1
|
Karimi MR, Jariani P, Yang JL, Naghavi MR. A comprehensive review of the molecular and genetic mechanisms underlying gum and resin synthesis in Ferula species. Int J Biol Macromol 2024; 269:132168. [PMID: 38729496 DOI: 10.1016/j.ijbiomac.2024.132168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Ferula spp. are plants that produce oleo-gum-resins (OGRs), which are plant exudates with various colors. These OGRs have various industrial applications in pharmacology, perfumery, and food. The main constituents of these OGRs are terpenoids, a diverse group of organic compounds with different structures and functions. The biosynthesis of OGRs in Ferula spp., particularly galbanum, holds considerable economic and ecological importance. However, the molecular and genetic underpinnings of this biosynthetic pathway remain largely enigmatic. This review provides an overview of the current state of knowledge on the biosynthesis of OGRs in Ferula spp., highlighting the major enzymes, genes, and pathways involved in the synthesis of different terpenoid classes, such as monoterpenes, sesquiterpenes, and triterpenes. It also examines the potential of using omics techniques, such as transcriptomics and metabolomics, and genome editing tools, such as CRISPR/Cas, to increase the yield and quality of Ferula OGRs, as well as to create novel bioactive compounds with enhanced properties. Moreover, this review addresses the current challenges and opportunities of applying gene editing in Ferula spp., and suggests some directions for future research and development.
Collapse
Affiliation(s)
- Mohammad Reza Karimi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Parisa Jariani
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
2
|
Bagheri SM, Esmailidehaj M. A Comprehensive Review of the Pharmacological Effects of Genus Ferula on Central Nervous System Disorders. Cent Nerv Syst Agents Med Chem 2024; 24:105-116. [PMID: 39034830 DOI: 10.2174/0118715249256485231031043722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/11/2023] [Accepted: 10/10/2023] [Indexed: 07/23/2024]
Abstract
BACKGROUND Plants of the genus Ferula have long been used to treat neurological diseases such as Alzheimer's disease (AD), pain, depression, and seizures. The main compounds include coumarins, monoterpenes, sulfide compounds, and polyphenol compounds, which can improve the functioning of the nervous system. OBJECTIVE This article has been compiled with the aim of collecting evidence and articles related to the Ferula effects on central nervous system disease. METHODS This review article was prepared by searching the terms Ferula and analgesic, anticonvulsant, antidepressant, anti-multiple sclerosis, anti-dementia, and neuroprotective effects.The relevant information was collected through searching electronic databases such as ISI Web of Knowledge, PubMed, and Google Scholar. RESULTS Genus Ferula has a protective effect on nerve cells by reducing cytokines such as IL-6, IL- 1b, and TNF-α. Therefore, the effects of Ferula plants and their effective ingredients can be used to prevent or improve diseases that destroy the nervous system. The members of this genus play a role in strengthening and improving the antioxidant system, reducing the level of oxidative stress, and inhibiting or reducing inflammatory factors in the nervous system. CONCLUSION Although the effects of several species of Ferula on the nervous system have been investigated, most studies have not clearly identified the molecular mechanisms as well as the specific functional regions of the brain. The present study was compiled in order to investigate different aspects of the effects of Ferula plants on the central nervous system.
Collapse
Affiliation(s)
- Seyyed Majid Bagheri
- Department of Physiology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mansour Esmailidehaj
- Department of Physiology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Mandal D, Sarkar T, Chakraborty R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl Biochem Biotechnol 2023; 195:1319-1513. [PMID: 36219334 PMCID: PMC9551254 DOI: 10.1007/s12010-022-04132-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Medicinal or herbal spices are grown in tropical moist evergreen forestland, surrounding most of the tropical and subtropical regions of Eastern Himalayas in India (Sikkim, Darjeeling regions), Bhutan, Nepal, Pakistan, Iran, Afghanistan, a few Central Asian countries, Middle East, USA, Europe, South East Asia, Japan, Malaysia, and Indonesia. According to the cultivation region surrounded, economic value, and vogue, these spices can be classified into major, minor, and colored tropical spices. In total, 24 tropical spices and herbs (cardamom, black jeera, fennel, poppy, coriander, fenugreek, bay leaves, clove, chili, cassia bark, black pepper, nutmeg, black mustard, turmeric, saffron, star anise, onion, dill, asafoetida, celery, allspice, kokum, greater galangal, and sweet flag) are described in this review. These spices show many pharmacological activities like anti-inflammatory, antimicrobial, anti-diabetic, anti-obesity, cardiovascular, gastrointestinal, central nervous system, and antioxidant activities. Numerous bioactive compounds are present in these selected spices, such as 1,8-cineole, monoterpene hydrocarbons, γ-terpinene, cuminaldehyde, trans-anethole, fenchone, estragole, benzylisoquinoline alkaloids, eugenol, cinnamaldehyde, piperine, linalool, malabaricone C, safrole, myristicin, elemicin, sinigrin, curcumin, bidemethoxycurcumin, dimethoxycurcumin, crocin, picrocrocin, quercetin, quercetin 4'-O-β-glucoside, apiol, carvone, limonene, α-phellandrene, galactomannan, rosmarinic acid, limonene, capsaicinoids, eugenol, garcinol, and α-asarone. Other than that, various spices are used to synthesize different types of metal-based and polymer-based nanoparticles like zinc oxide, gold, silver, selenium, silica, and chitosan nanoparticles which provide beneficial health effects such as antioxidant, anti-carcinogenic, anti-diabetic, enzyme retardation effect, and antimicrobial activity. The nanoparticles can also be used in environmental pollution management like dye decolorization and in chemical industries to enhance the rate of reaction by the use of catalytic activity of the nanoparticles. The nutritional value, phytochemical properties, health advantages, and both traditional and modern applications of these spices, along with their functions in food fortification, have been thoroughly discussed in this review.
Collapse
Affiliation(s)
- Debopriya Mandal
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
4
|
Huang Q, Zhang C, Dong S, Han J, Qu S, Xie T, Zhao H, Shi Y. Asafoetida exerts neuroprotective effect on oxidative stress induced apoptosis through PI3K/Akt/GSK3β/Nrf2/HO-1 pathway. Chin Med 2022; 17:83. [PMID: 35794585 PMCID: PMC9258148 DOI: 10.1186/s13020-022-00630-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Alzheimer's Disease (AD) is a serious neurodegenerative disease and there is currently no effective treatment for AD progression. The use of TCM as a potential treatment strategy for AD is an evolving field of investigation. Asafoetida (ASF), an oleo-gum-resin isolated from Ferula assa-foetida root, has been proven to possess antioxidative potential and neuroprotective effects, which is closely associated with the neurological disorders. However, the efficacy and further mechanisms of ASF in AD experimental models are still unclear. Methods A cognitive impairment of mouse model induced by scopolamine was established to determine the neuroprotective effects of ASF in vivo, as shown by behavioral tests, biochemical assays, Nissl staining, TUNEL staining, Immunohistochemistry, western blot and qPCR. Furthermore, the PC12 cells stimulated by H2O2 were applied to explore the underlying mechanisms of ASF-mediated efficacy. Then, the UPLCM analysis and integrated network pharmacology approach was utilized to identified the main constitutes of ASF and the potential target of ASF against AD, respectively. And the main identified targets were validated in vitro by western blot, qPCR and immunofluorescence staining. Results In vivo, ASF treatment significantly ameliorated cognitive impairment induced by scopolamine, as evidenced by improving learning and memory abilities, and reducing neuronal injury, cholinergic system impairment, oxidative stress and apoptosis in the hippocampus of mice. In vitro, our results validated that ASF can dose-dependently attenuated H2O2-induced pathological oxidative stress in PC12 cells by inhibiting ROS and MDA production, as well as promoting the activities of SOD, CAT, GSH. We also found that ASF can significantly suppressed the apoptosis rate of PC12 cells increased by H2O2 exposure, which was confirmed by flow cytometry analysis. Moreover, treatment with ASF obviously attenuated H2O2-induced increase in caspase-3 and Bax expression levels, as well as decrease in Bcl-2 protein expression. KEGG enrichment analysis indicated that the PI3K/Akt/GSK3β/Nrf2 /HO-1pathway may be involved in the regulation of cognitive impairment by ASF. The results of western blot, qPCR and immunofluorescence staining of vitro assay proved it. Conclusions Collectively, our work first uncovered the significant neuroprotective effect of ASF in treating AD in vivo. Then, we processed a series of vitro experiments to clarify the biological mechanism action. These data demonstrate that ASF can inhibit oxidative stress induced neuronal apoptosis to foster the prevention of AD both in vivo and in vitro, and it may exert the function of inhibiting AD through PI3K/Akt/GSK3β/Nrf2/HO-1pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00630-7.
Collapse
|
5
|
Bagheri SM, Maghsoudi MJ, Yadegari M. Preventive Effect of Ferula asafoetida Oleo Gum Resin on Histopathology in Cuprizone-Induced Demyelination Mice. Int J Prev Med 2021; 11:179. [PMID: 33456735 PMCID: PMC7804879 DOI: 10.4103/ijpvm.ijpvm_108_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/19/2019] [Indexed: 11/12/2022] Open
Abstract
Background: Ferula asafoetida is introduced as a valuable remedy for hysteria and some other nervous disorders in Iranian traditional medicine. Asafoetida is an oleo-gum-resin obtained from the exudates of the roots of the Ferula asafoetida. Previous studies have shown that this oleo gum resin has antioxidant, anti-apoptosis, and differentiation properties in the nervous system. The aim of this study was to evaluate the effect of asafoetida on the death of oligodendrocytes and demyelination in male C57BL/6 mice in cuprizone (CPZ)-induced animal model of multiple sclerosis. Methods: Demyelination was induced by oral administration of rats with the 0.2% CPZ that was added to the usual diet for 8 weeks. Animals intraperitoneally received daily asafoetida at doses of 25 or 50 mg/kg of bodyweight simultaneously. At the end of the weeks, animal brains were removed and fixed to histological studies using Luxol fast blue staining. Asafoetida was screened for its antioxidant activity using 2, 2-diphenyl-1-picylhydrazyl free radical scavenging assay and for its inhibitory activity against lipid peroxidation catalyzed by soybean lipoxygenase. Results: The results of this study showed that asafoetida significantly decreased infiltration rate in both groups of asafoetida 25 and 50 mg/kg, respectively (P < 0.01). Histological evaluations showed the lower demyelination in LFB in the group treated with asafoetida. Conclusions: The results of this study showed that asafoetida plays a neuro protective role in CPZ models of multiple sclerosis by reducing neuronal demyelination and oligodendrocytes death.
Collapse
Affiliation(s)
- Seyyed Majid Bagheri
- Department of Physiology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Neurobiomedical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad Maghsoudi
- Department of Biotechnology, International Scientific and Education Center of NAS RA, Yerevan, Armenia
| | - Maryam Yadegari
- Department of Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
6
|
Sabzehzari M, Naghavi MR, Bozari M, Orafai HM, Johnston TP, Sahebkar A. Pharmacological and Therapeutic Aspects of Plants from the Genus Ferula: A Comprehensive Review. Mini Rev Med Chem 2020; 20:1233-1257. [PMID: 32368975 DOI: 10.2174/1389557520666200505125618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/31/2019] [Accepted: 12/02/2019] [Indexed: 11/22/2022]
Abstract
Inspired by nature, humankind has been able to attain significant achievements in the drug and food industries. Particularly, medicinal plants are a rich source of medicinal, cosmetic, sanitary, and aromatic substances. Genus Ferula from the Apiaceae family is a plant genus that possesses over 170 species, which have been carefully documented with regard to their medicinal properties. Ferula spp. affects many body organs, and their respective functions, in humans, such as the immune system, gastrointestinal tract, genitourinary, endocrine, respiratory, cardiovascular, nervous system, bone (skeleton), and teeth. In spite of the benefits, ferulosis (Ferula toxicity) is an important aspect of Ferula consumption in humans and animals. Hemorrhagic problems and infertility are important signs of ferulosis. In this review, we have described all of the effects of the active ingredients of Ferula spp. and their mechanisms of actions, when known, based on an extensive literature review. Thus, our review opens a window of the benefits of Ferula as a phyto-pharmaceutical and its therapeutic applications in pharmacy, dentistry, and medicine.
Collapse
Affiliation(s)
- Mohammad Sabzehzari
- Division of Biotechnology, Agronomy and Plant Breeding Department, University of Tehran, Tehran, Iran
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Agronomy and Plant Breeding Department, University of Tehran, Tehran, Iran
| | - Motahare Bozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein M Orafai
- Department of Pharmaceutics, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, MO 64106, United States
| | | |
Collapse
|
7
|
The volatile oils from the oleo-gum-resins of Ferula assa-foetida and Ferula gummosa: A comprehensive investigation of their insecticidal activity and eco-toxicological effects. Food Chem Toxicol 2020; 140:111312. [PMID: 32247803 DOI: 10.1016/j.fct.2020.111312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 01/15/2023]
Abstract
Since time immemorial, the oleo-gum-resins of Ferula assa-foetida and F. gummosa are used in the traditional medical systems as well as in foodstuffs, perfumery and cosmetics. In the present study, we explored the insecticidal efficacy of the essential oils obtained from these oleo-gum-resins to widen their fields of industrial applications. The two essential oils were mainly composed of sulfides [sec-butyl (Z)-propenyl disulfide, sec-butyl (E)-propenyl disulfide, sec-butyl (Z)-propenyl trisulfide and sec-butyl (E)-propenyl trisulfide)] and monoterpenes (α-pinene, β-pinene and β-phellandrene), respectively, as determined by GC-MS analysis. The two essential oils were assayed for toxicity on a panel of insects, represented by species of public health relevance (Culex quinquefasciatus and Musca domestica), agricultural (Spodoptera littoralis) and stored-product pests (Prostephanus truncatus and Trogoderma granarium). The ecotoxicological effects of the essential oils were assessed on the aquatic microcrustacean Daphnia magna and the earthworm Eisenia fetida, as well as on human cells. Overall, the two essential oils were effective against important insect pests and vectors. On the other hand, they resulted cytotoxic to fibroblasts and non-target aquatic microcrustaceans. Thus, further insights are needed to determine the full spectrum of their eco-toxicological effects.
Collapse
|
8
|
Oliveira MA, Heimfarth L, Passos FRS, Miguel-Dos-Santos R, Mingori MR, Moreira JCF, Lauton SS, Barreto RSS, Araújo AAS, Oliveira AP, Oliveira JT, Baptista AF, Martinez AMB, Quintans-Júnior LJ, Quintans JSS. Naringenin complexed with hydroxypropyl-β-cyclodextrin improves the sciatic nerve regeneration through inhibition of p75 NTR and JNK pathway. Life Sci 2020; 241:117102. [PMID: 31790691 DOI: 10.1016/j.lfs.2019.117102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022]
Abstract
Peripheral nerve injuries are common conditions that often lead to dysfunctions. Although much knowledge exists on the several factors that mediate the complex biological process involved in peripheral nerve regeneration, there is a lack of effective treatments that ensure full functional recovery. Naringenin (NA) is the most abundant flavanone found in citrus fruits and it has promising neuroprotective, anti-inflammatory and antioxidant effects. This study aimed to enhance peripheral nerve regeneration using an inclusion complex containing NA and hydroxypropyl-β-cyclodextrin (HPβCD), named NA/HPβCD. A mouse sciatic nerve crush model was used to evaluate the effects of NA/HPβCD on nerve regeneration. Sensory and motor parameters, hyperalgesic behavior and the sciatic functional index (SFI), respectively, improved with NA treatment. Western blot analysis revealed that the levels of p75NTR ICD and p75NTR full length as well phospho-JNK/total JNK ratios were preserved by NA treatment. In addition, NA treatment was able to decrease levels of caspase 3. The concentrations of TNF-α and IL-1β were decreased in the lumbar spine, on the other hand there was an increase in IL-10. NA/HPβCD presented a better overall morphological profile but it was not able to increase the number of myelinated fibers. Thus, NA was able to enhance nerve regeneration, and NA/HPβCD decreased effective drug doses while maintaining the effect of the pure drug, demonstrating the advantage of using the complex over the pure compound.
Collapse
Affiliation(s)
- Marlange A Oliveira
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Luana Heimfarth
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Fabiolla Rocha Santos Passos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Rodrigo Miguel-Dos-Santos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Moara R Mingori
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Cláudio F Moreira
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sandra S Lauton
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Rosana S S Barreto
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Aldeidia P Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, PI 64.049-550, Brazil
| | - Júlia T Oliveira
- Department of Pathology, Medical School - HUCFF - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ana Maria B Martinez
- Department of Pathology, Medical School - HUCFF - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lucindo J Quintans-Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil.
| | - Jullyana S S Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil.
| |
Collapse
|
9
|
Khazaei A, Bahramnejad B, Mozafari AA, Dastan D, Mohammadi S. Hairy root induction and Farnesiferol B production of endemic medicinal plant Ferula pseudalliacea. 3 Biotech 2019; 9:407. [PMID: 31692659 DOI: 10.1007/s13205-019-1935-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022] Open
Abstract
The effects of medium, gibberellic acid (GA3) and stratification treatments on the seed germination of Ferula pseudalliacea were evaluated. Filter paper medium, 500 micro molar GA3 and 8 week chilling treatment were resulted in significantly more seed germination than others. F. pseudalliacea was also transformed by Agrobacterium rhizogenes. Explants from young leaves, stems, cotyledon, and embryo were inoculated with A. rhizogenes strains ATCC 15834, 1724, A4, LB9402 and Ar318. Hairy roots were induced only from 10 to 12-days embryo explants using strains ATCC 15824 and 1724. Although, the transformation efficiency of ATCC 15834 (4%) strain was higher than 1724 (2%). Maximum hairy root transformation frequency (25%) was obtained in infection time of 10 min compared to that of 20 (20%) and 30 (5%) min. In addition, the transformation rate was significantly higher at the inoculation time of 72 h (29%) compared to that of 48 h (22%) and 24 h (6%). Transgenic hairy root lines were confirmed by PCR amplification of rolB gene. Hairy root lines were produced higher biomass in half B5 medium compared to that of half MS medium. Hairy roots lines from the strain ATCC 15834 produced more hairy root numbers and fresh and dried biomass compared to that of the strain 1724. Analyses of transgenic hairy root and natural roots extracts using HPLC showed that all the hairy root lines produced farnesiferol B.
Collapse
Affiliation(s)
- Abedin Khazaei
- 1Department of Agronomy and Plant Breeding, University of Kurdistan, 416, Sanandaj, Iran
| | - Bahman Bahramnejad
- 1Department of Agronomy and Plant Breeding, University of Kurdistan, 416, Sanandaj, Iran
| | - Ali-Akbar Mozafari
- 2Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Dara Dastan
- 3Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- 4Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Mohammadi
- 1Department of Agronomy and Plant Breeding, University of Kurdistan, 416, Sanandaj, Iran
| |
Collapse
|
10
|
Rezaeizadeh H, Rahimi R, Abbasi M. Fatigue Due to Multiple Sclerosis: A Comparison Between Persian Medicine and Conventional Medicine. Galen Med J 2019; 8:e1139. [PMID: 34466464 PMCID: PMC8343931 DOI: 10.31661/gmj.v8i0.1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/06/2018] [Accepted: 08/02/2018] [Indexed: 11/22/2022] Open
Abstract
Fatigue is one of the most debilitating symptoms of multiple sclerosis (MS), and its definite pathophysiology is unclear. Studies have suggested some correlates for it including dysfunction or atrophy in different parts of the brain. This narrative review study compares the viewpoint of conventional medicine and Persian medicine (PM) about fatigue due to MS and introduces the treatments used for this complaint in PM with an evidence-based approach. PM scholars have used the term I’ya equal to fatigue and stated that I’ya might be due to exertion or not, while the latter (spontaneous I’ya) can be prodromal of a disease. This pathologic fatigue can be seen in a wide variety of neurologic diseases, though it is the most common in MS patients. Fatigue in MS can be considered one of the equivalents of spontaneous I’ya. According to PM texts, neurotonic herbs like Ferula, Citrus medica, Asarum europaeum, Ficus carica, and Juglans regia may be beneficial in alleviating fatigue by brain reinforcement. Different pharmacological mechanisms have been introduced for these plants including antioxidant and/or anti-inflammatory activities. The medicinal plants can be assumed as a valuable source for discovering new medicines for fatigue in MS. Designing preclinical and clinical studies evaluating the effects of mentioned medicinal herbs in fatigue is proposed for obtaining more conclusive results.
Collapse
Affiliation(s)
- Hossein Rezaeizadeh
- Department of Traditional Iranian Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Traditional Iranian Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Correspondence to: Maryam Abbasi, Department of Traditional Iranian Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran Telephone Number: +982188990837 Email Address :
| |
Collapse
|
11
|
Khazdair MR, Anaeigoudari A, Hashemzehi M, Mohebbati R. Neuroprotective potency of some spice herbs, a literature review. J Tradit Complement Med 2019; 9:98-105. [PMID: 30963044 PMCID: PMC6435951 DOI: 10.1016/j.jtcme.2018.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/10/2017] [Accepted: 01/02/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, growing attention has been given to traditional medicine. In traditional medicine a large number of plants have been used to cure neurodegenerative diseases such as Alzheimer's disease (AD) and other memory related disorders. Crocus sativus (C. sativus), Nigella sativa (N. sativa), Coriandrum sativum (C. sativum), Ferula assafoetida (F. assafoetida), Thymus vulgaris (T. vulgaris), Zataria multiflora (Z. multiflora) and Curcuma longa (C. longa) were used traditionally for dietary, food additive, spice and various medicinal purposes. The Major components of these herbs are carotenoids, monoterpenes and poly phenol compounds which enhanced the neural functions. These medicinal plants increased anti-oxidant, decreased oxidant levels and inhibited acetylcholinesterase activity in the neural system. Furthermore, neuroprotective of plants occur via reduced pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α and total nitrite generation. Therefore, the effects of the above mentioned medicinal and their active constituents improved neurodegenerative diseases which indicate their therapeutic potential in disorders associated with neuro-inflammation and neurotransmitter deficiency such as AD and depression.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Neurogenic Inflammation Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Milad Hashemzehi
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Reza Mohebbati
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Moghadam FH, Mesbah-Ardakani M, Nasr-Esfahani MH. Effects of Oleo Gum Resin of Ferula assa-foetida L. on Senescence in Human Dermal Fibroblasts: - Asafoetida reverses senescence in fibroblasts. J Pharmacopuncture 2017; 20:213-219. [PMID: 30087798 PMCID: PMC5633674 DOI: 10.3831/kpi.2017.20.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 01/31/2023] Open
Abstract
Objectives Based on data from Chinese and Indian traditional herbal medicines, gum resin of Ferula assa-foetida (sometimes referred to asafetida or asafoetida) has several therapeutic applications. The authors of various studies have claimed that asafetida has cytotoxic, antiulcer, anti-neoplasm, anti-cancer, and anti-oxidative effects. In present study, the anti-aging effect of asafetida on senescent human dermal fibroblasts was evaluated. Methods Senescence was induced in in vitro cultured human dermal fibroblasts (HDFs) through exposure to H2O2, and the incidence of senescence was recognized by using cytochemical staining for the activity of β-galactosidase. Then, treatment with oleo gum resin of asafetida was started to evaluate its rejuvenating effect. The survival rate of fibroblasts was evaluated by using methyl tetrazolium bromide (MTT) assays. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot assays were performed to evaluate the expressions of apoptotic and anti-apoptotic markers. Results Our experiments show that asafetida in concentrations ranging from 5 × 10−8 to 10−7 g/mL has revitalizing effects on senescent fibroblasts and significantly reduces the β-galactosidase activity in these cells (P < 0.05). Likewise, treatment at these concentrations increases the proliferation rate of normal fibroblasts (P < 0.05). However, at concentrations higher than 5 × 10−7 g/mL, asafetida is toxic for cells and induces cell death. Conclusion The results of this study indicate that asafetida at low concentrations has a rejuvenating effect on senescent fibroblasts whereas at higher concentrations, it has the opposite effect of facilitating cellular apoptosis and death.
Collapse
Affiliation(s)
- Farshad Homayouni Moghadam
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Neurobiomedical Research Center, Shahid Sadoughi Yazd University of Medical Science, Yazd, Iran
| | - Mehrnaz Mesbah-Ardakani
- Imam Hossein Hospital of Sepidan, Shiraz University of Medical Sciences, Shiraz, Iran.,Neurobiomedical Research Center, Shahid Sadoughi Yazd University of Medical Science, Yazd, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
13
|
Amalraj A, Gopi S. Biological activities and medicinal properties of Asafoetida: A review. J Tradit Complement Med 2016; 7:347-359. [PMID: 28725631 PMCID: PMC5506628 DOI: 10.1016/j.jtcme.2016.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023] Open
Abstract
Ferula asafoetida Linn. is a main source of asafoetida, a strong, tenacious and sulfurous odor, and oleo-gum resin of medicinal and nutritional importance. Asafoetida has been consumed as a spice and a folk medicine for centuries. Recent studies have shown several promising activities particularly relaxant, neuroprotective, memory enhancing, digestive enzyme, antioxidant, antispasmodic, hypotensive, hepatoprotective, antimicrobial, anticarcinogenic, anticancer, anticytotoxicity, antiobesity, anthelmintic and antagonistic effect. This review effectively deals with phytochemistry and various pharmacological and clinical studies of asafoetida.
Collapse
|
14
|
Zarmouh NO, Messeha SS, Elshami FM, Soliman KFA. Natural Products Screening for the Identification of Selective Monoamine Oxidase-B Inhibitors. ACTA ACUST UNITED AC 2016; 15. [PMID: 27341283 PMCID: PMC4898948 DOI: 10.9734/ejmp/2016/26453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims Monoamine oxidase-B inhibitors (MAO-BIs) are used for the initial therapy of Parkinson’s disease. Also, MAO-BIs have shown to be effective neuroprotective agents in several neurodegenerative diseases. However, some concerns exist regarding the long-term use of these compounds. Meanwhile, natural compounds showed potential MAO-B selective inhibitions. To date, few selective natural MAO-BIs have been identified. Therefore, the current study is designed to identify plants with potent and specific MAO-B inhibition. Study Design In this work, we utilized high throughput screening to evaluate the different plants ethanolic extract for their effectiveness to inhibit recombinant human (h)MAO-A and hMAO-B and to determine the relative selectivity of the top MAO-BI. Methodology Recombinant human isozymes were verified by Western blotting, and the 155 plants were screened. A continuous fluorometric screening assay was performed followed by two separate hMAO-A and hMAO-B microtiter screenings and IC50 determinations for the top extracts. Results In the screened plants, 9% of the extracts showed more than 1.5-fold relative inhibition of hMAO-B (RIB) and another 9% showed more than 1.5-fold relative inhibition of hMAO-A. The top extracts with the most potent RIBs were Psoralea corylifolia seeds, Phellodendron amurense bark, Glycyrrhiza uralensis roots, and Ferula assafoetida roots, with the highest RIB of 5.9-fold. Furthermore, extensive maceration of the promising extracts led to increase inhibitory effects with a preserved RIB as confirmed with luminescence assay. The top four extracts hMAO-BIs were equally potent (IC50= 1.3 to 3.8 μg/mL) with highly significant relative selectivities to inhibit hMAO-B (4.1- to 13.4-fold). Conclusion The obtained results indicate that Psoralea corylifolia seeds, Ferula assafoetida, Glycyrrhiza uralensis roots, and Phellodendron amurense ethanolic extracts have selective inhibitions for human MAO-B. Investigating these plant extracts as natural resources for novel selective MAO-BIs may lead to the development of molecules that can be used in the therapeutic management of neurodegenerative diseases including Parkinson’s disease.
Collapse
Affiliation(s)
- Najla O Zarmouh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Samia S Messeha
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Faisel M Elshami
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| |
Collapse
|
15
|
Neuroprotective Effect of Natural Products on Peripheral Nerve Degeneration: A Systematic Review. Neurochem Res 2015; 41:647-58. [DOI: 10.1007/s11064-015-1771-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/15/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022]
|
16
|
Differential effects of lacosamide, phenytoin and topiramate on peripheral nerve excitability: An ex vivo electrophysiological study. Neurotoxicology 2015; 52:57-63. [PMID: 26542247 DOI: 10.1016/j.neuro.2015.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/10/2015] [Accepted: 10/29/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Antiepileptic drugs (AEDs) are mainly used to control cortical hyperexcitability. Some of them (e.g. phenytoin (PHT) and topiramate (TPM)) have also effects on the peripheral nervous system (PNS). Lacosamide (LCM) is a novel AED that stabilizes hyperexcitable neuronal membranes by selectively enhancing the slow inactivation of voltage-gated sodium channels (VGSCs). Although the mechanism of action of LCM is fairly well understood, there are no in vitro data available regarding any possible PNS effects of LCM. OBJECTIVE To investigate, in vitro, the effects of LCM on peripheral nerve excitability in comparison with PHT and TPM, two AEDs that act, in part, by stabilizing the fast inactivation state of VGSCs. METHODS Experiments were conducted on the isolated sciatic nerve of the adult rat using standard electrophysiological methods. The effects of LCM on the amplitude and latency of the evoked compound action potential (CAP) during a 48h period of drug exposure were recorded and compared with the effects of PHT and TPM. RESULTS LCM produced inhibitory effects on CAP at concentrations significantly higher than the therapeutic levels (>25μg/ml). At these concentrations (62.57-125.15μg/ml), an acute and immediate increment of the latency and decrement of the amplitude of the CAP were observed. In contrast to LCM, PHT caused an acute decrement in the amplitude as well as an increment in the latency of the CAP even at subtherapeutic levels (5μg/ml). With regard to TPM, the amplitude of the CAP was not affected at the supratherapeutic concentrations but at the therapeutic concentration of 33.94μg/ml a reduced decrement of the CAP amplitude compared to the controls was observed. CONCLUSIONS LCM, PHT and TPM exert differential effects on peripheral nerve excitability. PHT inhibited the sciatic nerve CAP even at subtherapeutic levels whereas LCM was safe within the therapeutic concentration range. TPM did not affect the CAP amplitude even at high supratherapeutic concentrations whereas in the therapeutic range a neuroprotective effect was observed. Possible underlying mechanisms and the clinical implications of these findings are discussed.
Collapse
|