1
|
Orozco-Barocio A, Sánchez-Sánchez MA, Rojas-Mayorquín AE, Godínez-Rubí M, Reyes-Mata MP, Ortuño-Sahagún D. Phytochemicals from Cactaceae family for cancer prevention and therapy. Front Pharmacol 2024; 15:1421136. [PMID: 39512831 PMCID: PMC11540781 DOI: 10.3389/fphar.2024.1421136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
Cancer is a global health issue, increasingly prevalent and a leading cause of mortality. Despite extensive research, conventional treatments remain aggressive, often damaging healthy cells, and exhibit limited efficacy. Addressing drug resistance and enhancing treatment effectiveness are critical challenges in advancing cancer therapy. This review examines the potential of natural plant compounds, particularly phytochemicals and their derivatives, in developing novel anticancer agents. These metabolites have a long history in traditional medicine, with 42% of molecules approved for cancer treatment between 1981 and 2019 being either natural products or derivatives. The Cactaceae family, which comprises more than 1,500 species, represents a largely untapped source of potentially useful chemopreventive and anticancer agents. Although more than 3,000 plants and their derivatives have contributed to chemotherapeutic development, cactus species have received limited attention until recently. Emerging evidence highlights the anticancer potential of fruits, stems, and cladodes from various cactus species. This review provides a comprehensive and current overview of experimental studies on Cactaceae in cancer research, aiming to pave the way for the development of innovative, natural cancer therapeutics and contribute to the ongoing battle against this formidable disease.
Collapse
Affiliation(s)
- Arturo Orozco-Barocio
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Marina A. Sánchez-Sánchez
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Argelia E. Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - María Paulina Reyes-Mata
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, GuadalajaraMexico
| |
Collapse
|
2
|
Ng KS, Tan SA, Bok CY, Loh KE, Ismail IS, Yue CS, Loke CF. Metabolomic Approach for Rapid Identification of Antioxidants in Clinacanthus nutans Leaves with Liver Protective Potential. Molecules 2022; 27:molecules27123650. [PMID: 35744776 PMCID: PMC9230150 DOI: 10.3390/molecules27123650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023] Open
Abstract
Antioxidants are currently utilized to prevent the occurrence of liver cancer in non-alcoholic fatty liver disease (NAFLD) patients. Clinacanthus nutans possesses anti-oxidative and anti-inflammatory properties that could be an ideal therapy for liver problems. The objective of this study is to determine the potential antioxidative compounds from the C. nutans leaves (CNL) and stems (CNS). Chemical- and cell-based antioxidative assays were utilized to evaluate the bioactivities of CNS and CNL. The NMR metabolomics approach assisted in the identification of contributing phytocompounds. Based on DPPH and ABTS radical scavenging activities, CNL demonstrated stronger radical scavenging potential as compared to CNS. The leaf extract also recorded slightly higher reducing power properties. A HepG2 cell model system was used to investigate the ROS reduction potential of these extracts. It was shown that cells treated with CNL and CNS reduced innate ROS levels as compared to untreated controls. Interestingly, cells pre-treated with both extracts were also able to decrease ROS levels in cells induced with oxidative stress. CNL was again the better antioxidant. According to multivariate data analysis of the 1H NMR results, the main metabolites postulated to contribute to the antioxidant and hepatoprotective abilities of leaves were clinacoside B, clinacoside C and isoschaftoside, which warrants further investigation.
Collapse
Affiliation(s)
- Kai Song Ng
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Chui Yin Bok
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Khye Er Loh
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Intan Safinar Ismail
- Natural Medicine and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Chen Son Yue
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Chui Fung Loke
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| |
Collapse
|
3
|
Shahruzaman SH, Yusof FZ, Maniam S, Fakurazi S, Maniam S. The cytotoxic effect of Baeckea frustescens extracts in eliminating hypoxic breast cancer cells. BMC Complement Med Ther 2021; 21:245. [PMID: 34598696 PMCID: PMC8485548 DOI: 10.1186/s12906-021-03417-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Adaptive metabolic response towards a low oxygen environment is essential to maintain rapid tumour proliferation and progression. The vascular network that surrounds the tumour develops an intermittent hypoxic condition and stimulates hypoxia-inducing factors. Baeckea frutescens is used in traditional medicine and known to possess antibacterial and cytoprotective properties. In this study, the cytotoxic effect of B. frutescens leaves and branches extracts against hypoxic human breast cancer (MCF-7) was investigated. METHOD The extracts were prepared using Soxhlet apparatus for ethanol and hexane extracts while the water extracts were freeze-dried. In vitro cytotoxic activities of B. frutescens extracts of various concentrations (20 to 160 μg/mL) at 24, 48, and 72 hours time points were studied using MTT in chemically induced hypoxic condition and in 3-dimensional in vitro cell culture system. An initial characterisation of B. frutescens extracts was carried out using Fourier-transform Infrared- Attenuated Total Reflection (FTIR-ATR) to determine the presence of functional groups. RESULTS All leaf extracts except for water showed IC50 values ranging from 23 -158 μg/mL. Hexane extract showed the lowest IC50 value (23 μg/mL), indicating its potent cytotoxic activity. Among the branch extracts, only the 70% ethanolic extract (B70) showed an IC50 value. The hexane leaf extract tested on 3- dimensional cultured cells showed an IC50 value of 17.2 μg/mL. The FTIR-ATR spectroscopy analysis identified various characteristic peak values with different functional groups such as alcohol, alkenes, alkynes, carbonyl, aromatic rings, ethers, ester, and carboxylic acids. Interestingly, the FTIR-ATR spectra report a complex and unique profile of the hexane extract, which warrants further investigation. CONCLUSION Adaptation of tumour cells to hypoxia significantly contributes to the aggressiveness and chemoresistance of different tumours. The identification of B. frutescens and its possible role in eliminating breast cancer cells in hypoxic conditions defines a new role of natural product that can be utilised as an effective agent that regulates metabolic reprogramming in breast cancer.
Collapse
Affiliation(s)
- S H Shahruzaman
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - F Z Yusof
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - S Maniam
- School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - S Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - S Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Heung TY, Huong JYS, Chen WY, Loh YW, Khaw KY, Goh BH, Ong YS. Anticancer Potential of Carica papaya through Modulation of Cancer Hallmarks. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ting Yi Heung
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | | | - Wan Yeng Chen
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yi Wen Loh
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
- Tropical Medicine & Biology Platform, Monash University Malaysia, Malaysia
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia Bandar Sunway Selangor Malaysia
| | - Bey-Hing Goh
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia Bandar Sunway Selangor Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia Bandar Sunway Selangor Malaysia
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Malaysia
| |
Collapse
|
5
|
Huh SU. New function of Hypoxia-responsive unknown protein in enhanced resistance to biotic stress. PLANT SIGNALING & BEHAVIOR 2021; 16:1868131. [PMID: 33369516 PMCID: PMC7889266 DOI: 10.1080/15592324.2020.1868131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Submergence and waterlogging lead to significant reductions in crop productivity and trigger dramatic changes in gene expression of plant biotic/abiotic stress response. Several of the host factors are involved in low-oxygen stress that is induced by endogenous reactive oxygen species (ROS) accumulation. Hypoxia-response unknown protein (HUP) has been found as a host factor of hypoxia screening but HUPs function largely is unknown. In this study, we found the Arabidopsis HUP26 gene which was conserved in different plant species and responded to various oxidative stress. HUP26 promoter analysis showed GUS activity in root and leaf tissues was significantly responsive to oxidative stress. HUP26-GFP is predominantly located in the cytoplasmic region. HUP26 overexpression results in altered enhanced pathogenesis-related gene 1 gene expression and reduced ion leakage levels compared with hup26 knockout and WT plants after inoculation with Pst DC3000. HUP26 overexpression transgenic plants showed improved resistance to Pst DC3000, but hup26 knockout plants exhibited increased susceptibility. Collectively, these results indicate that HUP26 plays important role in responses to various oxidative stress and confers biotic stress resistance. Engineering of HUP26 gene expression may represent a strategy to enhance biotic stress resistance of crops.
Collapse
Affiliation(s)
- Sung Un Huh
- Department of Biology, Kunsan National University, Gunsan, Republic of Korea
- CONTACT Sung Un Huh Department of Biology, Kunsan National University, Gunsan54150, Republic of Korea
| |
Collapse
|
6
|
Singh SP, Kumar S, Mathan SV, Tomar MS, Singh RK, Verma PK, Kumar A, Kumar S, Singh RP, Acharya A. Therapeutic application of Carica papaya leaf extract in the management of human diseases. Daru 2020; 28:735-744. [PMID: 32367410 PMCID: PMC7704890 DOI: 10.1007/s40199-020-00348-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Papaya (Carica papaya Linn.) belongs to the family Caricaceae and is well known for its therapeutic and nutritional properties all over the world. The different parts of the papaya plant have been used since ancient times for its therapeutic applications. Herein, we aimed to review the anticancer, anti-inflammatory, antidiabetic and antiviral activities of papaya leaf. METHODS All information presented in this review article regarding the therapeutic application of Carica papaya leaf extract has been acquired by approaching various electronic databases, including Scopus, Google scholar, Web of science, and PubMed. The keywords Carica papaya, anticancer, anti-inflammatory, immunomodulatory, and phytochemicals were explored until December 2019. RESULTS The papaya plant, including fruit, leaf, seed, bark, latex, and their ingredients play a major role in the management of disease progression. Carica papaya leaf contains active components such as alkaloids, glycosides, tannins, saponins, and flavonoids, which are responsible for its medicinal activity. Additionally, the leaf juice of papaya increases the platelet counts in people suffering from dengue fever. CONCLUSION The major findings revealed that papaya leaf extract has strong medicinal properties such as antibacterial, antiviral, antitumor, hypoglycaemic and anti-inflammatory activity. Furthermore, clinical trials are needed to explore the medicative potential of papaya leaf. Graphical abstract Graphical abstract showing the medicinal properties of Carica papaya leaf.
Collapse
Affiliation(s)
- Surya P Singh
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | - Sanjay Kumar
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sivapar V Mathan
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Rishi Kant Singh
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | | | - Amit Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | - Sandeep Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | - Rana P Singh
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Arbind Acharya
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
7
|
Hii LW, Lim SHE, Leong CO, Chin SY, Tan NP, Lai KS, Mai CW. The synergism of Clinacanthus nutans Lindau extracts with gemcitabine: downregulation of anti-apoptotic markers in squamous pancreatic ductal adenocarcinoma. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:257. [PMID: 31521140 PMCID: PMC6744713 DOI: 10.1186/s12906-019-2663-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Clinacanthus nutans extracts have been consumed by the cancer patients with the hope that the extracts can kill cancers more effectively than conventional chemotherapies. Our previous study reported its anti-inflammatory effects were caused by inhibiting Toll-like Receptor-4 (TLR-4) activation. However, we are unsure of its anticancer effect, and its interaction with existing chemotherapy. METHODS We investigated the anti-proliferative efficacy of polar leaf extracts (LP), non-polar leaf extracts (LN), polar stem extract (SP) and non-polar stem extracts (SN) in human breast, colorectal, lung, endometrial, nasopharyngeal, and pancreatic cancer cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assay. The most potent extracts was tested along with gemcitabine using our established drug combination analysis. The effect of the combinatory treatment in apoptosis were quantified using enzyme-linked immunosorbent assay (ELISA), Annexin V assay, antibody array and immunoblotting. Statistical significance was analysed using one-way analysis of variance (ANOVA) and post hoc Dunnett's test. A p-value of less than 0.05 (p < 0.05) was considered statistical significance. RESULTS All extracts tested were not able to induce potent anti-proliferative effects. However, it was found that pancreatic ductal adenocarcinoma, PDAC (AsPC1, BxPC3 and SW1990) were the cell lines most sensitive cell lines to SN extracts. This is the first report of C. nutans SN extracts acting in synergy with gemcitabine, the first line chemotherapy for pancreatic cancer, as compared to conventional monotherapy. In the presence of SN extracts, we can reduce the dose of gemcitabine 2.38-5.28 folds but still maintain the effects of gemcitabine in PDAC. SN extracts potentiated the killing of gemcitabine in PDAC by apoptosis. Bax was upregulated while bcl-2, cIAP-2, and XIAP levels were downregulated in SW1990 and BxPC3 cells treated with gemcitabine and SN extracts. The synergism was independent of TLR-4 expression in pancreatic cancer cells. CONCLUSION These results provide strong evidence of C. nutans extracts being inefficacious as monotherapy for cancer. Hence, it should not be used as a total substitution for any chemotherapy agents. However, SN extracts may synergise with gemcitabine in the anti-tumor mechanism.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000 Malaysia
| | - Swee-Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, Seri Kembangan, 43400 Selangor Malaysia
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000 Malaysia
- Centre for Cancer and Stem Cells Research, Institute for Research Development and Innovation, International Medical University, Kuala Lumpur, 57000 Malaysia
| | - Swee-Yee Chin
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Ngai-Paing Tan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, 43400 Selangor Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Seri Kembangan, Selangor Malaysia
| | - Chun-Wai Mai
- Centre for Cancer and Stem Cells Research, Institute for Research Development and Innovation, International Medical University, Kuala Lumpur, 57000 Malaysia
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
A Comprehensive Review on Phytochemistry and Pharmacological Activities of Clinacanthus nutans (Burm.f.) Lindau. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9276260. [PMID: 30105077 PMCID: PMC6076923 DOI: 10.1155/2018/9276260] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022]
Abstract
Clinacanthus nutans (Burm.f.) Lindau (Acanthaceae), commonly known as Sabah snake grass, is a vegetable and a well-known herb that is considered an alternative medicine for insect bites, skin rashes, herpes infection, inflammation, and cancer and for health benefits. Current review aims to provide a well-tabulated repository of the phytochemical screening, identification and quantification, and the pharmacological information of C. nutans according to the experimental design and the plant preparation methods which make it outstanding compared to existing reviews. This review has documented valuable data obtained from all accessible library databases and electronic searches. For the first time we analyzed the presence of flavonoids, triterpenoids, steroids, phytosterols, and glycosides in C. nutans based on the results from phytochemical screening which are then further confirmed by conventional phytochemical isolation methods and advanced spectroscopic techniques. Phytochemical quantification further illustrated that C. nutans is a good source of phenolics and flavonoids. Pharmacological studies on C. nutans revealed that its polar extract could be a promising anti-inflammation, antiviral, anticancer, immune and neuromodulating, and plasmid DNA protective agent; that its semipolar extract could be a promising antiviral, anticancer, and wound healing agent; and that its nonpolar extract could be an excellent anticancer agent.
Collapse
|
9
|
Zulkipli IN, Rajabalaya R, Idris A, Sulaiman NA, David SR. Clinacanthus nutans: a review on ethnomedicinal uses, chemical constituents and pharmacological properties. PHARMACEUTICAL BIOLOGY 2017; 55:1093-1113. [PMID: 28198202 PMCID: PMC6130650 DOI: 10.1080/13880209.2017.1288749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 05/02/2023]
Abstract
CONTEXT Medicinal plants have attracted global attention for their hidden therapeutic potential. Clinacanthus nutans (Burm.f) Lindau (Acanthaceae) (CN) is endemic in Southeast Asia. CN contains phytochemicals common to medicinal plants, such as flavonoids. Traditionally, CN has been used for a broad range of human ailments including snake bites and cancer. OBJECTIVES This article compiles the ethnomedicinal uses of CN and its phytochemistry, and thus provides a phytochemical library of CN. It also discusses the known pharmacological and biological effects of CN to enable better investigation of CN. METHODS This literature review was limited to articles and websites published in the English language. MEDLINE and Google Scholar databases were searched from December 2014 to September 2016 using the following keywords: "Clinacanthus nutans" and "Belalai gajah". The results were reviewed to identify relevant articles. Information from relevant selected studies was systematically analyzed from contemporary ethnopharmacological sources, evaluated against scientific literature, and extracted into tables. RESULTS The literature search yielded 124 articles which were then further scrutinized revealing the promising biological activities of CN, including antimicrobial, antiproliferative, antitumorigenic and anti-inflammatory effects. Few articles discussed the mechanisms for these pharmacological activities. Furthermore, CN was beneficial in small-scale clinical trials for genital Herpes and aphthous stomatitis. CONCLUSION Despite the rich ethnomedicinal knowledge behind the traditional uses of CN, the current scientific evidence to support these claims remains scant. More research is still needed to validate these medicinal claims, beginning by increasing the understanding of the biological actions of this plant.
Collapse
Affiliation(s)
- Ihsan N. Zulkipli
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| | - Rajan Rajabalaya
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| | - Adi Idris
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| | - Nurul Atiqah Sulaiman
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| | - Sheba R. David
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| |
Collapse
|
10
|
Ng PY, Chye SM, Ng CH, Koh RY, Tiong YL, Pui LP, Tan YH, Lim CSY, Ng KY. Clinacanthus Nutans Hexane Extracts Induce Apoptosis Through a Caspase-Dependent Pathway in Human Cancer Cell Lines. Asian Pac J Cancer Prev 2017; 18:917-926. [PMID: 28545188 PMCID: PMC5494240 DOI: 10.22034/apjcp.2017.18.4.917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Clinacanthus nutans (C.nutans) is a plant consumed as a cancer treatment in tropical Asia. Despite the availability of numerous anecdotal reports, evaluation of active anticancer effects has remained elusive. Therefore we here examined antiproliferative, reactive oxygen species (ROS)-inducing and apoptosis mechanisms of whole plant extracts in different cancer cell lines. Methods: Antiproliferative actions of five solvent extracts (hexane, chloroform, ethyl acetate, methanol and water) of C.nutans were tested on non-small cell lung cancer (A549), nasopharygeal cancer (CNE1) and liver cancer (HepG2) cells using MTT assay. The most potent anticancer extract was then assessed by flow cytometry to study cell cycle changes. Intracellular levels of ROS were quantified by DCFH-DA assay. Involvement of the caspase pathway in induction of apoptosis was assessed using caspase assay kits. GC-MS analysis was performed to identify phytoconstituents in the extracts. Results: Hexane and chloroform extracts were antiproliferative against all three cell lines, while the ethyl acetate extract, at 300 µg/mL, was antiproliferative in the CNE1 but not A549 and HepG2 cases. Methanol and water extracts did not inhibit cancer cell proliferation. The most potent anticancer hexane extract was selected for further testing. It induced apoptosis in all three cell lines as shown by an increase in the percentage of cell in sub-G1 phase. Dose-dependent increase in ROS levels in all three cell lines indicated apoptosis to be possibly modulated by oxidative stress. At high concentrations (>100 µg/mL), hexane extracts upregulated caspases 8, 9 and 3/7 across all three cell lines. GC-MS analysis of the hexane extract revealed abundance of 31 compounds. Conclusion: Among the five extracts of C.nutans, that with hexane extract demonstrated the highest antiproliferative activity against all three cancer cell lines tested. Action appeared to be via ion of intracellular ROS, and induction of apoptosis via intrinsic and extrinsic caspase pathways.
Collapse
Affiliation(s)
- Pei Ying Ng
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia.,School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nugroho A, Heryani H, Choi JS, Park HJ. Identification and quantification of flavonoids in Carica papaya leaf and peroxynitrite-scavenging activity. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Lee SY, Mustafa S, Ching YW, Shafee N. Zinc induces normoxic accumulation of transcriptionally active hypoxia-inducible factor 1-alpha in mammary epithelial cells. Mol Biol 2017. [DOI: 10.1134/s0026893317010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Abd-Aziz N, Stanbridge EJ, Shafee N. Newcastle disease virus degrades HIF-1α through proteasomal pathways independent of VHL and p53. J Gen Virol 2016; 97:3174-3182. [PMID: 27902314 PMCID: PMC5203671 DOI: 10.1099/jgv.0.000623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Newcastle disease virus (NDV) is a candidate agent for oncolytic virotherapy. Despite its potential, the exact mechanism of its oncolysis is still not known. Recently, we reported that NDV exhibited an increased oncolytic activity in hypoxic cancer cells. These types of cells negatively affect therapeutic outcome by overexpressing pro-survival genes under the control of the hypoxia-inducible factor (HIF). HIF-1 is a heterodimeric transcriptional factor consisting of a regulated α (HIF-1α) and a constitutive β subunit (HIF-1β). To investigate the effects of NDV infection on HIF-1α in cancer cells, the osteosarcoma (Saos-2), breast carcinoma (MCF-7), colon carcinoma (HCT116) and fibrosarcoma (HT1080) cell lines were used in the present study. Data obtained showed that a velogenic NDV infection diminished hypoxia-induced HIF-1α accumulation, leading to a decreased activation of its downstream target gene, carbonic anhydrase 9. This NDV-induced downregulation of HIF-1α occurred post-translationally and was partially abrogated by proteasomal inhibition. The process appeared to be independent of the tumour suppressor protein p53. These data revealed a correlation between NDV infection and HIF-1α downregulation, which highlights NDV as a promising agent to eliminate hypoxic cancer cells.
Collapse
Affiliation(s)
- Noraini Abd-Aziz
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| | - Eric J Stanbridge
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Norazizah Shafee
- Institute of Biosciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| |
Collapse
|
14
|
Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities. Int J Mol Sci 2016; 17:ijms17091478. [PMID: 27598154 PMCID: PMC5037756 DOI: 10.3390/ijms17091478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022] Open
Abstract
The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.
Collapse
|
15
|
Chinese Herbs Interfering with Cancer Reprogramming Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9282813. [PMID: 27242914 PMCID: PMC4875995 DOI: 10.1155/2016/9282813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
Emerging evidence promotes a reassessment of metabolic reprogramming regulation in cancer research. Although there exists a long history of Chinese herbs applied in cancer treatment, few reports have addressed the effects of Chinese herbal components on metabolic reprogramming, which is a central cancer hallmark involved in the slowing or prevention of chemoresistance in cancer cells. In this review, we have focused on four core elements altered by metabolic reprogramming in cancer cells. These include glucose transport, glycolysis, mitochondrial oxidative phosphorylation, and fatty acid synthesis. With this focus, we have summarized recent advances in metabolic reprogramming of cancer cells in response to specific Chinese herbal components. We propose that exploring Chinese herbal interference in cancer metabolic reprogramming might identify new therapeutic targets for cancer and more ways in which to approach metabolism-related diseases.
Collapse
|
16
|
Souza LF, de Barros IBI, Mancini E, Martino LD, Scandolera E, Feo VD. Chemical Composition and Biological Activities of the Essential Oils from Two Pereskia Species Grown in Brazil. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400901237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The chemical composition of the essential oils of Pereskia aculeata Mill. and P. grandifolia Haw. (Cactaceae), grown in Brazil, was studied by means of GC and GC-MS. In all, 37 compounds were identified, 30 for P. aculeata and 15 for P. grandifolia. Oxygenated diterpenes are the main constituents, both in the oil of P. grandifolia (55.5%) and in that of P. aculeata (29.4%). The essential oils were evaluated for their in vitro phytotoxic activity against germination and initial radicle growth of Raphanus sativus L., Sinapis arvensis L., and Phalaris canariensis L. seeds. The essential oil of P. grandifolia, at all doses tested, significantly inhibited the radicle elongation of R. sativus. Moreover, the antimicrobial activity of the essential oils was assayed against ten bacterial strains. The essential oils showed weak inhibitory activity against the Gram-positive pathogens.
Collapse
Affiliation(s)
- Lucéia Fátima Souza
- Department of Agronomy, University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Agronomia Porto Alegre - RS, 91501-970, Brazil
| | - Ingrid Bergman Inchausti de Barros
- Department of Agronomy, University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Agronomia Porto Alegre - RS, 91501-970, Brazil
| | - Emilia Mancini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
| | - Elia Scandolera
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Napoli, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
| |
Collapse
|
17
|
Pinto NDCC, Scio E. The biological activities and chemical composition of Pereskia species (Cactaceae)--a review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2014; 69:189-95. [PMID: 24862084 DOI: 10.1007/s11130-014-0423-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The exploration of nature as a source of sustainable, novel bioactive substances continues to grow as natural products play a significant role in the search for new therapeutic and agricultural agents. In this context, plants of the genus Pereskia (Cactaceae) have been studied for their biological activities, and are evolving as an interesting subject in the search for new, bioactive compounds. These species are commonly used as human foodstuffs and in traditional medicine to treat a variety of diseases. This review focuses on the bioactivity and chemical composition of the genus Pereskia, and aims to stimulate further studies on the chemistry and biological potential of the genus.
Collapse
Affiliation(s)
- Nícolas de Castro Campos Pinto
- Laboratory of Bioactive Natural Products. Department of Biochemistry, Institute of Biological Science of Federal University of Juiz de Fora, Juiz de Fora, MG 36036 900, Brazil
| | | |
Collapse
|
18
|
Zareisedehizadeh S, Tan CH, Koh HL. A Review of Botanical Characteristics, Traditional Usage, Chemical Components, Pharmacological Activities, and Safety of Pereskia bleo (Kunth) DC. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:326107. [PMID: 24987426 PMCID: PMC4060302 DOI: 10.1155/2014/326107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/02/2014] [Indexed: 12/03/2022]
Abstract
Pereskia bleo, a leafy cactus, is a medicinal plant native to West and South America and distributed in tropical and subtropical areas. It is traditionally used as a dietary vegetable, barrier hedge, water purifier, and insect repellant and for maintaining health, detoxification, prevention of cancer, and/or treatment of cancer, hypertension, diabetes, stomach ache, muscle pain, and inflammatory diseases such as dermatitis and rheumatism. The aim of this paper was to provide an up-to-date and comprehensive review of the botanical characteristics, traditional usage, phytochemistry, pharmacological activities, and safety of P. bleo. A literature search using MEDLINE (via PubMed), Science direct, Scopus and Google scholar and China Academic Journals Full-Text Database (CNKI) and available eBooks and books in the National University of Singapore libraries in English and Chinese was conducted. The following keywords were used: Pereskia bleo, Pereskia panamensis, Pereskia corrugata, Rhodocacus corrugatus, Rhodocacus bleo, Cactus panamensis, Cactus bleo, Spinach cactus, wax rose, Perescia, and Chinese rose. This review revealed the association between the traditional usage of P. bleo and reported pharmacological properties in the literature. Further investigation on the pharmacological properties and phytoconstituents of P. bleo is warranted to further exploit its potentials as a source of novel therapeutic agents or lead compounds.
Collapse
Affiliation(s)
- Sogand Zareisedehizadeh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Chay-Hoon Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Hwee-Ling Koh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| |
Collapse
|