1
|
Wang L, Lian YJ, Dong JS, Liu MK, Liu HL, Cao ZM, Wang QN, Lyu WL, Bai YN. Traditional Chinese medicine for chronic atrophic gastritis: Efficacy, mechanisms and targets. World J Gastroenterol 2025; 31:102053. [DOI: 10.3748/wjg.v31.i9.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Chronic atrophic gastritis (CAG) is an important stage of precancerous lesions of gastric cancer. Effective treatment and regulation of CAG are essential to prevent its progression to malignancy. Traditional Chinese medicine (TCM) has shown multi-targeted efficacy in CAG treatment, with advantages in enhancing gastric mucosal barrier defense, improving microcirculation, modulating inflammatory and immune responses, and promoting lesion healing, etc. Clinical studies and meta-analyses indicate that TCM provides significant benefits, with specific Chinese herbal compounds and monomers demonstrating protective effects on the gastric mucosa through mechanisms including anti-inflammation, anti-oxidation, and regulation of cellular proliferation and apoptosis, etc. Finally, it is pointed out that the efficacy of TCM in the treatment of CAG requires standardized research and unified standards, and constantly clarifies and improves the evaluation criteria of each dimension of gastric mucosal barrier function.
Collapse
Affiliation(s)
- Li Wang
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yan-Jie Lian
- Division of Cardiovascular, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Jin-Sheng Dong
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ming-Kun Liu
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hong-Liang Liu
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zheng-Min Cao
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing-Nan Wang
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wen-Liang Lyu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yu-Ning Bai
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
2
|
Hou C, Liang H, Hao Z, Zhao D. Berberine ameliorates the neurological dysfunction of the gastric fundus by promoting calcium channels dependent release of ACh in STZ-induced diabetic rats. Saudi Pharm J 2023; 31:433-443. [PMID: 37026044 PMCID: PMC10071329 DOI: 10.1016/j.jsps.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Background It has been reported diabetic gastroparesis is related to diabetic autonomic neuropathy of the gastrointestinal tract, and berberine (BBR) could ameliorate diabetic central and peripheral neuropathy. However, the influence of BBR on the function and motility of the gastric fundus nerve is unclear. Methods A diabetic rat model was constructed, and HE staining was used to observe the morphological changes in the gastric fundus. The changes in cholinergic and nitrogen-related neurochemical indexes and the effects of BBR on them were measured using Elisa. The effects of BBR on the neural function and motility of gastric fundus were investigated by electric field stimulation (EFS) induced neurogenic response in vitro. Results In the early stage of STZ-induced diabetic rats, the contractile response of gastric fundus induced by EFS was disorder, disturbance of contraction amplitude, and the cell bodies of neurons in the myenteric plexus of gastric fundus presented vacuolar lesions. Administration with BBR could improve the above symptoms. BBR further enhanced the contraction response in the presence of a NOS inhibitor or the case of inhibitory neurotransmitters removal. Interestingly, the activity of ACh could affect NO release directly and the enhancement of BBR on contractile response was canceled by calcium channel blockers completely. Conclusions In the early stage of STZ-induced diabetic rats, the neurogenic contractile response disorder of the gastric fundus is mainly related to cholinergic and nitrergic nerve dysfunction. BBR promotes the release of ACh mainly by affecting the calcium channel to improve the neurological dysfunction of the gastric fundus.
Collapse
Affiliation(s)
- Congcong Hou
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China
| | - Hongyu Liang
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China
- Beijing Shouyi Group Co., Ltd. Mine Hospital, Tangshan 064400, PR China
| | - Zhangsen Hao
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China
| | - Ding Zhao
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China
- Corresponding author at: Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China.
| |
Collapse
|
3
|
Liang G, Zhang L, Jiang G, Chen X, Zong Y, Wang F. Effects and Components of Herb Pair Huanglian-Banxia on Diabetic Gastroparesis by Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8257937. [PMID: 34708128 PMCID: PMC8545519 DOI: 10.1155/2021/8257937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022]
Abstract
Diabetic gastroparesis (DGP) is a serious and chronic complication of long-standing diabetes mellitus, which brings a heavy burden to individuals and society. Traditional Chinese medicine (TCM) is considered a complementary and alternative therapy for DGP patients. Huanglian (Coptidis Rhizoma, HL) and Banxia (Pinelliae Rhizoma, BX) combined as herb pair have been frequently used in TCM prescriptions, which can effectively treat DGP in China. In this article, a practical application of TCM network pharmacological approach was used for the research on herb pair HL-BX in the treatment of DGP. Firstly, twenty-seven potential active components of HL-BX were screened from the TCMSP database, and their potential targets were also retrieved. Then, the compound-target network and PPI network were constructed from predicted common targets, and several key targets were found based on the degree of the network. Next, GO and KEGG enrichment analyses were conducted to obtain several significantly enriched terms. Finally, the experimental verification was made. The results demonstrated that network pharmacological approach was a powerful means for identifying bioactive ingredients and mechanisms of action for TCM. Network pharmacology provided an effective strategy for TCM modern research.
Collapse
Affiliation(s)
- Guoqiang Liang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000 Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, 215000 Jiangsu, China
| | - Lurong Zhang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000 Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, 215000 Jiangsu, China
| | - Guorong Jiang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000 Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, 215000 Jiangsu, China
| | - Xuanyi Chen
- Department of Gynecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000 Jiangsu, China
| | - Yang Zong
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000 Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, 215000 Jiangsu, China
| | - Fei Wang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000 Jiangsu, China
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou Academy of Wumen Chinese Medicine, Suzhou, 215000 Jiangsu, China
| |
Collapse
|
4
|
Miao L, Yun X, Yang X, Jia S, Jiao C, Shao R, Hao J, Chang Y, Fan G, Zhang J, Geng Q, Wichai N, Gao X. An inhibitory effect of Berberine from herbal Coptis chinensis Franch on rat detrusor contraction in benign prostatic hyperplasia associated with lower urinary tract symptoms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113666. [PMID: 33301912 DOI: 10.1016/j.jep.2020.113666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis Franch (CCF), also known as Huang Lian in China, is a traditional Chinese medicine that commonly used for more than 2000 years. Clinically, CCF often used as anti-inflammatory, immune regulation and other effects. It has been reported that the decoction containing CCF can be used for the treatment of benign prostatic hyperplasia (BPH) or lower urinary tract symptoms (LUTS). AIM OF THE STUDY This research aims to investigate the effect of CCF on inhibition of BPH development in vivo and in vitro, and further identify the active compound (s) and the possible mechanism involved in BPH-related bladder dysfunction. MATERIALS AND METHODS Oestrodial/testosterone-induced BPH rat model was established as the in vivo model. The prostate index (PI) was calculated, the pathogenesis was analyzed and the micturition parameters were determined in the shamed-operated, BPH model and BPH + CCF groups after 4-week administration. The tension in detrusor strips was then assessed upon KCl or ACh stimulation with or without incubation of CCF or active compounds. To further investigate the signaling involved, rat detrusor cells were cultured as the in vitro models, the instantaneous calcium influx was measured and the ROCK-1 expression was detected. RESULTS Increased PI value and the aggravated prostatic pathology were observed with voiding dysfunction in BPH rats, which were significantly blocked by oral CCF taken. ACh or KCl-induced contractile responses in detrusor strips were significantly inhibited and the micturition parameters were improved when incubation with CCF or its active compounds such as berberine. Both CCF and berberine suppressed the cellular calcium influx and ROCK-1 expression upon ACh stimulation, demonstrating that berberine was one of the active compounds that contributed to CCF-improved micturition symptoms and function. CONCLUSIONS Taken together, our findings give evidence that CCF and its active compound berberine inhibited BPH and bladder dysfunction via Ca2+ and ROCK signaling, supporting their clinical use for BPH and BPH-related LUTS treatment.
Collapse
Affiliation(s)
- Lin Miao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China.
| | - Xiaoting Yun
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaohua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China
| | - Sitong Jia
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China
| | - Chanyuan Jiao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China
| | - Jia Hao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guanwei Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ju Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, And Bioactive Materials Key Lab of Ministry of Education (J.Z.), Nankai University, Tianjin, 300071, China
| | - Qiang Geng
- Department of Andrology, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Nuttapong Wichai
- Faculty of Pharmacy, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Xiumei Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
5
|
Zhao L, Liu S, Wang M, Zhi M, Geng X, Hou C, Wang W, Zhao D. Berberine restored nitrergic and adrenergic function in mesenteric and iliac arteries from streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112140. [PMID: 31400506 DOI: 10.1016/j.jep.2019.112140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perivascular neuropathy was reported to involve in the vascular disorders associated with diabetes. The dried rhizomes of Coptis chinensis Franch. (Latin name: Coptidis Rhizoma; common name: Huang Lian in China), used frequently in Traditional Chinese medicine to treat diabetes (Xiaoke), have been confirmed to possess beneficial effects on diabetic peripheral neuropathy by modern clinical and pharmacological studies. Berberine (BBR), the main effective component of Huang Lian in the treatment of diabetes, is reported to ameliorate diabetic central and peripheral neuropathy. However, the effects of BBR on nerve function of mesenteric and iliac arteries are unclear. AIM OF THE STUDY To investigate the effects of BBR on the diabetes-induced changes in nitrergic and adrenergic function in mesenteric and iliac arteries. MATERIALS AND METHODS In this study, the animals were randomized into three groups: control rats, diabetic rats, and diabetic rats gavaged with BBR. We established diabetic rat model using intraperitoneal injection of streptozotocin (STZ, 55 mg kg-1). Two weeks after model establishment, those in the BBR-treated groups were gavaged with berberine chloride (Sichuan Xieli Fharmaceutical. Co., Ltd; 200 mg·kg-1·day-1) diluted in distilled water for another 2 weeks. The superior mesenteric artery and iliac artery were excised. Electric field stimulation (EFS) was used to induce arterial vasoconstriction and explore (1) the diabetes-induced changes in neurogenic function of the superior mesenteric artery and iliac artery; (2) the effects of BBR on neurovascular dysfunction in the early stage of STZ-induced diabetic rats. Nitric oxide (NO) and noradrenaline (NA) released from the nitrergic and adrenergic nerves were quantified using fluorescence assays and ELISA, respectively. RESULTS EFS induced frequency-dependent vasoconstrictions in both superior mesenteric and iliac artery, and the contractile responses of arteries were abolished by 0.1 μmol·L-1 tetrodotoxin (TTX), or inhibited by 1 μmol·L-1 phentolamine or increased by 0.1 mmol·L-1 Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME). In superior mesenteric artery, but not in iliac artery, the changes of contractile responses with L-NAME were significantly decreased in diabetic rats, and NO release was less also. In contrast, in iliac artery of diabetic rats, but not in superior mesenteric artery, the changes of contractile responses with phentolamine were increased, and NA release was increased significantly. All these changes in diabetic rats on both superior mesenteric artery and iliac artery were reversed by treated with BBR. CONCLUSIONS In the STZ-induced early diabetic rats, neural control of mesenteric and iliac vasomotor tone are altered differently. The diminished nitrergic nerve in superior mesenteric artery and enhanced adrenergic nerve in iliac artery both contributed to increased vasocontrictor responses. All these changes in diabetic rats were reversed by BBR, suggesting a novel mechanism of BBR in balance of neural regulation of vascular tone.
Collapse
Affiliation(s)
- Lili Zhao
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Shuai Liu
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Man Wang
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Minghua Zhi
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Xufang Geng
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Congcong Hou
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Wei Wang
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Ding Zhao
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, PR China.
| |
Collapse
|
6
|
Kaya-Sezginer E, Yilmaz-Oral D, Gur S. Administration of human umbilical cord blood mononuclear cells restores bladder dysfunction in streptozotocin-induced diabetic rats. Low Urin Tract Symptoms 2019; 11:232-240. [PMID: 31207098 DOI: 10.1111/luts.12268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/01/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study evaluated the effect of human umbilical cord blood mononuclear cells (HUCB-MNCs) on bladder dysfunction in streptozotocin (STZ; 35 mg/kg, i.v.)-induced diabetic rats. METHODS Adult male Sprague-Dawley rats (n = 30) were equally divided into three groups: control group, STZ-diabetic group, and HUCB-MNC-treated group (1 × 106 cells). HUCB-MNCs were isolated by density gradient centrifugation from eight healthy donors and injected into the corpus cavenosum in STZ-diabetic rats 4 weeks after the induction of diabetes. Studies were performed 4 weeks after HUCB-MNC or vehicle injection. In vitro organ bath studies were performed on bladder strips, whereas protein expression of hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), and α-smooth muscle actin (SMA) in the bladder and the ratio of smooth muscle cells (SMCs) to collagen were determined using western blotting and Masson trichrome staining. RESULTS Neurogenic contractions of detrusor smooth muscle strips were 55% smaller in the diabetic group than control group (P < 0.05); these contractions were normalized by HUCB-MNC treatment. In addition, HUCB-MNC treatment restored the impaired maximal carbachol-induced contractile response in detrusor strips in the diabetic group (29%; P < 0.05). HUCB-MNC treatment improved the KCl-induced contractile response in the diabetic bladder (68%; P < 0.05), but had no effect on ATP-induced contractile responses. Increased expression of HIF-1α and VEGF protein and decreased expression of α-SMA protein and the SMC/collagen ratio in diabetic rats were reversed by HUCB-MNC. CONCLUSION Administration of HUCB-MNCs facilitates bladder function recovery, which is likely related to downregulation of HIF-1α expression and attenuation of fibrosis in STZ-diabetic rats.
Collapse
Affiliation(s)
- Ecem Kaya-Sezginer
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Pharmacology, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Serap Gur
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Ding H, Zhang P, Li N, Liu Y, Wang P. The phosphodiesterase type 4 inhibitor roflumilast suppresses inflammation to improve diabetic bladder dysfunction rats. Int Urol Nephrol 2018; 51:253-260. [PMID: 30474782 DOI: 10.1007/s11255-018-2038-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To demonstrate that phosphodiesterase type 4 (PDE4) inhibitors could potentially treat diabetic bladder dysfunction (DBD) through modulation of the systemic inflammatory response. METHODS In this 6-week study, 60 female Sprague-Dawley rats were divided into three groups: (i) vehicle-treated control rats; (ii) vehicle-treated streptozocin (STZ)-injected rats; and (iii) roflumilast-treated STZ-injected rats. Oral roflumilast (5 mg/kg/day) was administered during the last 4 weeks of STZ injection to induce diabetes in the test group. At 6 weeks, a urodynamic study was performed in each group. The expression of nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-1β in detrusor smooth muscle (DSM) was analyzed using quantitative reverse transcription-polymerase chain reaction and Western blotting. RESULTS A significant decrease in bodyweight and significant increases in bladder weight and blood glucose level were observed in the diabetic rats and were not ameliorated by roflumilast treatment. Cystometry showed the increased bladder capacity, voiding volume, residual urine volume, and voiding interval in the diabetic rats and the prevention of these changes by roflumilast. These changes were accompanied by significantly enhanced expression of NF-κB, TNF-α, IL-6, and IL-1β in DSM tissue from diabetic rats. Furthermore, roflumilast attenuated the expression of inflammatory factors in DSM tissue. CONCLUSIONS Oral treatment with roflumilast in diabetic rats improves bladder function and inhibits the expression of inflammatory factors in DSM tissue, indicating that PDE4 is a potential therapeutic target for DBD.
Collapse
Affiliation(s)
- Honglin Ding
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China.,Department of Urology, Affiliated Hospital, Chifeng University, 42 Wangfu Street, Chifeng, Neimeng, China
| | - Peng Zhang
- Department of General Surgery, Shenyang 242 Hospital, 3 Leshan Road, Shenyang, Liaoning, China
| | - Ning Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China.
| | - Yili Liu
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Ping Wang
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Chen X, Guo H, Li Q, Zhang Y, Liu H, Zhang X, Xie K, Zhu Z, Miao Q, Su S. Protective effect of berberine on aconite‑induced myocardial injury and the associated mechanisms. Mol Med Rep 2018; 18:4468-4476. [PMID: 30221717 PMCID: PMC6172373 DOI: 10.3892/mmr.2018.9476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
Aconitum plants, which have analgesic, diuretic and anti-inflammatory effects, have been widely used to treat various types of disease. However, the apparent toxicity of Aconitum-derived agents, particularly in the cardiovascular system, has largely limited their clinical use. Thus, the present study investigated whether berberine (Ber), an isoquinoline alkaloid, may reduce myocardial injury induced by aconitine (AC) in rats and the underlying mechanisms. Rats (n=40) were randomly divided into four groups: Control, Chuan-wu and Chuan-wu + Ber (8 and 16 mg/kg doses). Electrocardiograms (ECG) of the rats were recorded and serum biomarkers of cardiac function [lactate dehydrogenase (LDH), creatine kinase (CK) and CK-MB] were assayed. Histopathological changes were assessed using myocardial tissue sectioning and hematoxylin and eosin staining. Additionally, the effects of Ber on AC-induced arrhythmias in rats were observed. The changes in ECG following AC perfusion were observed, and the types and onset time of arrhythmias were analyzed. Furthermore, the effects of Ber and AC on papillary muscle action potentials were observed. The results suggested that Ber ameliorated myocardial injury induced by Chuan-wu, which was indicated by reduced arrhythmias and decreased LDH, CK and CK-MB levels in serum. Furthermore, histological damage, including dilation of small veins and congestion, was also markedly attenuated by Ber. In addition, the occurrence of arrhythmias was significantly delayed, and the dosage of AC required to induce arrhythmias was also increased by Ber pretreatment. Additionally, AC-induced changes in action potential amplitude, duration of 30% repolarization and duration of 90% repolarization in the papillary muscle were attenuated by Ber. All of these results indicate that Ber had a preventive effect on acute myocardial injury induced by Chuan-wu and arrhythmias caused by AC, which may be associated with the inhibition of delayed depolarization and triggered activity caused by AC. Thus, combination treatment of Ber with Aconitum plants may be a novel strategy to prevent AC-induced myocardial injury in clinical practice.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Shijiazhuang, Hebei 050017, P.R. China
| | - Huicai Guo
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Shijiazhuang, Hebei 050017, P.R. China
| | - Qing Li
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Shijiazhuang, Hebei 050017, P.R. China
| | - Yu Zhang
- Department of Reproductive Medicine, The Family Planning Research Institute of Hebei Province, Shijiazhuang, Hebei 050000, P.R. China
| | - Huanlong Liu
- Pharmaceutical Department of The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaofei Zhang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Shijiazhuang, Hebei 050017, P.R. China
| | - Kerang Xie
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Shijiazhuang, Hebei 050017, P.R. China
| | - Zhongning Zhu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Shijiazhuang, Hebei 050017, P.R. China
| | - Qingfeng Miao
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Shijiazhuang, Hebei 050017, P.R. China
| | - Suwen Su
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
9
|
Lee S, Rose'meyer R, McDermott C, Chess-Williams R, Sellers DJ. Diabetes-induced alterations in urothelium function: Enhanced ATP release and nerve-evoked contractions in the streptozotocin rat bladder. Clin Exp Pharmacol Physiol 2018; 45:1161-1169. [PMID: 29935089 DOI: 10.1111/1440-1681.13003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/29/2022]
Abstract
Up to 80% of patients with diabetes mellitus develop lower urinary tract complications, most commonly diabetic bladder dysfunction (DBD). The aim of this study was to investigate the impact of diabetes on the function of the inner bladder lining (urothelium). Bladder compliance and intraluminal release of urothelial mediators, adenosine triphosphate (ATP) and acetylcholine (ACh) in response to distension were investigated in whole bladders isolated from 2- and 12-week streptozotocin (STZ)-diabetic rats. Intact and urothelium-denuded bladder strips were used to assess the influence of the urothelium on bladder contractility. Intraluminal ATP release was significantly enhanced at 2 weeks of diabetes, although not at 12 weeks. In contrast, intraluminal ACh release was unaltered by diabetes. Bladder compliance was also significantly enhanced at both 2 and 12 weeks of diabetes, with greatly reduced intravesical pressures in response to distension. Nerve-evoked contractions of bladder strips were significantly greater at 2 weeks of diabetes. When the urothelium was absent, nerve-evoked contractions were reduced, but contractions remained significantly elevated at lower frequencies of stimulation (<5 Hz) in diabetics. Interestingly, although relaxations of bladder strips to isoprenaline were unaltered by diabetes, removal of the urothelium unmasked significantly enhanced relaxations in strips from 2- and 12-week diabetic animals. In conclusion, diabetes alters urothelial function. Enhanced urothelial ATP release may be involved in the hypercontractility observed at early time points of diabetes. These alterations are time-dependent and may contribute to the mechanisms at play during the development of diabetic bladder dysfunction.
Collapse
Affiliation(s)
- Sophie Lee
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Roselyn Rose'meyer
- School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| |
Collapse
|
10
|
Xu J, Xu H, Yu Y, He Y, Liu Q, Yang B. Combination of Luteolin and Solifenacin Improves Urinary Dysfunction Induced by Diabetic Cystopathy in Rats. Med Sci Monit 2018. [PMID: 29523776 PMCID: PMC5858738 DOI: 10.12659/msm.904534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The purpose of the present study was to assess the effect of luteolin and solifenacin on diabetic cystopathy (DCP) and to investigate the mechanism of action. A novel link between the overexpression of c-Kit in the bladder and voiding dysfunction was identified in rats with DCP. Material/Methods A rat model of DCP was successfully established by intraperitoneal injection of streptozotocin and a diet high in glucose and lipids, and animals were treated with luteolin and solifenacin. The effect of luteolin and solifenacin on urinary dysfunction in DCP rats was investigated by assessing bladder pressure and performing a volume test. The protein levels of c-Kit, stem cell factor (SCF), p110, and phosphorylated p110 in the bladder were detected by Western blot analysis and immunohistochemical staining. Results In DCP rats, the protein levels of c-Kit, SCF and phosphorylated p110 in the bladder were significantly increased. However, oral treatment of DCP rats with luteolin combined with solifenacin resulted in effective improvement of overactive bladder and reduced the protein expression of c-Kit, SCF, and phosphorylated p110. Moreover, the effect of luteolin combined with solifenacin on maximum voiding pressure and residual urine volume was improved compared to that of luteolin alone. Conclusions Luteolin improved overactive bladder in DCP rats, which may be due to SCF/c-kit inhibition, as well as the downregulation of the phosphoinositide-3 kinase signaling pathway. Moreover, solifenacin enhanced the potential pharmacological effect of luteolin in the treatment of DCP.
Collapse
Affiliation(s)
- Jing Xu
- College of Basic Medical Sciences, Dalian Meduical University, Dalian, Liaoning, China (mainland)
| | - Hong Xu
- Collegue of Basic Medical Sciences, Dalian Meduical University, Dalian, Liaoning, China (mainland)
| | - Yang Yu
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Yi He
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Qi Liu
- College of Pharmacy, Dalian Meduical University, Dalian, Liaoning, China (mainland)
| | - Bo Yang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
11
|
Jia Y, Xu B, Xu J. Effects of type 2 diabetes mellitus on the pharmacokinetics of berberine in rats. PHARMACEUTICAL BIOLOGY 2017; 55:510-515. [PMID: 27937081 PMCID: PMC6130524 DOI: 10.1080/13880209.2016.1255649] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/27/2016] [Indexed: 05/23/2023]
Abstract
CONTEXT Berberine is an active alkaloid isolated from Rhizoma coptidis [Coptis chinensis Franch. (Ranunculaceae)] that is widely used for the treatment of diabetes, hyperlipidemia and hypertension. However, the pharmacokinetics of berberine in normal rats and type 2 diabetes mellitus (T2DM) model rats are not clear. OBJECTIVE This study compares the pharmacokinetics of berberine between normal and T2DM model rats. MATERIALS AND METHODS The T2DM model rats were fed with high fat diet for 4 weeks, induced by low-dose (30 mg/kg) streptozotocin for 72 h and validated by determining the peripheral blood glucose level. Rats were orally treated with berberine at a dose of 20 mg/kg and then berberine concentration in rat plasma was determined by employing a sensitive and rapid LC-MS/MS method. RESULTS The significantly different pharmacokinetic behaviour of berberine was observed between normal and T2DM model rats. When compared with the normal group, Cmax, t1/2 and AUC(0-t) of berberine were significantly increased in the model group (17.35 ± 3.24 vs 34.41 ± 4.25 μg/L; 3.95 ± 1.27 vs 9.29 ± 2.75 h; 151.21 ± 23.96 vs 283.81 ± 53.92 μg/h/L, respectively). In addition, oral clearance of berberine was significantly decreased in the model group (134.73 ± 32.15 vs 62.55 ± 16.34 L/h/kg). DISCUSSION AND CONCLUSION In T2DM model rats, the pharmacokinetic behaviour of berberine was significantly altered, which indicated that berberine dosage should be modified in T2DM patients.
Collapse
Affiliation(s)
- Yuzhen Jia
- Department of Pediatrics, Yidu Central Hospital of Weifang, Shandong, China
| | - Binger Xu
- Department of Pediatrics, Yidu Central Hospital of Weifang, Shandong, China
| | - Jisen Xu
- Department of Pediatrics, Yidu Central Hospital of Weifang, Shandong, China
| |
Collapse
|
12
|
Differential effects of short- and long-term bupivacaine treatment on α1-adrenoceptor-mediated contraction of isolated rat aorta rings and the reversal effect of lipid emulsion. Acta Pharmacol Sin 2015; 36:976-86. [PMID: 26073324 DOI: 10.1038/aps.2015.40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/12/2015] [Indexed: 01/06/2023] Open
Abstract
AIM Arterial function is significantly influenced by bupivacaine at both clinically relevant concentrations and toxic concentrations, but the underlying mechanisms are not fully understood. In the present study we investigated the role of α1-adrenoceptors in bupivacaine effects on isolated rat aortas. METHODS Isolated aortic rings were prepared from rats and suspended in an organ bath. Phenylephrine (Phe)-induced vasoconstriction and acetylcholine (ACh)-induced vasodilation were recorded through an isometric force transducer connected to a data acquisition system. RESULTS Administration of bupivacaine (30-300 μmol/L) produced mild vasoconstriction, and this response declined with repeated administrations. Treatment of the aortic rings with bupivacaine (3-30 μmol/L) for 20 min enhanced Phe-induced vasoconstriction, while treatment for 40 min suppressed Phe-induced vasoconstriction. Both the short- and long-term bupivacaine treatment suppressed ACh-induced vasodilation. Incubation of the aortic rings with 0.2%-0.6% lipid emulsion (LE) for 100 min significantly increased the pD2 and Emax values of Phe-induced vasoconstriction, and incubation with 0.4% LE for 100 min reversed the inhibition of bupivacaine on vasoconstriction induced by Phe (30 μmol/L). In contrast, incubation with LE suppressed ACh-induced vasodilation, even at a lower concentration and with a 5-min incubation. CONCLUSION Bupivacaine exerts dual effects on α1-adrenoceptor-mediated vasoconstriction of isolated rat aortic rings: short-term treatment enhances the response, while long-term treatment inhibits it; the inhibition may be reversed via long-term incubation with LE.
Collapse
|
13
|
Kumar A, Ekavali, Chopra K, Mukherjee M, Pottabathini R, Dhull DK. Current knowledge and pharmacological profile of berberine: An update. Eur J Pharmacol 2015; 761:288-97. [PMID: 26092760 DOI: 10.1016/j.ejphar.2015.05.068] [Citation(s) in RCA: 344] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 02/04/2023]
Abstract
Berberine, a benzylisoquinoline alkaloid, occurs as an active constituent in numerous medicinal plants and has an array of pharmacological properties. It has been used in Ayurvedic and Chinese medicine for its antimicrobial, antiprotozoal, antidiarrheal and antitrachoma activity. Moreover, several clinical and preclinical studies demonstrate ameliorative effect of berberine against several disorders including metabolic, neurological and cardiological problems. This review provides a summary regarding the pharmacokinetic and pharmacodynamic features of berberine, with a focus on the different mechanisms underlying its multispectrum activity. Studies regarding the safety profile, drug interactions and important clinical trials of berberine have also been included. Clinical trials with respect to neurological disorders need to be undertaken to exploit the beneficiary effects of berberine against serious disorders such as Alzheimer's and Parkinson's disease. Also, clinical studies to detect rare adverse effects of berberine need to be initiated to draw a complete safety profile of berberine and strengthen its applicability.
Collapse
Affiliation(s)
- Anil Kumar
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh 160014, India.
| | - Ekavali
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Kanwaljit Chopra
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Madhurima Mukherjee
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Raghavender Pottabathini
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Dinesh K Dhull
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
14
|
Chen S, Zhu Y, Liu Z, Gao Z, Li B, Zhang D, Zhang Z, Jiang X, Liu Z, Meng L, Yang Y, Shi B. Grape Seed Proanthocyanidin Extract Ameliorates Diabetic Bladder Dysfunction via the Activation of the Nrf2 Pathway. PLoS One 2015; 10:e0126457. [PMID: 25974036 PMCID: PMC4431834 DOI: 10.1371/journal.pone.0126457] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/03/2015] [Indexed: 01/11/2023] Open
Abstract
Diabetes Mellitus (DM)-induced bladder dysfunction is predominantly due to the long-term oxidative stress caused by hyperglycemia. Grape seed proanthocyanidin extract (GSPE) has been reported to possess a broad spectrum of pharmacological and therapeutic properties against oxidative stress. However, its protective effects against diabetic bladder dysfunction have not been clarified. This study focuses on the effects of GSPE on bladder dysfunction in diabetic rats induced by streptozotocin. After 8 weeks of GSPE administration, the bladder function of the diabetic rats was improved significantly, as indicated by both urodynamics analysis and histopathological manifestation. Moreover, the disordered activities of antioxidant enzymes (SOD and GSH-Px) and abnormal oxidative stress levels were partly reversed by treatment with GSPE. Furthermore, the level of apoptosis in the bladder caused by DM was decreased following the administration of GSPE according to the Terminal Deoxynucleotidyl Transferase (TdT)-mediated dUTP Nick-End Labeling (TUNEL) assay. Additionally, GSPE affected the expression of apoptosis-related proteins such as Bax, Bcl-2 and cleaved caspase-3. Furthermore, GSPE showed neuroprotective effects on the bladder of diabetic rats, as shown by the increased expression of nerve growth factor (NGF) and decreased expression of the precursor of nerve growth factor (proNGF). GSPE also activated nuclear erythroid2-related factor2 (Nrf2), which is a key antioxidative transcription factor, with the concomitant elevation of downstream hemeoxygenase-1 (HO-1). These findings suggested that GSPE could ameliorate diabetic bladder dysfunction and decrease the apoptosis of the bladder in diabetic rats, a finding that may be associated with its antioxidant activity and ability to activate the Nrf2 defense pathway.
Collapse
Affiliation(s)
- Shouzhen Chen
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Zhifeng Liu
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
- Department of Urology, The Central Hospital of Tai’ an, Longtan Road, Tai’ an, Shandong Province, People’s Republic of China
| | - Zhaoyun Gao
- Department of Urology, People’s Hospital of Yinan County, Lishan Road, Yinan, Shandong Province, People’s Republic of China
| | - Baoying Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Dongqing Zhang
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Zhaocun Zhang
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Zhengfang Liu
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Lingquan Meng
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Yue Yang
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
15
|
Neurourology transforms the drug development experience. Int Neurourol J 2014; 18:105. [PMID: 25279236 PMCID: PMC4180159 DOI: 10.5213/inj.2014.18.3.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
|