University of Veterinary and
Animal Sciences, Lahore 54000, Pakistan
| | - Ameena Mobeen
- Environmental
Toxicology Laboratory, National Institute
for Biotechnology and Genetic Engineering (NIBGE) Faisalabad 37020, Pakistan
| |
Collapse
|
5
|
Current Trends in Toxicity Assessment of Herbal Medicines: A Narrative Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Even in modern times, the popularity level of medicinal plants and herbal medicines in therapy is still high. The World Health Organization estimates that 80% of the population in developing countries uses these types of remedies. Even though herbal medicine products are usually perceived as low risk, their potential health risks should be carefully assessed. Several factors can cause the toxicity of herbal medicine products: plant components or metabolites with a toxic potential, adulteration, environmental pollutants (heavy metals, pesticides), or contamination of microorganisms (toxigenic fungi). Their correct evaluation is essential for the patient’s safety. The toxicity assessment of herbal medicine combines in vitro and in vivo methods, but in the past decades, several new techniques emerged besides conventional methods. The use of omics has become a valuable research tool for prediction and toxicity evaluation, while DNA sequencing can be used successfully to detect contaminants and adulteration. The use of invertebrate models (Danio renio or Galleria mellonella) became popular due to the ethical issues associated with vertebrate models. The aim of the present article is to provide an overview of the current trends and methods used to investigate the toxic potential of herbal medicinal products and the challenges in this research field.
Collapse
|
6
|
Ajjoun M, Kharchoufa L, Alami Merrouni I, Elachouri M. Moroccan medicinal plants traditionally used for the treatment of skin diseases: From ethnobotany to clinical trials. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115532. [PMID: 35843409 DOI: 10.1016/j.jep.2022.115532] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Skin diseases are among the most common human health affections. A healthy skin promotes a healthy body that can be achieved through modern, allopathic and natural medicines. Therefore, medicinal plants can be a reliable therapy in treating skin diseases in humans through a diverse range of bioactive molecules they contain. AIM OF THE STUDY This review aims to provide for the first-time scientific evidence related to the dermatological properties of Morocco's medicinal plants and it aims to provide a baseline for the discovery of new drugs having activities against skin issues. METHODS This review involved an investigation with different search engines for Moroccan ethnobotanical surveys published between 1991 and 2021. The plants used to treat skin diseases have been determined. Information regarding pharmacological effects, phytochemical, and clinical trials related to the plants listed in this review was collected from different scientific databases like PubMed, Science Direct, Google Scholar, Web of Science and Scopus. The data were analyzed and summarized in the review. RESULTS A total of 401 plants belonging to 86 families mainly represented by Asteraceae, Lamiaceae, Fabaceae, and Apiaceae which have been documented to be in common use by Moroccans for managing skin diseases. Among those plants recorded, the most commonly used are Allium cepa L, Chamaeleon gummifer (L.) Cass and Salvia rosmarinus Schleid. Mill. Leaves were the most commonly used plant part, while powder and decoction were the most common method of traditional drug preparation. 107 of the 401 plants (27%) have undergone pharmacological validation. A total of 44 compounds isolated from 27 plants were investigated to treat different types of skin diseases, and 25 plants have been clinically studied for their activities against skin diseases. CONCLUSION The beneficial effects of using Moroccan medicinal plants to treat skin diseases, according to traditional practices, have been proven in numerous scientific studies. Therefore, other studies should focus on isolating and identifying specific bioactive compounds from plant extracts, revealing more valuable therapeutic properties. Furthermore, additional reliable clinical trials are needed to confirm their beneficial effect on patients with skin diseases.
Collapse
Affiliation(s)
- Mohammed Ajjoun
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Loubna Kharchoufa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Ilyass Alami Merrouni
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Mostafa Elachouri
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| |
Collapse
|
7
|
Ahmad MH, Zezi AU, Anafi SB, Alshargi OY, Mohammed M, Mustapha S, Bala AA, Muhammad S, Julde SM, Wada AS, Jatau AI. Sub-acute toxicity study on hydromethanolic leaves extract of Combretum hypopilinum (Combretaceae) Diels in Wistar rats. Toxicol Res 2022; 38:487-502. [PMID: 36277361 PMCID: PMC9532474 DOI: 10.1007/s43188-022-00133-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 01/22/2023] Open
Abstract
The plant Combretum hypopilinum Diels (Combretaceae) has been utilized in Nigeria and other African nations to treat many diseases including liver, inflammatory, gastrointestinal, respiratory, infectious diseases, epilepsy and many more. Pharmacological investigations have shown that the plant possesses anti-infective, antidiarrhoeal, hepatoprotective, anti-inflammatory, anticancer, sedative, antioxidant, and antiepileptic potentials. However, information on its toxicity profile is unavailable despite the plant's therapeutic potential. As such, this work aimed to determine the acute and sub-acute oral toxic effects of the hydromethanolic leaves extract of C. hypopilinum. The preliminary phytochemical evaluation was carried out based on standard procedures. The acute toxicity evaluation was conducted by oral administration of the extract at the dose of 5000 mg/kg based on the guideline of the Organization of Economic Co-operation and Development (OECD) 423. To investigate the sub-acute toxicity effects, the extract was administered orally to the animals daily for 28-consecutive days at the doses of 250, 500, and 1000 mg/kg. Mortality, body weight and relative organ weight were observed. The hepatic, renal, haematological, and lipid profile parameters were investigated. The liver, kidney, heart, lung, small intestine, and stomach were checked for any histopathological alterations. The results of the phytochemical investigation showed cardiac glycosides, tannins, steroids, flavonoids, alkaloids, saponins, and triterpenes. Based on the acute toxicity investigation outcome, no death and signs of toxic effects were observed. The result showed that the oral median lethal dose (LD50) of the extract was more than the 5000 mg/kg. The extract remarkably reduced the weekly body weight of the animals at 500 mg/kg in the first and second weeks. It also significantly decreased the relative kidney weight, alkaline phosphatase, glucose, potassium, and low-density lipoprotein. There was a remarkable elevation in the percentage of eosinophils, basophils, monocytes, and granulocyte. There were histopathological abnormalities on the kidney, lung, stomach, and small intestine. The extract is relatively safe on acute exposure but moderately toxic at higher doses on sub-acute administration, particularly to the kidney.
Collapse
Affiliation(s)
- Mubarak Hussaini Ahmad
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Abdulkadir Umar Zezi
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Sherifat Bola Anafi
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | | | - Mustapha Mohammed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Pulau Pinang Malaysia
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Sagir Mustapha
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
- School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Auwal Adam Bala
- Department of Pharmacology, College of Medicine and Health Sciences, Federal University Dutse, Jigawa State, Nigeria
- Department of Pharmacology and Therapeutics, Bayero University Kano, Kano State, Nigeria
| | - Surajuddeen Muhammad
- Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | | | - Abubakar Sadiq Wada
- Department of Pharmacology and Therapeutics, Bayero University Kano, Kano State, Nigeria
| | | |
Collapse
|
8
|
Network Pharmacology of Adaptogens in the Assessment of Their Pleiotropic Therapeutic Activity. Pharmaceuticals (Basel) 2022; 15:ph15091051. [PMID: 36145272 PMCID: PMC9504187 DOI: 10.3390/ph15091051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
The reductionist concept, based on the ligand–receptor interaction, is not a suitable model for adaptogens, and herbal preparations affect multiple physiological functions, revealing polyvalent pharmacological activities, and are traditionally used in many conditions. This review, for the first time, provides a rationale for the pleiotropic therapeutic efficacy of adaptogens based on evidence from recent gene expression studies in target cells and where the network pharmacology and systems biology approaches were applied. The specific molecular targets and adaptive stress response signaling mechanisms involved in nonspecific modes of action of adaptogens are identified.
Collapse
|
9
|
Mirzabe AH, Hajiahmad A, Fadavi A, Rafiee S. Temporary immersion systems (TISs): A comprehensive review. J Biotechnol 2022; 357:56-83. [PMID: 35973641 DOI: 10.1016/j.jbiotec.2022.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
The temporary immersion systems (TISs) have been widely used in plant biotechnology. TISs have different advantages from the point of micropropagation and production of secondary metabolites over other continuous liquid-phase bioreactors. The current work presents the structure, operation mode, configuration type, and micropropagation or secondary metabolite production in TISs. This review deals with the advantages and disadvantages of TISs and the factors affecting their performance. Future research could focus on new designs based on CFD simulation, facilitating sterilization, and combining TISs with other bioreactors (e.g., mist bioreactors) to make a hybrid bioreactor.
Collapse
Affiliation(s)
- Amir Hossein Mirzabe
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran.
| | - Ali Hajiahmad
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran.
| | - Ali Fadavi
- Department of Food Technology, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Shahin Rafiee
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran.
| |
Collapse
|
10
|
Câmara Neto JF, Campelo MDS, Cerqueira GS, de Miranda JAL, Guedes JAC, de Almeida RR, Soares SDA, Gramosa NV, Zocolo GJ, Vieira ÍGP, Ricardo NMPS, Ribeiro MENP. Gastroprotective effect of hydroalcoholic extract from Agaricus blazei Murill against ethanol-induced gastric ulcer in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115191. [PMID: 35292374 DOI: 10.1016/j.jep.2022.115191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of mushrooms in medicine is quite old and the first report about the use of genus Agaricus in treatment of ulcers occurred in Byzantine period. This mushroom is widely consumed as food, tea, food supplements, as well as nutraceutical and cosmeceutical applications, being cultivated and appreciated in several countries such as Brazil, Korea, Japan and China. AIM OF THE STUDY This study aimed to characterize the chemical profile and the potential gastroprotective effect of hydroalcoholic extract from Agaricus blazei Murill (HEAb). MATERIALS AND METHODS The extract was chemically characterized by elemental analysis, UPLC-QTOF-MSE, Nuclear Magnetic Resonance (NMR) and high-performance liquid chromatography (HPLC) techniques to elucidate the metabolites present in the extract. The quantification of phenolic compounds and the in vitro antioxidant activities were performed and the gastroprotective effect of this extract was evaluated against ethanol-induced gastric ulcer model. HEAb was administered by gavage at 5, 25 and 50 mg kg-1 and N-acetylcysteine at 300 mg kg-1 (positive control). Furthermore, the pathways of nitric oxide (NO), Cyclic Guanylate Monophosphate (cGMP), prostaglandins (PGs) and the involvement of ATP-sensitive K+ Channels were modulated. RESULTS Mannitol, malic acid, pyroglutamic acid, L-agaritine and L-valine were putatively identified by UPLC-QTOF-MSE in HEAb. In addition, it was possible to identify mannitol by the intense signals in the NMR spectra, being still quantified as the main compound in the extract by HPLC. The contents of total phenols and flavonoids corroborated with the good antioxidant activity of HEAb. This study observed that HEAb at 25 and 50 mg kg-1 had gastroprotection effect demonstrated by the reduction of histopathological parameters and the reduction of mastocytosis in the stomach of mice. CONCLUSIONS In this study was possible to conclude that HEAb has gastroprotective effect related to the involvement of NO and PG pathways in the ethanol-induced gastric ulcer model in mice.
Collapse
Affiliation(s)
- João Francisco Câmara Neto
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil
| | - Matheus da Silva Campelo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil
| | - Gilberto Santos Cerqueira
- Núcleo de Ensino e Pesquisa em Microscopia e Processamento de Imagens, Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil.
| | - João Antônio Leal de Miranda
- Núcleo de Ensino e Pesquisa em Microscopia e Processamento de Imagens, Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil
| | | | - Raimundo Rafael de Almeida
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil
| | - Sandra de Aguiar Soares
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil
| | - Nilce Viana Gramosa
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil
| | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical. Rua Dra. Sara Mesquita, 2270 - Pici, CEP 60020-181, Fortaleza, CE, Brasil
| | - Ícaro Gusmão Pinto Vieira
- Parque de Desenvolvimento Tecnológico, Universidade Federal do Ceará, Avenida do Contorno, CEP 60455-970, Fortaleza, CE, Brasil
| | - Nágila Maria Pontes Silva Ricardo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil.
| | - Maria Elenir Nobre Pinho Ribeiro
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil.
| |
Collapse
|
11
|
Amarasiri SS, Attanayake AP, Mudduwa LKB, Jayatilaka KAPW. Nephroprotective mechanisms of Ambrette (Abelmoschus moschatus Medik.) leaf extracts in adriamycin mediated acute kidney injury model of Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115221. [PMID: 35339624 DOI: 10.1016/j.jep.2022.115221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/07/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ambrette (Abelmoschus moschatus Medik., Family: Malvaceae) is a common Ayurvedic herbal medicine used in the treatment of kidney-related diseases, in the forms of tea, medicated oil, medicated wine, etc., however, its nephroprotective mechanisms remain unexploited. AIM OF THE STUDY To investigate the mechanisms by which the hexane (A-HE), ethyl acetate (A-EE), butanol (A-BE), and aqueous (A-WE) leaf extracts of Ambrette protect against the adriamycin-mediated acute kidney injury in Wistar rats. MATERIALS AND METHODS A-HE, A-EE, A-BE, A-WE, and fosinopril sodium were administered at therapeutically effective doses (55, 75, 60, 140, 0.09 mg/kg) to adriamycin-induced (5 mg/kg, ip) Wistar rats for 28 consecutive days. RESULTS Oral administration of the selected extracts of A. moschatus resulted in amelioration of kidney injury as observed by the significant changes of biomarkers of kidney function in serum and in urine, biochemical parameters of oxidative stress, and inflammation in kidney homogenates (p < 0.05). Furthermore, the administration of plant extracts caused a significant reduction in total kidney injury scores in H and E stained kidney sections (p < 0.05). The immunohistochemical expression of the inflammatory marker, COX-2, and the pro-apoptotic marker, Bax, were attenuated and the expression of the anti-apoptotic marker, BCL-2, was increased. A-HE exerted superior nephroprotective effects over the other three extracts and the drug reference standard. CONCLUSIONS The findings revealed that Ambrette exerts promising protective effects against adriamycin-mediated acute kidney injury through antioxidant, anti-inflammatory, and anti-apoptosis pathways. A-HE might serve as a potential candidate for the development of therapeutic drug leads that will be beneficial in the treatment of acute kidney injury.
Collapse
Affiliation(s)
- Sachinthi S Amarasiri
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka.
| | - Anoja P Attanayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka.
| | - Lakmini K B Mudduwa
- Department of Pathology, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka.
| | | |
Collapse
|
12
|
Noureddine B, Mostafa E, Mandal SC. Ethnobotanical, pharmacological, phytochemical, and clinical investigations on Moroccan medicinal plants traditionally used for the management of renal dysfunctions. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115178. [PMID: 35278608 DOI: 10.1016/j.jep.2022.115178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Renal disease is a significant public health concern that affects people all over the world. The main limitations of conventional therapy are the adverse reaction on human health and the expensive cost of drugs. Indeed, it is necessary to develop new therapeutic strategies that are less expensive and have fewer side effects. As a consequence of their natural compounds, medicinal plants can be used as an alternative therapy to cure various ailments including kidney diseases. OBJECTIVE of the study: This review paper has two principal goals: (1) to inventory and describe the plants and their ancestral use by Moroccan society to cure renal problems, (2) to link traditional use with scientific confirmations (preclinical and clinical). METHODS To analyze pharmacological effects, phytochemical, and clinical trials of plants, selected for renal therapy, a bibliographical search was undertaken by examining ethnobotanical investigations conducted in Morocco between 1991 and 2019 and consulting peer-reviewed papers from all over the world. RESULTS Approximately 290 plant species, spanning 81 families and 218 genera have been reported as being utilized by Moroccans to manage renal illness. The most frequently mentioned species in Morocco were Herniaria hirsuta subsp. cinerea (DC.), Petroselinum crispum (Mill.) Fuss and Rosmarinus officinalis L. The leaves were the most frequently used plant parts, followed by the whole plant. Decoction and infusion were the most popular methods of preparation. A record of 71 plant species was studied in vitro and/or in vivo for their therapeutic efficacy against kidney disorders, including 10 plants attempting to make it to the clinical stage. Twenty compounds obtained from 15 plants have been studied for the treatment of kidney diseases. CONCLUSION Medicinal herbs could be a credible alternative therapy for renal illness. However, additional controlled trials are required to confirm their efficiency in patients with kidney failure. Overall, this work could be used as a database for future exploration.
Collapse
Affiliation(s)
- Bencheikh Noureddine
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Elachouri Mostafa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Subhash C Mandal
- Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
13
|
M Pauzi NA, Cheema MS, Ismail A, Ghazali AR, Abdullah R. Safety assessment of natural products in Malaysia: current practices, challenges, and new strategies. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:169-179. [PMID: 34582637 DOI: 10.1515/reveh-2021-0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The belief that natural products are inherently safe is a primary reason for consumers to choose traditional medicines and herbal supplements for health maintenance and disease prevention. Unfortunately, some natural products on the market have been found to contain toxic compounds, such as heavy metals and microbes, as well as banned ingredients such as aristolochic acids. It shows that the existing regulatory system is inadequate and highlights the importance of thorough safety evaluations. In Malaysia, the National Pharmaceutical Regulatory Agency is responsible for the regulatory control of medicinal products and cosmetics, including natural products. For registration purpose, the safety of natural products is primarily determined through the review of documents, including monographs, research articles and scientific reports. One of the main factors hampering safety evaluations of natural products is the lack of toxicological data from animal studies. However, international regulatory agencies such as the European Food Safety Authority and the United States Food and Drug Administration are beginning to accept data obtained using alternative strategies such as non-animal predictive toxicological tools. Our paper discusses the use of state-of-the-art techniques, including chemometrics, in silico modelling and omics technologies and their applications to the safety assessments of natural products.
Collapse
Affiliation(s)
- Nur Azra M Pauzi
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Ministry of Health, Kompleks E, Pusat Pentadbiran Kerajaan Persekutuan, Putrajaya, Malaysia
| | - Manraj S Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ahmad Rohi Ghazali
- Biomedical Sciences Programmes, Faculty of Health Sciences, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Rozaini Abdullah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
14
|
Batista D, Romáryo Duarte da Luz J, Evellyn Silva Do Nascimento T, Felipe de Senes-Lopes T, Araújo Galdino O, Victor E Silva S, Pinheiro Ferreira M, Arrison Dos Santos Azevedo M, Brandão-Neto J, Araujo-Silva G, López JA, das Graças Almeida M. Licania rigida leaf extract: Protective effect on oxidative stress, associated with cytotoxic, mutagenic and preclinical aspects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:276-290. [PMID: 34789080 DOI: 10.1080/15287394.2021.2002744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brazilian plant biodiversity is a rich alternative source of bioactive compounds since plant-derived extracts and/or their secondary metabolites exhibit potential properties to treat several diseases. In this context, Licania rigida Benth (Chrysobalanaceae Family), a large evergreen tree distributed in Brazilian semi-arid regions, deserves attention for its widespread use in popular medicine, although its biological properties are still poorly studied. The aim of this study was to examine (1) acute and sub-chronic oral toxicity at 2000 mg/kg dose; (2) in vitro cytotoxicity at 0.1; 1; 10; 100 or 1000 µg/ml; (3) in vivo mutagenicity at 5, 10 or 20 mg/ml, and (4) potential antioxidant protective effect of L. rigida aqueous leaf extract of (AELr). No marked apparent toxic and genotoxic effects were observed using in vitro and in vivo assays after in vitro treatment of Chinese hamster ovary cell line (CHO-K1) with AELr or in vivo exposure of Wistar rats and Drosophila melanogaster to different extract concentrations. Concerning the antioxidant effect, the extract exhibited a protective effect by decreasing lipid peroxidation as determined by malondialdehyde levels. No significant changes were observed for glutathione (GSH) levels and activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Data demonstrate the beneficial potential of AELr to be employed for therapeutic purposes. However, further studies are required to validate the pharmacological application of this plant extract to develop as a phytotherapeutic formulation.
Collapse
Affiliation(s)
- Débora Batista
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Jefferson Romáryo Duarte da Luz
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Thayse Evellyn Silva Do Nascimento
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Tiago Felipe de Senes-Lopes
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Ony Araújo Galdino
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Saulo Victor E Silva
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Macelia Pinheiro Ferreira
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Marcelo Arrison Dos Santos Azevedo
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - José Brandão-Neto
- Department of Clinical Medicine, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, Faculty of Degree in Chemistry, Amapá State University (Ueap), Macapá/AP, Brazil
| | - Jorge A López
- Graduate Program in Industrial Biotechnology, Tiradentes University/Research and Technology Institute, Aracaj u/SE, Brazil
| | - Maria das Graças Almeida
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| |
Collapse
|
15
|
Abd Rashid NA, Lau BF, Kue CS. Differential toxicity and teratogenic effects of the hot water and cold water extracts of Lignosusrhinocerus (Cooke) Ryvarden sclerotium on zebrafish (Danio rerio) embryos. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114787. [PMID: 34756971 DOI: 10.1016/j.jep.2021.114787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The sclerotium of Lignosusrhinocerus (Cooke) Ryvarden is highly valued for its purported medicinal properties. The decoction and macerated materials prepared from the sclerotium are used for treating cancer and other ailments based on extensive traditional knowledge. Scientific evidence from in vitro cytototoxicity, anti-inflammatory and immunomodulatory analyses showed the effectiveness of sclerotial water extracts but toxicity assessment of such preparations has not been reported. AIM OF THE STUDY This study aimed to compare the differential toxicity and teratogenicity (if any) of the hot water (HW) and cold water (CW) extracts of both wild and cultivated sclerotium on zebrafish (Danio rerio) embryos. MATERIALS AND METHODS Zebrafish embryos were treated with varying concentrations of the sclerotial HW and CW extracts (0.3-500 μg/mL) for 72 h until hatching. The hatching, mortality and heartbeat rate of the embryos as well as the potential teratogenic effect of the extracts were assessed in embryos post-treatment with the extracts. RESULTS While the sclerotial HW extracts were nontoxic (LC50 > 500 μg/mL), the sclerotial CW extracts delayed the hatching of the embryos up to 48 h and showed slight toxicity with LC50 values of 398.4 μg/mL and 428.3 μg/mL for the cultivated and wild sclerotium, respectively. The sclerotial CW extracts also induced minor tachycardia in zebrafish larvae. Phenotypic assessment revealed that, while yolk sac edema was observed at high concentrations (300 and 500 μg/mL) of all extracts, curved trunk and bent tail were only observed in the embryos treated with CW extracts of wild sclerotium (300 and 500 μg/mL) but not for CW extracts of cultivated sclerotium at similar concentrations. CONCLUSION The sclerotial water extracts of L.rhinocerus prepared using different methods have varying degree of toxicity and teratogenicity in zebrafish embryos with the sclerotial CW extracts showed higher toxicity than the HW extracts.
Collapse
Affiliation(s)
- Nur Ayuni Abd Rashid
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
| | - Beng Fye Lau
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
16
|
Koonrungsesomboon N, Morakote N, Karbwang J. Ethical considerations and challenges in herbal drug trials with the focus on scientific validity and risk assessment. Phytother Res 2021; 35:2396-2402. [PMID: 33222352 DOI: 10.1002/ptr.6962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/17/2022]
Abstract
Scientific validity and risk assessment are two main ethical issues which raise specific challenges and are unique to clinical trials investigating crude extracts/fractions from herbal materials. There are considerable challenges for both clinical investigators and ethics committee members in dealing with such issues, many of them remain unresolved, resulting in a large variation in ethical requirements, justification, and decisions. Despite a remarkable surge in herbal medicine research globally, a number of clinical investigators or even ethics committee members have limited confidence in dealing with related ethical issues. In this article, we extensively review and discuss the two main ethical issues (i.e., scientific validity and risk assessment) and highlight key considerations that are important for ethical review and justification for the conduct of herbal drug trials.
Collapse
Affiliation(s)
- Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research Center, Chiang Mai University, Chiang Mai, Thailand
| | - Nimit Morakote
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Juntra Karbwang
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
17
|
Oesch F, Oesch-Bartlomowicz B, Efferth T. Toxicity as prime selection criterion among SARS-active herbal medications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153476. [PMID: 33593628 PMCID: PMC7840405 DOI: 10.1016/j.phymed.2021.153476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 05/06/2023]
Abstract
We present here a new selection criterion for prioritizing research on efficacious drugs for the fight against COVID-19: the relative toxicity versus safety of herbal medications, which were effective against SARS in the 2002/2003 epidemic. We rank these medicines according to their toxicity versus safety as basis for preferential rapid research on their potential in the treatment of COVID-19. The data demonstrate that from toxicological information nothing speaks against immediate investigation on, followed by rapid implementation of Lonicera japonica, Morus alba, Forsythia suspensa, and Codonopsis spec. for treatment of COVID-19 patients. Glycyrrhiza spec. and Panax ginseng are ranked in second priority and ephedrine-free Herba Ephedrae extract in third priority (followed by several drugs in lower preferences). Rapid research on their efficacy in the therapy - as well as safety under the specific circumstances of COVID-19 - followed by equally rapid implementation will provide substantial advantages to Public Health including immediate availability, enlargement of medicinal possibilities, in cases where other means are not successful (non-responders), not tolerated (sensitive individuals) or just not available (as is presently the case) and thus minimize sufferings and save lives. Moreover, their moderate costs and convenient oral application are especially advantageous for underprivileged populations in developing countries.
Collapse
Affiliation(s)
- Franz Oesch
- Institute of Toxicology, Johannes Gutenberg University, 55131 Mainz, Germany.
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| |
Collapse
|
18
|
Yoon EJ, Lee MY, Choi BI, Lim KJ, Hong SY, Park D. Pharmaceutical Advantages of GenoTX-407, A Combination of Extracts from Scutellaria baicalensis Root and Magnolia officinalis Bark. Antioxidants (Basel) 2020; 9:antiox9111111. [PMID: 33187253 PMCID: PMC7697866 DOI: 10.3390/antiox9111111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Extracts of Scutellaria baicalensis root (SBR) and Magnolia officinalis barks (MOB) possess significant antioxidant, anti-inflammatory, and antimicrobial properties; however, these also exert adverse effects such as cytotoxicity. To overcome the adverse effects, we formulated a combination of the extracts, named GenoTX-407, with SBR and MOB extracts mixed in 5:1 ratio. The antioxidant, antimicrobial, and anti-inflammatory activities of SBR and MOB extracts and GenoTX-407 were evaluated. Methods: To optimize the extraction conditions of SBR and MOB, different ethanol concentrations and extraction times and treatments of the extracts with different solvents for varying time periods were tested. Anti-inflammatory activity was assessed via NO scavenging assay and analysis of anti-inflammatory activity-related gene expression in RAW 264.7 cells. Agar disk diffusion and microdilution assays were used to determine the antimicrobial activity. Antioxidant activity was evaluated through DPPH assay and analyses of peroxidation and antioxidant-related protein expression in HeLa cells. Results: Extraction with 0% ethanol for 2 h and 1.5% phosphoric acid for 0.5 h yielded maximum SBR extracts. For MOB, 50% ethanol extraction for 2 h followed by further extraction in hexane for 0.5 h yielded the highest extracts. SBR (46.1 ± 0.9 %) and MOB (48.9 ± 1.0 %) extracts effectively inhibited NO production, and dose-dependently reduced the expression of TNF-α, iNOS, NF-κB, COX2, and IL-6. MOB and GenoTX-407 inhibited the growth of Escherichia coli, Staphylococcus aureus, Candida albicans, and Propionibacterium acnes, as evidenced in disk diffusion and microdilution assays. SBR (EC50, 107.7 µg/mL and 38.3 µg/mL), MOB (62.41 µg/mL and 72.45 µg/mL), and GenoTX-407 (7.7 µg/mL and 26.4 µg/mL) exhibited excellent antioxidant potency and could scavenge free radicals of DPPH and lipid peroxidation; additionally, SOD, CAT, HO-1, and Nrf2 expression was increased in HeLa cells. SBR showed more potent antioxidant activity than MOB. Contrastingly, MOB exhibited more potent anti-inflammatory and antimicrobial activities than SBR. Interestingly, GenoTX-407 was the most efficient in all the assays, compared with SBR and MOB. Conclusion: This study demonstrated that GenoTX-407, the combination of SBR and MOB, is a potential drug candidate exerting antioxidant and anti-inflammatory effects via the Nrf2/HO-1 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Eun-Jung Yoon
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea;
| | - Mi Young Lee
- Genogen Co., Ltd., Cheongju 28161, Korea; (M.Y.L.); (B.I.C.); (K.J.L.); (S.Y.H.)
| | - Byoung Il Choi
- Genogen Co., Ltd., Cheongju 28161, Korea; (M.Y.L.); (B.I.C.); (K.J.L.); (S.Y.H.)
| | - Kyong Jin Lim
- Genogen Co., Ltd., Cheongju 28161, Korea; (M.Y.L.); (B.I.C.); (K.J.L.); (S.Y.H.)
| | - Seung Young Hong
- Genogen Co., Ltd., Cheongju 28161, Korea; (M.Y.L.); (B.I.C.); (K.J.L.); (S.Y.H.)
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea;
- Correspondence: ; Tel.: +82-43-230-3652; Fax: +82-43-232-7176
| |
Collapse
|
19
|
Assessment of Genotoxic potential of Annonacin and Annona muricata L. extracts on human breast cancer (MCF-7) cells. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00517-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Amarasiri SS, Attanayake AP, Arawwawala LDAM, Jayatilaka KAPW, Mudduwa LKB. Protective effects of three selected standardized medicinal plant extracts used in Sri Lankan traditional medicine in adriamycin induced nephrotoxic Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112933. [PMID: 32428654 DOI: 10.1016/j.jep.2020.112933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Abelmoschus moschatus Medik. (family: Malvaceae), Asparagus falcatus (family: Asparagaceae) and Barleria prionitis Linn. (family: Acanthaceae) have been used in the treatment of kidney diseases in Sri Lankan traditional medicine. Besides the traditional use, scientific scrutinization of safe therapeutic use of these medicinal plants in the management of kidney diseases has not been reported to date. AIM OF THE STUDY The three selected doses of the aqueous extracts of the selected medicinal plants were studied for their protective effects against adriamycin (ADR) induced nephrotoxicity in Wistar rats. MATERIALS AND METHODS Chemically standardized plant materials were used in the study. The nephroprotective activity of the lyophilized powder of the aqueous refluxed (4hr) leaf extracts of A. moschatus, A. falcatus and the whole plant extract of B. prionitis was investigated in adriamycin (20 mg/kg, ip) induced nephrotoxicity in Wistar rats (n = 6/group). The treatment regimens were initiated 24 h after the induction of nephrotoxicity and continued daily as a single dose for three consecutive days at three selected doses (200, 400 and 600 mg/kg). Fosinopril sodium (0.09 mg/kg) was used as the standard drug. Nephroprotective activity was assessed by estimating the selected biochemical parameters and by the assessment of histopathology on H and E stained sections of the kidney. RESULTS The plant extracts at the three selected doses significantly attenuated the elevations in serum creatinine, blood urea nitrogen and the loss of urine total protein in a dose related manner in ADR induced nephrotoxic rats (p < 0.001). The serum concentration of albumin and total protein increased significantly (p < 0.001). Histopathological findings corroborated the biochemical evidence of nephroprotective activity. The aqueous extracts of the three selected medicinal plants exerted a relatively high antioxidant activity in vitro. CONCLUSIONS Evaluation of the protective effects based on biochemical parameters and histopathology assessment revealed that the aqueous leaf extracts of A. moschatus, A. falcatus and the whole plant extract of B. prionitis possess significant nephroprotective activity against ADR induced acute nephrotoxicity. The secondary metabolites present in the plant extracts may attribute to the total antioxidant activities of the selected medicinal plant extracts thereby exerting protective effects against nephrotoxicity in Wistar rats.
Collapse
Affiliation(s)
- Sachinthi S Amarasiri
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka.
| | - Anoja P Attanayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka.
| | | | | | - Lakmini K B Mudduwa
- Department of Pathology, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka.
| |
Collapse
|
21
|
Nembo EN, Hescheler J, Nguemo F. Stem cells in natural product and medicinal plant drug discovery-An overview of new screening approaches. Biomed Pharmacother 2020; 131:110730. [PMID: 32920519 DOI: 10.1016/j.biopha.2020.110730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/14/2023] Open
Abstract
Natural products remain a rich source of new drugs, and the search for bioactive molecules from nature continues to play an important role in the development of new medicines. Also, there is increasing use of herbal medicines for the treatment of a plethora of diseases, and demands for more scientific evidence for their efficacy and safety remains a huge challenge. The propensity of stem cells to differentiate into almost every cell type not only holds promise for the delivery of cell-based therapies for currently incurable diseases or a useful tool in studying cell physiology and pathophysiology. Increasingly, stem cells are becoming an important tool in preclinical drug screening and toxicity testing. In this review, we examine the scientific advances made towards the use of pluripotent stem cells as a model for the screening of plant-based medicines. The combination of well-established in vitro electrophysiological and a plethora of toxicogenomic technologies, together with the optimisation of culture methods of herbal plants and pluripotent stem cells can be explored to establish the basis for efficacy, and tissue/organ-based toxicities of many currently used medicinal plants whose efficacies and toxicities remain unknown.
Collapse
Affiliation(s)
- Erastus Nembu Nembo
- Institute of Neurophysiology, University of Cologne, 50931, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, 50931, Cologne, Germany
| | - Filomain Nguemo
- Institute of Neurophysiology, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
22
|
Hölzel BN, Pfannkuche K, Allner B, Allner HT, Hescheler J, Derichsweiler D, Hollert H, Schiwy A, Brendt J, Schaffeld M, Froschauer A, Stahlschmidt-Allner P. Following the adverse outcome pathway from micronucleus to cancer using H2B-eGFP transgenic healthy stem cells. Arch Toxicol 2020; 94:3265-3280. [PMID: 32700163 PMCID: PMC7415759 DOI: 10.1007/s00204-020-02821-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
Abstract
In vitro assessment of genotoxicity as an early warning tool for carcinogenicity mainly relies on recording cytogenetic damages (micronuclei, nucleoplasmic bridges) in tumour-derived mammalian cell lines like V79 or CHO. The forecasting power of the corresponding standardised test is based on epidemiological evidence between micronuclei frequencies and cancer incidence. As an alternative to destructive staining of nuclear structures a fish stem cell line transgenic for a fusion protein of histone 2B (H2B) and enhanced green fluorescent protein (eGFP) was established. The cells are derived from koi carp brain (KCB) and distinguish from mammalian culturable cells by non-tumour-driven self-renewal. This technology enables the analysis of genotoxic- and malign downstream effects in situ in a combined approach. In proof-of concept-experiments, we used known carcinogens (4-Nitroquinoline 1-oxide, colchicine, diethylstilbestrol, ethyl methanesulfonate) and observed a significant increase in micronuclei (MNi) frequencies in a dose-dependent manner. The concentration ranges for MNi induction were comparable to human/mammalian cells (i.e. VH-16, CHL and HepG2). Cannabidiol caused the same specific cytogenetic damage pattern as observed in human cells, in particular nucleoplasmic bridges. Metabolic activation of aflatoxin B1 and cyclophosphamide could be demonstrated by pre-incubation of the test compounds using either conventional rat derived S9 mix as well as an in vitro generated biotechnological alternative product ewoS9R. The presented high throughput live H2B-eGFP imaging technology using non-transformed stem cells opens new perspectives in the field of in vitro toxicology. The technology offers experimental access to investigate the effects of carcinogens on cell cycle control, gene expression pattern and motility in the course of malign transformation. The new technology enables the definition of Adverse Outcome Pathways leading to malign cell transformation and contributes to the replacement of animal testing. Summary: Complementation of genotoxicity testing by addressing initiating events leading to malign transformation is suggested. A vertebrate cell model showing "healthy" stemness is recommended, in contrast to malign transformed cells used in toxicology/oncocology.
Collapse
Affiliation(s)
- Bastian Niklas Hölzel
- GOBIO GmbH, Institute for Ecology of Waters and Applied Biology, Scheidertalstraße 69a, 65326 Aarbergen, Hesse Germany
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Johann-Joachim Becher-Weg 7, 55122 Mainz, Rhineland Palatinate Germany
| | - Kurt Pfannkuche
- Medical Faculty, Center for Physiology and Pathophysiology, University of Cologne, Robert Koch Str. 39, 50923 Cologne, North Rhine-Westphalia Germany
| | - Bernhard Allner
- GOBIO GmbH, Institute for Ecology of Waters and Applied Biology, Scheidertalstraße 69a, 65326 Aarbergen, Hesse Germany
| | - Hans Thomas Allner
- GOBIO GmbH, Institute for Ecology of Waters and Applied Biology, Scheidertalstraße 69a, 65326 Aarbergen, Hesse Germany
| | - Jürgen Hescheler
- Medical Faculty, Center for Physiology and Pathophysiology, University of Cologne, Robert Koch Str. 39, 50923 Cologne, North Rhine-Westphalia Germany
| | - Daniel Derichsweiler
- Medical Faculty, Center for Physiology and Pathophysiology, University of Cologne, Robert Koch Str. 39, 50923 Cologne, North Rhine-Westphalia Germany
| | - Henner Hollert
- Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt Biologicum, Max-von-Laue-Straße 13, 60323 Frankfurt am Main, Hesse Germany
- EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Hesse Germany
| | - Andreas Schiwy
- Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt Biologicum, Max-von-Laue-Straße 13, 60323 Frankfurt am Main, Hesse Germany
- EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Hesse Germany
| | - Julia Brendt
- Institute for Environmental Research (Bio V), RWTH Aachen University, Worringerweg 1, 52062 Aachen, North Rhine-Westphalia Germany
| | - Michael Schaffeld
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Johann-Joachim Becher-Weg 7, 55122 Mainz, Rhineland Palatinate Germany
| | - Alexander Froschauer
- Faculty of Biology, Applied Biology, Technische Universität Dresden, Zellescher Weg 20b, 01069 Dresden, Saxony Germany
| | - Petra Stahlschmidt-Allner
- GOBIO GmbH, Institute for Ecology of Waters and Applied Biology, Scheidertalstraße 69a, 65326 Aarbergen, Hesse Germany
| |
Collapse
|
23
|
de Moura DF, Rocha TA, Barros DDM, da Silva MM, de Lira MADC, Dos Santos Souza TG, da Silva CJA, de Aguiar Júnior FCA, Chagas CA, da Silva Santos NP, de Souza IA, Araújo RM, Ximenes RM, Martins RD, da Silva MV. Evaluation of the cytotoxicity, oral toxicity, genotoxicity, and mutagenicity of the latex extracted from Himatanthus drasticus (Mart.) Plumel (Apocynaceae). JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112567. [PMID: 32027999 DOI: 10.1016/j.jep.2020.112567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Himatanthus drasticus is a tree popularly known as janaguba. Endemic to Brazil, it is found in the Cerrado and Caatinga biomes, rock fields, and rainforests. Janaguba latex has been used in folk medicine for its antineoplastic, anti-inflammatory, analgesic, and antiallergic activities. However, studies investigating the safety of its use for medicinal purposes are limited. AIM OF THE STUDY This study aimed to evaluate the toxicity of the latex extracted from H. drasticus. MATERIALS AND METHODS The latex was extracted from H. drasticus specimens by removing a small area of bark (5 × 30 cm) and then dissolving the exudate in water and lyophilizing it. Phytochemical screening was performed by TLC and GC-MS, protein, and carbohydrate levels. Cell viability was performed by the MTT method. Acute oral toxicity, genotoxicity, and mutagenicity assays were performed in mice. RESULTS TLC showed the presence of saponins and reducing sugars, as well as steroids and terpenes. The GC-MS analysis of the nonpolar fraction identified lupeol acetate, betulin, and α/β-amyrin derivatives as the major compounds. The latex was toxic to S-180 cells at 50 and 100 μg/mL. No signals of toxicity or mutagenicity was found in mice treated with 2000 mg/kg of the latex, but genotoxicity was observed in the Comet assay. CONCLUSIONS H. drasticus latex showed toxicity signals at high doses (2000 mg/kg). Although the latex was not mutagenic to mice, it was genotoxic in the Comet assay in our experimental conditions. Even testing a limit dose of 2000 mg/kg, which is between 10 to 35-fold the amount used in folk medicine, caution must be taken since there is no safe level for genotoxic compounds exposure. Further studies on the toxicological aspects of H. drasticus latex are necessary to elucidate its possible mechanisms of genotoxicity.
Collapse
Affiliation(s)
| | - Tamiris Alves Rocha
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | | | | | | | | | | | | | | | - Rafael Matos Ximenes
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil.
| | | | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Brazil; Núcleo de Bioprospecção da Caatinga, Instituto Nacional do Semiárido, Paraíba, Brazil
| |
Collapse
|
24
|
Essential Oil Phytocomplex Activity, a Review with a Focus on Multivariate Analysis for a Network Pharmacology-Informed Phytogenomic Approach. Molecules 2020; 25:molecules25081833. [PMID: 32316274 PMCID: PMC7221665 DOI: 10.3390/molecules25081833] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Thanks to omic disciplines and a systems biology approach, the study of essential oils and phytocomplexes has been lately rolling on a faster track. While metabolomic fingerprinting can provide an effective strategy to characterize essential oil contents, network pharmacology is revealing itself as an adequate, holistic platform to study the collective effects of herbal products and their multi-component and multi-target mediated mechanisms. Multivariate analysis can be applied to analyze the effects of essential oils, possibly overcoming the reductionist limits of bioactivity-guided fractionation and purification of single components. Thanks to the fast evolution of bioinformatics and database availability, disease-target networks relevant to a growing number of phytocomplexes are being developed. With the same potential actionability of pharmacogenomic data, phytogenomics could be performed based on relevant disease-target networks to inform and personalize phytocomplex therapeutic application.
Collapse
|
25
|
Habas K, Brinkworth MH, Anderson D. A male germ cell assay and supporting somatic cells: its application for the detection of phase specificity of genotoxins in vitro. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:91-106. [PMID: 32046612 DOI: 10.1080/10937404.2020.1724577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Male germ stem cells are responsible for transmission of genetic information to the next generation. Some chemicals exert a negative impact on male germ cells, either directly, or indirectly affecting them through their action on somatic cells. Ultimately, these effects might inhibit fertility, and may exhibit negative consequences on future offspring. Genotoxic anticancer agents may interact with DNA in germ cells potentially leading to a heritable germline mutation. Experimental information in support of this theory has not always been reproducible and suitable in vivo studies remain limited. Thus, alternative male germ cell tests, which are now able to detect phase specificity of such agents, might be used by regulatory agencies to help evaluate the potential risk of mutation. However, there is an urgent need for such approaches for identification of male reproductive genotoxins since this area has until recently been dependent on in vivo studies. Many factors drive alternative approaches, including the (1) commitment to the principles of the 3R's (Replacement, Reduction, and Refinement), (2) time-consuming nature and high cost of animal experiments, and (3) new opportunities presented by new molecular analytical assays. There is as yet currently no apparent appropriate model of full mammalian spermatogenesis in vitro, under the REACH initiative, where new tests introduced to assess genotoxicity and mutagenicity need to avoid unnecessary testing on animals. Accordingly, a battery of tests used in conjunction with the high throughput STAPUT gravity sedimentation was recently developed for purification of male germ cells to investigate genotoxicity for phase specificity in germ cells. This system might be valuable for the examination of phases previously only available in mammals with large-scale studies of germ cell genotoxicity in vivo. The aim of this review was to focus on this alternative approach and its applications as well as on chemicals of known in vivo phase specificities used during this test system development.
Collapse
Affiliation(s)
- Khaled Habas
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | | | - Diana Anderson
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
26
|
Tuenter E, Creylman J, Verheyen G, Pieters L, Van Miert S. Development of a classification model for the antigenotoxic activity of flavonoids. Bioorg Chem 2020; 98:103705. [PMID: 32171992 DOI: 10.1016/j.bioorg.2020.103705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/16/2019] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Genotoxic agents are capable of causing damage to genetic material and the cumulative DNA damage causes mutations, involved in the development of various pathological conditions, including cancer. Antigenotoxic agents possess the potential to counteract these detrimental cellular modifications and may aid in preventing, delaying, or decreasing the severity of these pathological conditions. An important class of natural products for which promising antigenotoxic activities have already been shown, are the flavonoids. In this research, we investigated the quantitative structure-activity relationship (QSAR) of flavonoids and their antigenotoxic activity against benzo[a]pyrene (B[a]P) and its mutagenic metabolite B[a]P-7,8-diol-9,10-epoxide-2. Random Forest classification models were developed, which could be useful as a preliminary in silico evaluation tool, before performing in vitro or in vivo experiments. The descriptors G2S and R8s. were the most significant for predicting the antigenotoxic potential.
Collapse
Affiliation(s)
- Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Jan Creylman
- RADIUS Group, Thomas More University of Applied Sciences, Geel, Belgium
| | - Geert Verheyen
- RADIUS Group, Thomas More University of Applied Sciences, Geel, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Sabine Van Miert
- RADIUS Group, Thomas More University of Applied Sciences, Geel, Belgium
| |
Collapse
|
27
|
Guo X, Wu X, Ni J, Zhang L, Xue J, Wang X. Aqueous extract of bulbus Fritillaria cirrhosa induces cytokinesis failure by blocking furrow ingression in human colon epithelial NCM460 cells. Mutat Res 2020; 850-851:503147. [PMID: 32247562 DOI: 10.1016/j.mrgentox.2020.503147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 01/19/2023]
Abstract
Bulbus Fritillariacirrhosa D. Don (BFC) has been widely used as an herbal medicament for respiratory diseases in China for over 2000 years. The ethnomedicinal effects of BFC have been scientifically verified, nevertheless its toxicity has not been completely studied. Previously, we have reported that the aqueous extract of BFC induces mitotic aberrations and chromosomal instability (CIN) in human colon epithelial NCM460 cells via dysfunctioning the mitotic checkpoint. Here, we extend this study and specifically focus on the influence of BFC on cytokinesis, the final step of cell division. One remarkable change in NCM460 cells following BFC treatment is the high incidence of binucleated cells (BNCs). More detailed investigation of the ana-telophases reveals that furrow ingression, the first stage of cytokinesis, is inhibited by BFC. Asynchronous cultures treatment demonstrates that furrow ingression defects induced by BFCs are highly associated with the formation of BNCs in ensuing interphase, indicating the BNCs phenotype after BFC treatment was resulted from cytokinesis failure. In line with this, the expression of genes involved in the regulation of furrow ingression is significantly de-regulated by BFC (e.g., LATS-1/2 and Aurora-B are upregulated, and YB-1 is downregulated). Furthermore, long-term treatment of BFC elucidates that the BNCs phenotype is transient and the loss of BNCs is associated with increased frequency of micronuclei and nuclear buds, two biomarkers of CIN. In supporting of these findings, the Nin Jiom Pei Pa Koa and Chuanbei Pipa Gao, two commercially available Chinese traditional medicines containing BFC, are able to induce multinucleation and CIN in NCM460 cells. Altogether, these data provide the first in vitro experimental evidence linking BFC to cytokinesis failure and suggest the resultant BNCs may be intermediates to produce CIN progenies.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Xiayu Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Ling Zhang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Jinglun Xue
- Yeda Institute of Gene and Cell Therapy, Taizhou, Zhejiang, 318000, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
28
|
Shorinwa OA, Monsi B. Toxicological implications of the fruit of Harungana madagascariensis on wistar rats. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0145-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The unopened buds of the fruit of Harungana madagascariensis is used in the treatment of anaemia and skin diseases in traditional medicine. Hence, this study aims to scientifically evaluate the effects of oral administration of the fruit extract of Harungana madagascariensis on haematological, biochemical and histological parameters in Wistar rats.
Methods
Phytochemical screening of the ethanol fruit extract of H. madagascariensis was carried out. Acute toxicity test was done using Lorke’s method. Sub-acute toxicity studies were done using 24 rats of both sexes which were randomized into four groups of six rats each. Animals in groups A, B, C were administered with the extract at doses of 250, 500 and 1000 mg/kg, respectively while group D animals were given distilled water (5 mg/kg) and served as the control group. All administrations were done through the oral route for 30 consecutive days. Body weights of the animals were taken weekly during the study. The animals were sacrificed under diethyl ether anaesthesia and blood samples collected for evaluation of haematological (red blood cell, haemoglobin, packed cell volume and white blood cell) and biochemical (alanine transferase, alanine aminotransferase, alkaline phosphatase, urea, creatinine, total cholesterol and total protein) parameters. Histological examination was conducted on the liver and kidney of the animals.
Results
Preliminary phytochemical screening of the extract revealed the presence of alkaloids, anthraquinones, steroidal nucleus, saponins, carbohydrates, flavonoids, and tannins. Acute toxicity test showed that the LD50 was greater than 5000 mg/kg. There was no statistically significant (P < 0.05) difference in the RBC, HB, PCV and WBC of the extract treated groups when compared to the control group. There was however, a statistically significant (P < 0.05) difference in the creatinine level of the 500 mg/kg extract –treated group and the control. There was no statistically significant (P < 0.05) difference in other biochemical parameters of the extract treated groups and the control group except for a marginal increase in the total protein in the group treated with 1000 mg/kg of the extract (60 g/L) compared with control (54.80 g/L). Histopathological examination showed alterations in the morphology of the liver and kidney in extract treated groups as compared to the control groups.
Conclusion
The findings have revealed that the ethanol fruit extract of H. madagascariensis should be used with caution especially during prolonged usage as the histology showed it has nephrotoxic and hepatotoxic potentials. Further studies will be done to establish the effects of the extract on white blood cells.
Collapse
|
29
|
Luqueño Fabián F. Advantages and Drawbacks of the Nanotechnology and Biotechnology toward Shaping a Global Sustainable Development. ACTA ACUST UNITED AC 2019. [DOI: 10.13005/bbra/2784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fernández Luqueño Fabián
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, Coahuila. C.P. 25900, Mexico
| |
Collapse
|
30
|
Gebrelibanos Hiben M, Kamelia L, de Haan L, Spenkelink B, Wesseling S, Vervoort J, Rietjens IMCM. Hazard assessment of Maerua subcordata (Gilg) DeWolf. for selected endpoints using a battery of in vitro tests. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111978. [PMID: 31150796 DOI: 10.1016/j.jep.2019.111978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maerua subcordata (Gilg) DeWolf is a medicinal and wild food plant growing mainly in east Africa. Especially its root tuber is widely used in traditional medicine to treat several infectious and chronic diseases but also in some toxicity implications like use as abortifacient. AIM OF THE STUDY the present study applied in silico and in vitro tests to identify possible hazards of M. subcordata (fruit, leaf, root, seed) methanol extracts focussing on developmental toxicity. MATERIALS AND METHODS Ames test, estrogen receptor alpha (ERα) assay, aryl hydrocarbon receptor (AhR) assay, embryonic stem cell test (EST), and zebrafish embryotoxicity test (ZET) were employed. Besides, a Derek Nexus toxicity prediction was performed on candidate structures obtained from metabolomics profiling of the extracts using liquid chromatography coupled to multistage mass spectroscopy (LC/MSn) and a MAGMa software based structural annotation. RESULTS Glucosinolates, which degrade to isothiocyanates, and biogenic amines were among the candidate molecules identified in the extracts by LC/MSn - MAGMa software structural annotation. Isothiocyanates and some other candidate molecules suggested a positive mutagenicity alert in Derek toxicity predictions. All the extracts showed negative mutagenicity in the Ames test. However, the Derek predictions also identified endocrine and developmental toxicity as possible endpoints of concern. This was further assessed using in vitro tests. Results obtained reveal that leaf extract shows AhR and ERα agonist activities, inhibited differentiation of ES-D3 stem cells into contracting cardiomyocytes in the EST (p < 0.001) as well as inhibited hatching (p < 0.01) and showed acute toxicity (p < 0.01) in the ZET. Also, the fruit extract showed toxicity (p < 0.05) towards zebrafish embryos and both fruit and seed extracts showed AhR agonist activities while root extract was devoid of activity in all in vitro assays. CONCLUSION The leaf extract tests positive in in vitro tests that may point towards a developmental toxicity hazard. The current evaluations did not raise concerns of genotoxicity or developmental toxicity for the fruit, seed and root extracts. This is important given the use of especially these parts of M. subcordata, in traditional medicine and/or as (famine) food.
Collapse
Affiliation(s)
- Mebrahtom Gebrelibanos Hiben
- Division of Toxicology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia.
| | - Lenny Kamelia
- Division of Toxicology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Laura de Haan
- Division of Toxicology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Bert Spenkelink
- Division of Toxicology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
31
|
Li L, Yin Tang L, Liang B, Wang R, Sun Q, Bik San Lau C, Chung Leung P, Fritsche E, Liebsch M, Seiler Wulczyn AEM, Spielmann H, Wang CC. Evaluation of in vitro embryotoxicity tests for Chinese herbal medicines. Reprod Toxicol 2019; 89:45-53. [PMID: 31228572 DOI: 10.1016/j.reprotox.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022]
Abstract
Chinese herbal medicines (CHMs) have been widely used during pregnancy, but feto-embryo safety tests are lacking. Here we evaluated in vitro embryotoxicity tests (IVTs) as alternative methods in assessing developmental toxicity of CHMs. Ten CHMs were selected and classified as strongly, weakly and non-embryotoxic. Three well validated IVTs and prediction models (PMs), including embryonic stem cell test (EST), micromass (MM) and whole embryo culture (WEC), were compared. All strongly embryotoxic CHMs were predicted by MM and WEC PM2. While all weakly embryotoxic CHMs were predicted by MM and WEC PM1. All non-embryotoxic CHMs were classified by EST, MM, but over-classified as weakly embryotoxic by WEC PM1. Overall predictivity, precision and accuracy of WEC determined by PM2 were better than EST and MM tests. Compared with validated chemicals, performance of IVTs for CHMs was comparable. So IVTs are adequate to identify and exclude embryotoxic potential of CHMs in this training set.
Collapse
Affiliation(s)
- Lu Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; Institute of Chinese Medicine & State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ling Yin Tang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Bo Liang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rongyun Wang
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuhua Sun
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine & State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ping Chung Leung
- Institute of Chinese Medicine & State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ellen Fritsche
- IUF-Leibniz Research Institute of Environmental Medicine, Düsseldorf, Germany
| | - Manfred Liebsch
- Central Ethics Committee for Stem Cell Research (ZES), Robert Koch Institute, Berlin, Germany
| | | | - Horst Spielmann
- Institute for Pharmacy, Faculty of Biology, Chemistry, and Pharmacy, Freie Universität, Berlin, Germany
| | - Chi Chiu Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
32
|
Duan L, Guo L, Wang L, Yin Q, Zhang CM, Zheng YG, Liu EH. Application of metabolomics in toxicity evaluation of traditional Chinese medicines. Chin Med 2018; 13:60. [PMID: 30524499 PMCID: PMC6278008 DOI: 10.1186/s13020-018-0218-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/29/2018] [Indexed: 01/14/2023] Open
Abstract
Traditional Chinese medicines (TCM) have a long history of use because of its potential complementary therapy and fewer adverse effects. However, the toxicity and safety issues of TCM have drawn considerable attention in the past two decades. Metabolomics is an “omics” approach that aims to comprehensively analyze all metabolites in biological samples. In agreement with the holistic concept of TCM, metabolomics has shown great potential in efficacy and toxicity evaluation of TCM. Recently, a large amount of metabolomic researches have been devoted to exploring the mechanism of toxicity induced by TCM, such as hepatotoxicity, nephrotoxicity, and cardiotoxicity. In this paper, the application of metabolomics in toxicity evaluation of bioactive compounds, TCM extracts and TCM prescriptions are reviewed, and the potential problems and further perspectives for application of metabolomics in toxicological studies are also discussed.
Collapse
Affiliation(s)
- Li Duan
- 1College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 China
| | - Long Guo
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China.,4Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - Lei Wang
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - Qiang Yin
- Department of Management, Xinjiang Uygur Pharmaceutical Co., Ltd., Wulumuqi, 830001 China
| | - Chen-Meng Zhang
- 1College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 China
| | - Yu-Guang Zheng
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - E-Hu Liu
- 3State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
33
|
SB-83, a 2-Amino-thiophene derivative orally bioavailable candidate for the leishmaniasis treatment. Biomed Pharmacother 2018; 108:1670-1678. [DOI: 10.1016/j.biopha.2018.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/19/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
|
34
|
Park H, Hwang YH, Choi JG, Ma JY. In vitro and in vivo evaluation of systemic and genetic toxicity of Citrus unshiu peel. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:120-123. [PMID: 29274356 DOI: 10.1016/j.jep.2017.12.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The peel of Citrus unshiu Markovich fruits (CUP), called "Jinpi" in Korea, and "Chenpi" in China, has been used for the treatment of respiratory and blood circulation disorders in traditional oriental medicine (TOM). Despite its widespread uses in TOM, no information on the safety of CUP has been reported. Thus, genotoxicity and systemic toxicity of CUP were evaluated in the current studies. MATERIALS AND METHODS We conducted a toxicological evaluation of CUP water extracts using acute and subchronic (13-week repeated-dose) toxicity tests and three genotoxicity assays (bacterial reverse mutation, mammalian chromosomal aberration, and micronuclei formation). RESULTS In acute and subchronic toxicity tests, both the median lethal dose (LD50) and no-observed-adverse-effect level (NOAEL) were more than 4000mg/kg/day in rats. None of the genotoxicity assays revealed any mutagenicity or clastogenicity in in vitro and in vivo systems. CONCLUSION CUP water extracts were found to be nongenotoxic under our testing conditions and had low acute and subchronic toxicity.
Collapse
Affiliation(s)
- Hwayong Park
- KM (Korean Medicine) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Youn-Hwan Hwang
- KM (Korean Medicine) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Jang-Gi Choi
- KM (Korean Medicine) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Jin Yeul Ma
- KM (Korean Medicine) Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea.
| |
Collapse
|
35
|
Doganay-Knapp K, Orland A, König GM, Knöss W. The potential of three different PCR-related approaches for the authentication of mixtures of herbal substances and finished herbal medicinal products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 43:60-67. [PMID: 29747755 DOI: 10.1016/j.phymed.2018.03.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Herbal substances and preparations thereof play an important role in healthcare systems worldwide. Due to the variety of these products regarding origin, composition and processing procedures, appropriate methodologies for quality assessment need to be considered. A majority of herbal substances is administered as multicomponent mixtures, especially in the field of Traditional Chinese Medicine and ayurvedic medicine, but also in finished medicinal products. Quality assessment of complex mixtures of herbal substances with conventional methods is challenging. Thus, emphasis of the present work was directed on the development of complementary methods to elucidate the composition of mixtures of herbal substances and finished herbal medicinal products. HYPOTHESIS/PURPOSE An indispensable prerequisite for the safe and effective use of herbal medicines is the unequivocal authentication of the medicinal plants used therein. In this context, we investigated the potential of three different PCR-related methods in the characterization and authentication of herbal substances. METHODS A multiplex PCR assay and a quantitative PCR (qPCR) assay were established to analyze defined mixtures of the herbal substances Quercus cortex, Juglandis folium, Aristolochiae herba, Matricariae flos and Salviae miltiorrhizae radix et rhizoma and a finished herbal medicinal product. Furthermore, a standard cloning approach using universal primers targeting the ITS region was established in order to allow the investigation of herbal mixtures with unknown content. RESULTS The cloning approach had some limitations regarding the detection/recovery of the components in defined mixtures of herbal substances, but the complementary use of two sets of universal primer pairs increased the detection of components out of the mixture. While the multiplex PCR did not retrace all components in the defined mixtures of herbal substances, the established qPCR resulted in simultaneous and specific detection of the five target sequences in all defined mixtures. CONCLUSION These data indicate that for authentication purposes, complementary PCR-related methods are highly recommendable for the analysis of herbal mixtures in parallel.
Collapse
Affiliation(s)
- Kirsten Doganay-Knapp
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany; Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Annika Orland
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany; Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Werner Knöss
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany.
| |
Collapse
|
36
|
Zhang PJ, Li YM, Zhang YN, Huang W, Li YB, Zhang YJ, Liu CX. Application and prospect of toxicity quality markers of Chinese materia medica based on metabolomics. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
37
|
Senes-Lopes TF, López JA, do Amaral VS, Brandão-Neto J, de Rezende AA, da Luz JRD, Guterres ZDR, Almeida MDG. Genotoxicity of Turnera subulata and Spondias mombin × Spondias tuberosa Extracts from Brazilian Caatinga Biome. J Med Food 2018; 21:372-379. [DOI: 10.1089/jmf.2017.0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Tiago Felipe Senes-Lopes
- Program of Postgraduation in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Jorge Alberto López
- Program of Postgraduation in Industrial Biotechnology, Institute of Technology and Research/Tiradentes University (UNIT), Aracaju, Sergipe, Brazil
| | - Viviane Souza do Amaral
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - José Brandão-Neto
- Program of Postgraduation in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Program of Postgraduation in Industrial Biotechnology, Institute of Technology and Research/Tiradentes University (UNIT), Aracaju, Sergipe, Brazil
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Department of Internal Medicine, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Adriana Augusto de Rezende
- Program of Postgraduation in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Program of Postgraduation in Industrial Biotechnology, Institute of Technology and Research/Tiradentes University (UNIT), Aracaju, Sergipe, Brazil
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Department of Internal Medicine, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Jefferson Romáryo Duarte da Luz
- Program of Postgraduation in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Zaira da Rosa Guterres
- Laboratory of Cytogenetics and Mutagenesis, State University of Mato Grosso do Sul (UEMS), Mundo Novo, Matto Grasso do Sul, Brazil
| | - Maria das Graças Almeida
- Program of Postgraduation in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Program of Postgraduation in Industrial Biotechnology, Institute of Technology and Research/Tiradentes University (UNIT), Aracaju, Sergipe, Brazil
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Department of Internal Medicine, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
38
|
Intelligent testing strategy and analytical techniques for the safety assessment of nanomaterials. Anal Bioanal Chem 2018; 410:6051-6066. [DOI: 10.1007/s00216-018-0940-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 01/11/2023]
|
39
|
Bruno LO, Simoes RS, de Jesus Simoes M, Girão MJBC, Grundmann O. Pregnancy and herbal medicines: An unnecessary risk for women's health-A narrative review. Phytother Res 2018; 32:796-810. [PMID: 29417644 DOI: 10.1002/ptr.6020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
Abstract
The indiscriminate use of herbal medicines to prevent or to heal diseases or even the use for questionable purposes such as weight loss has received both interest and scrutiny from the scientific community and general public alike. An increasing number of women put their own and the unborn child's health at risk due to a lack of knowledge about the phytochemical properties and adequate use of herbal medicine (phytomedicines or herbal supplements) and lack of communication with their healthcare provider. The purpose of this narrative review was to summarize the use of herbal medicines during pregnancy and their potential toxic effects to highlight the importance of caution when prescribing herbal medicines or supplements for women, because, in addition to suffering interactions and a great amount of information obtained in preclinical predictive studies, assessment of nephrotoxicity, neurotoxicity, hepatotoxicity, genotoxicity, and teratogenicity of traditional medicinal herbs still remains scarce in the clinical setting.
Collapse
Affiliation(s)
- Luciana O Bruno
- Department of Gynecology, Federal University of São Paulo (UNIFESP), São Paulo, 04021-001, Brazil
| | - Ricardo Santos Simoes
- Department of Obstetrics and Gynecology, University of São Paulo (USP), São Paulo, 05508-010, Brazil
| | - Manuel de Jesus Simoes
- Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), São Paulo, 04021-001, Brazil
| | | | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida (UFL), Gainesville, 32611, FL, USA.,Department of Biobehavioral Nursing Science, College of Nursing, University of Florida (UFL), Gainesville, 32611, FL, USA
| |
Collapse
|
40
|
Abstract
The genome revolution represents a complete change on our view of biological systems. The quantitative determination of changes in all major molecular components of the living cells, the "omics" approach, opened whole new fields for all health sciences. Genomics, transcriptomics, proteomics, metabolomics, and others, together with appropriate prediction and modeling tools, will mark the future of developmental toxicity assessment both for wildlife and humans. This is especially true for disciplines, like teratology, which rely on studies in model organisms, as studies at lower levels of organization are difficult to implement. Rodents and frogs have been the favorite models for studying human reproductive and developmental disorders for decades. Recently, the study of the development of zebrafish embryos (ZE) is becoming a major alternative tool to adult animal testing. ZE intrinsic characteristics makes this model a unique system to analyze in vivo developmental alterations that only can be studied applying in toto approaches. Moreover, under actual legislations, ZE is considered as a replacement model (and therefore, excluded from animal welfare regulations) during the first 5 days after fertilization. Here we review the most important components of the zebrafish toolbox available for analyzing early stages of embryotoxic events that could eventually lead to teratogenesis.
Collapse
|
41
|
Poivre M, Duez P. Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J Zhejiang Univ Sci B 2017; 18:194-214. [PMID: 28271656 DOI: 10.1631/jzus.b1600299] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Traditional Chinese herbal drugs have been used for thousands of years in Chinese pharmacopoeia. The bark of Magnolia officinalis Rehder & E. Wilson, known under the pinyin name "Houpo", has been traditionally used in Chinese and Japanese medicines for the treatment of anxiety, asthma, depression, gastrointestinal disorders, headache, and more. Moreover, Magnolia bark extract is a major constituent of currently marketed dietary supplements and cosmetic products. Much pharmacological activity has been reported for this herb and its major compounds, notably antioxidant, anti-inflammatory, antibiotic and antispasmodic effects. However, the mechanisms underlying this have not been elucidated and only a very few clinical trials have been published. In vitro and in vivo toxicity studies have also been published and indicate some intriguing features. The present review aims to summarize the literature on M. officinalis bark composition, utilisation, pharmacology, and safety.
Collapse
Affiliation(s)
- Mélanie Poivre
- Unit of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons-UMONS, Mons, Belgium
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons-UMONS, Mons, Belgium
| |
Collapse
|
42
|
Croaker A, King GJ, Pyne JH, Anoopkumar-Dukie S, Simanek V, Liu L. Carcinogenic potential of sanguinarine, a phytochemical used in 'therapeutic' black salve and mouthwash. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 774:46-56. [PMID: 29173498 DOI: 10.1016/j.mrrev.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/17/2017] [Accepted: 09/02/2017] [Indexed: 02/07/2023]
Abstract
Black salves are escharotic skin cancer therapies in clinical use since the mid 19th century. Sanguinaria canadensis, a major ingredient of black salve formulations, contains a number of bioactive phytochemicals including the alkaloid sanguinarine. Despite its prolonged history of clinical use, conflicting experimental results have prevented the carcinogenic potential of sanguinarine from being definitively determined. Sanguinarine has a molecular structure similar to known polyaromatic hydrocarbon carcinogens and is a DNA intercalator. Sanguinarine also generates oxidative and endoplasmic reticulum stress resulting in the unfolded protein response and the formation of 8-hydroxyguanine genetic lesions. Sanguinarine has been the subject of contradictory in vitro and in vivo genotoxicity and murine carcinogenesis test results that have delayed its carcinogenic classification. Despite this, epidemiological studies have linked mouthwash that contains sanguinarine with the development of oral leukoplakia. Sanguinarine is also proposed as an aetiological agent in gallbladder carcinoma. This literature review investigates the carcinogenic potential of sanguinarine. Reasons for contradictory genotoxicity and carcinogenesis results are explored, knowledge gaps identified and a strategy for determining the carcinogenic potential of sanguinarine especialy relating to black salve are discussed. As patients continue to apply black salve, especially to skin regions suffering from field cancerization and skin malignancies, an understanding of the genotoxic and carcinogenic potential of sanguinarine is of urgent clinical relevance.
Collapse
Affiliation(s)
- Andrew Croaker
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia; Wesley Medical Research Institute, Wesley Hospital, Auchenflower, QLD, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - John H Pyne
- School of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Shailendra Anoopkumar-Dukie
- Quality Use of Medicines Network, Queensland, Australia; School of Pharmacy and Pharmacology, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Vilim Simanek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia.
| |
Collapse
|
43
|
Qian Y, Peng Y, Shang E, Zhao M, Yan L, Zhu Z, Tao J, Su S, Guo S, Duan JA. Metabolic profiling of the hepatotoxicity and nephrotoxicity of Ginkgolic acids in rats using ultra-performance liquid chromatography-high-definition mass spectrometry. Chem Biol Interact 2017; 273:11-17. [PMID: 28564578 DOI: 10.1016/j.cbi.2017.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/11/2017] [Accepted: 05/26/2017] [Indexed: 12/26/2022]
Abstract
Ginkgolic acids (GAs) are thought to be the potentially hazardous constituents corresponding to the toxic side effects of Ginkgo products. In this study, toxicological and metabolomics studies of GAs were carried out by ultra-performance liquid chromatography-high-definition mass spectrometry (UPLC-HDMS). Significant changes in serum clinical chemistry were observed in the both low (100 mg/kg) and high (900 mg/kg) doses. Especially the serum enzyme of ALT, AST, LDH, and CK decreased in treated groups. The histopathological observation demonstrated hepatic steatosis in liver and tubular vacuolar degeneration in kidney. These results demonstrated the hepatotoxicity and nephrotoxicity of GAs. Functional disorders are more likely to be toxic induced by GAs. Metabolic profiling within seven days revealed the change of the body status after oral administration. The results indicated the body function was significantly influenced at the 3rd day and could recover in seven days. Metabolomic analysis showed alterations in 14 metabolites from plasma such as LysoPC(18:0), LysoPC(18:2) and other lipids. The results suggested that exposure to GAs could cause disturbances in liver and kidney function associated with the metabolisms of lipids, glucose and the enzyme activity.
Collapse
Affiliation(s)
- Yiyun Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization, Formulae Innovative Medicine, Nanjing University of Chinese Medicine, China
| | - Yunru Peng
- Jiangsu Provincial Institute of Traditional Chinese Medicine, Nanjing 210028, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization, Formulae Innovative Medicine, Nanjing University of Chinese Medicine, China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization, Formulae Innovative Medicine, Nanjing University of Chinese Medicine, China
| | - Liang Yan
- Nanjing Sanhome Pharmaceutical Co.,Ltd, NO. 99 West Yunlianghe Road, Xuanwu District, Nanjing, Jiangsu Province, China
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization, Formulae Innovative Medicine, Nanjing University of Chinese Medicine, China
| | - Jinhua Tao
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization, Formulae Innovative Medicine, Nanjing University of Chinese Medicine, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization, Formulae Innovative Medicine, Nanjing University of Chinese Medicine, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization, Formulae Innovative Medicine, Nanjing University of Chinese Medicine, China.
| |
Collapse
|
44
|
Mao Q, Xu JD, Kong M, Shen H, Zhu H, Zhou SS, Li SL. LC-MS-based Metabolomics in Traditional Chinese Medicines Research: Personal Experiences. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60071-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
45
|
The application of metabolomics for herbal medicine pharmacovigilance: a case study on ginseng. Essays Biochem 2016; 60:429-435. [PMID: 27980093 DOI: 10.1042/ebc20160030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 11/17/2022]
Abstract
Herbal medicines are growing in popularity, use and commercial value; however, there remain problems with the quality and consequently safety of these products. Adulterated, contaminated and fraudulent products are often found on the market, a risk compounded by the fact that these products are available to consumers with little or no medical advice. Current regulations and quality control methods are lacking in their ability to combat these serious problems. Metabolomics is a biochemical profiling tool that may help address these issues if applied to quality control of both raw ingredients and final products. Using the example of the popular herbal medicine, ginseng, this essay offers an overview of the potential use of metabolomics for quality control in herbal medicines and also highlights where more research is needed.
Collapse
|
46
|
Federico C, Palmieri C, Pappalardo AM, Ferrito V, Pappalardo M, Librando V, Saccone S. Mutagenic properties of linuron and chlorbromuron evaluated by means of cytogenetic biomarkers in mammalian cell lines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17018-17025. [PMID: 27206752 DOI: 10.1007/s11356-016-6867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Agricultural practices are usually supported by several chemical substances, such as herbicides. Linuron and chlorbromuron are phenylurea herbicides largely used to protect crops from weeds, blocking photosynthesis by inhibition of the photosystem II complex. The former, also commercially known as lorox or afalon, is selectively used to protect bean and French bean plants, fennels, and celeriacs; the second, commercially known as maloran, is selectively used for carrots, peas, potatoes, soy sprouts, and sunflowers. Considering the widespread use of herbicides and, more generally, pesticides, it is important to clarify their involvement on human health, one of them concerning the possible direct or indirect effect on the genome of exposed populations. Here, we show that these herbicides are endowed by mutagenic properties, as demonstrated by an increased number of chromosomal aberrations (CAs) in two exposed Chinese hamster cell lines derived from ovary and epithelial liver, respectively. This was also confirmed by sister chromatid exchange (SCE) and micronucleus (MN) assays. Our present and previously obtained data clearly indicate that phenylurea herbicides must be used with great caution, especially for agricultural workers who use large amounts of herbicides during their work, and particular attention should be given to residues of these herbicides and their involvement in environmental pollution.
Collapse
Affiliation(s)
- Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Cristina Palmieri
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Matteo Pappalardo
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Vito Librando
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy.
| |
Collapse
|
47
|
|
48
|
Structural Aspects of Antioxidant and Genotoxic Activities of Two Flavonoids Obtained from Ethanolic Extract of Combretum leprosum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9849134. [PMID: 27478483 PMCID: PMC4949345 DOI: 10.1155/2016/9849134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/27/2016] [Indexed: 11/17/2022]
Abstract
Combretum leprosum Mart., a member of the Combretaceae family, is a traditionally used Brazilian medicinal plant, although no evidence in the literature substantiates its antioxidant action and the safety of its use. We evaluated the antioxidant properties of the ethanolic extract (EE) from flowers of C. leprosum and its isolated products 5,3′-dihydroxy-3,7,4′-trimethoxyflavone (FCL2) and 5,3′,4′-trihydroxy-3,7-dimethoxyflavone (FCL5) in Saccharomyces cerevisiae strains proficient and deficient in antioxidant defenses. Their mutagenic activity was also assayed in S. cerevisiae, whereas cytotoxic and genotoxic properties were evaluated by MTT and Comet Assays, respectively, in V79 cells. We show that the EE, FCL2, and FCL5 have a significant protective effect against H2O2. FCL2 showed a better antioxidant action, which can be related to the activation of the 3′-OH in the presence of a methoxyl group at 4′ position in the B-ring of the molecule, while flavonoids did not induce mutagenesis in yeast, and the EE was mutagenic at high concentrations. The toxicity of these compounds in V79 cells increases from FCL2 = FCL5 < EE; although not cytotoxic, FCL5 induced an increase in DNA damage. The antioxidant effect, along with the lower toxicity and the absence of genotoxicity, suggests that FCL2 could be suitable for pharmacological use.
Collapse
|
49
|
Habas K, Anderson D, Brinkworth M. Detection of phase specificity of in vivo germ cell mutagens in an in vitro germ cell system. Toxicology 2016; 353-354:1-10. [PMID: 27059372 DOI: 10.1016/j.tox.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/24/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
In vivo tests for male reproductive genotoxicity are time consuming, resource-intensive and their use should be minimised according to the principles of the 3Rs. Accordingly, we investigated the effects in vitro, of a variety of known, phase-specific germ cell mutagens, i.e., pre-meiotic, meiotic, and post-meiotic genotoxins, on rat spermatogenic cell types separated using Staput unit-gravity velocity sedimentation, evaluating DNA damage using the Comet assay. N-ethyl-N-nitrosourea (ENU), N-methyl-N-nitrosourea (MNU) (spermatogenic phase), 6-mercaptopurine (6-MP) and 5-bromo-2'-deoxy-uridine (5-BrdU) (meiotic phase), methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS) (post-meiotic phase) were selected for use as they are potent male rodent, germ cell mutagens in vivo. DNA damage was detected directly using the Comet assay and indirectly using the TUNEL assay. Treatment of the isolated cells with ENU and MNU produced the greatest concentration-related increase in DNA damage in spermatogonia. Spermatocytes were most sensitive to 6-MP and 5-BrdU while spermatids were particularly susceptible to MMS and EMS. Increases were found when measuring both Olive tail moment (OTM) and% tail DNA, but the greatest changes were in OTM. Parallel results were found with the TUNEL assay, which showed highly significant, concentration dependent effects of all these genotoxins on spermatogonia, spermatocytes and spermatids in the same way as for DNA damage. The specific effects of these chemicals on different germ cell types matches those produced in vivo. This approach therefore shows potential for use in the detection of male germ cell genotoxicity and could contribute to the reduction of the use of animals in such toxicity assays.
Collapse
Affiliation(s)
- Khaled Habas
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire BD7 1DP, UK
| | - Diana Anderson
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire BD7 1DP, UK
| | - Martin Brinkworth
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire BD7 1DP, UK.
| |
Collapse
|
50
|
Blaauboer BJ, Boobis AR, Bradford B, Cockburn A, Constable A, Daneshian M, Edwards G, Garthoff JA, Jeffery B, Krul C, Schuermans J. Considering new methodologies in strategies for safety assessment of foods and food ingredients. Food Chem Toxicol 2016; 91:19-35. [PMID: 26939913 DOI: 10.1016/j.fct.2016.02.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/25/2016] [Indexed: 12/28/2022]
Abstract
Toxicology and safety assessment are changing and require new strategies for evaluating risk that are less depending on apical toxicity endpoints in animal models and relying more on knowledge of the mechanism of toxicity. This manuscript describes a number of developments that could contribute to this change and implement this in a stepwise roadmap that can be applied for the evaluation of food and food ingredients. The roadmap was evaluated in four case studies by using literature and existing data. This preliminary evaluation was shown to be useful. However, this experience should be extended by including examples where experimental work needs to be included. To further implement these new insights in toxicology and safety assessment for the area of food and food ingredients, the recommendation is that stakeholders take action in addressing gaps in our knowledge, e.g. with regard to the applicability of the roadmap for mixtures and food matrices. Further development of the threshold of toxicological concern is needed, as well as cooperation with other sectors where similar schemes are under development. Moreover, a more comprehensive evaluation of the roadmap, also including the identification of the need for in vitro experimental work is recommended.
Collapse
Affiliation(s)
- Bas J Blaauboer
- Utrecht University, Division of Toxicology, Institute for Risk Assessment Sciences, PO Box 80.177, 3508 TD, Utrecht, The Netherlands
| | - Alan R Boobis
- Imperial College London, Department of Medicine, Centre for Pharmacology & Therapeutics, London, W12 0NN, United Kingdom
| | - Bobbie Bradford
- Unilever, Safety & Environmental Assurance Centre, London, EC4Y 0DY, United Kingdom
| | - Andrew Cockburn
- University of Newcastle, Toxico-Logical Consulting Ltd, The Old Boiler House, Moor Place Park, Kettle Green Lane, Much Hadham, Hertfordshire, SG10 6AA, United Kingdom
| | - Anne Constable
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000, Lausanne 26, Switzerland
| | - Mardas Daneshian
- University of Konstanz, Center for Alternatives to Animal Testing-Europe CAAT-Europe, 78457, Konstanz, Germany
| | - Gareth Edwards
- Consultant, 63 Woodlands Road., Sonning Common, Reading, Berkshire, RG4 9TD, United Kingdom
| | | | - Brett Jeffery
- Mars, Global Chemical Food Safety Group, Slough, SL1 4JX, United Kingdom
| | - Cyrille Krul
- University of Applied Sciences, Research Centre Technology & Innovation, Dept. Innovative Testing in Life Sciences & Chemistry, PO Box 12011, 3501 AA, Utrecht, The Netherlands; TNO Healthy Living, PO box 360, 3700 AJ Zeist, The Netherlands
| | | |
Collapse
|