1
|
Li X, Pan J, Liu X, Li M, Zhuang L, Jiang P, Wang S, Guan W, Xue S, Chen Q, Zhang L, Kuang H, Yang B, Liu Y. The total withanolides from the leaves of Datura stramonium L. Improves Alzheimer's disease pathology by restraining neuroinflammation through NLRP3/IL-1β/IL1R1/TOM 1 pathway. Int Immunopharmacol 2025; 146:113893. [PMID: 39721456 DOI: 10.1016/j.intimp.2024.113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of beta-amyloid (Aβ) peptides. Microglia-mediated neuroinflammation is one of the primary contributors to the pathogenesis of AD. Withanolides, the main constituents in the leaves of Datura stramonium L., exhibit anti-neuroinflammatory activity. It is unknown if total withanolide from Datura stramonium L. leaves (TWD) reduces nerve inflammation and potentially mitigates the pathogenic elements of AD. This study examined the potential effects of TWD on neuroinflammation in triple transgenic AD (3 × Tg-AD) mice and LPS-induced BV-2, as well as associated signaling pathways. HPLC-Q-TOF-MS/MS was used in this study to examine the main chemical components of the TWD extract. 3 × Tg-AD as in vivo AD models and LPS induce BV-2 cells in vitro AD models. The molecular process was investigated by ELISA, WB, IHC, and IF. In 3 × Tg-AD mice, TWD dramatically ameliorates cognitive impairment. Treatment with TWD can counteract the increased activation of microglia and Aβ deposits observed in 3 × Tg-AD mice. Further research indicates that TWD can enhance TOM 1 and mitigate inflammatory responses by reducing the levels of IL-1β, TNF-α, IL-6, IL1R1, and IL-18. Additionally, TWD may inhibit neuroinflammation through the pathways of IL1R1/MyD88/NF-κB and NLRP3/IL-1β/IL1R1. In summary, this study reveals for the first time that TWD effectively improves cognitive deficits in 3 × Tg-AD mice by modulating the IL1R1/MyD88/NF-κB and NLRP3/IL-1β/IL1R1 pathways. It also alleviates excessive activation of microglia and suppresses Aβ accumulation. Therefore, TWD has the potential as a therapeutic agent for AD.
Collapse
Affiliation(s)
- Xinyuan Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Xiang Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Leixin Zhuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Shuping Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Siqi Xue
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China.
| |
Collapse
|
2
|
Yue L, Ni-Ni J, Long W, Xing-Yu Z, Shuai W, Meng-Jun P, Xiang L, Xiao-Qin C. Chemical detection and analysis of Astragalus-Cassia twig drug pair using UHPLC-Q-TOF-MS and HPLC-UV methods. Fitoterapia 2024; 177:106129. [PMID: 39047846 DOI: 10.1016/j.fitote.2024.106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The classic Astragalus-Cassia twig drug pair has a long history of proven efficacy. However, a fewer studies on material basis of the Astragalus and Cassia twig decoction (ACD) was researched at present. The method of UPLC-Q-TOF-MS for classifying and identifying the main chemical components of ACD was established and the differences in composition between single decoction and co-decoction were compared by using HPLC-UV. The therapeutic role of ACD on type 2 diabetes (T2D) rats was investigated. Thirty-five compounds were resolved from the ACD. Fifteen compounds were deduced from the decoction of Astragalus, whereas nine compounds were identified from Cassia twig. Pairing of herbs make a significant effect on the chemical composition of herbal decoction. ACD can play a more obvious role in alleviating the symptoms of T2D rats, compared to the application of single herb.
Collapse
Affiliation(s)
- Liu Yue
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jia Ni-Ni
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wu Long
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zou Xing-Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wang Shuai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Pan Meng-Jun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Li Xiang
- Anhui Province Institute for Food and Drug Control, Hefei, Anhui 230012, China.
| | - Chu Xiao-Qin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China.
| |
Collapse
|
3
|
Lou F, Xu Z, Bai J, Zhao X, Cui L, Li Q, Wang H. Identification and pre-clinical investigation of 3-O-cyclohexanecarbonyl-11-keto-β-boswellic acid as a drug for external use to treat psoriasis. Br J Pharmacol 2024; 181:1290-1307. [PMID: 37749894 DOI: 10.1111/bph.16253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Psoriasis vulgaris is a refractory skin inflammatory disorder with 80% of the cases belonging to the mild-to-moderate type, which can be controlled by topical treatment. Nevertheless, the drugs for external use have not been upgraded for decades. We modified acetyl-11-keto-beta-boswellic acid (ABKA), a natural compound shown to treat psoriasis animal models, to improve efficacy and solubility for topical use. EXPERIMENTAL APPROACH Eleven compounds were synthesized using AKBA as a lead compound, and their effects on Th17 cell differentiation were screened. 3-O-cyclohexanecarbonyl-11-keto-β-boswellic acid (CKBA) potently inhibited Th17 cell differentiation. Its efficacy in a mouse model of psoriasis was assessed along with its pharmacology and safety profile when topically or systemically delivered to several animal species. KEY RESULTS CKBA inhibited mouse and human Th17 cell differentiation with an IC50 of 3.28 and 3.61 μM, respectively, and directly targeted acetyl-CoA carboxylase 1 (ACC1). Safety evaluation and toxicity tests suggested that systemically delivered high-dose CKBA for 14 days had no dose-associated adverse effects on the CNS, haematopoietic, cardiovascular, respiratory and digestive systems of cynomolgus monkeys. CKBA ointment permeated the skin and did not irritate or sensitize intact skin. CKBA ointment mediated dose-dependent suppression of imiquimod-induced psoriasis-like skin inflammation with slow absorption and limited bioavailability (<10% in rats and <1% in minipigs). CONCLUSIONS AND IMPLICATIONS CKBA is safe when topically or systemically delivered to animals. The beneficial effects of CKBA ointment in a mouse model of psoriasis indicate that this is a promising drug candidate for further development as a treatment for psoriasis.
Collapse
Affiliation(s)
- Fangzhou Lou
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyao Xu
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Bai
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Qun Li
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglin Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhao L, Qian S, Wang X, Si T, Xu J, Wang Z, Sun Q, Yang Y, Rong R. UPLC-Q-Exactive/MS based analysis explore the correlation between components variations and anti-influenza virus effect of four quantified extracts of Chaihu Guizhi decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117318. [PMID: 37838293 DOI: 10.1016/j.jep.2023.117318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chaihu Guizhi decoction (CGD) is a classic Traditional Chinese Medicine (TCM) prescription for the treatment of influenza and fever, composes of Bupleuri Radix (Chaihu), Cinnamomi Ramulus (Guizhi), Scutellariae Radix (Huangqin), Codonopsis Radix (Dangshen), Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle (Zhigancao), Pinelliae Rhizoma Praeparatum (Fabanxia), Zingiberis Rhizoma Recens (Shengjiang), Paeoniae Radix Alba (Baishao) and Jujubae Fructus (Dazao) in the ratio of 12:4.5:4.5:4.5:3:6:4.5:4.5:4. The efficacy of TCM, if there are differences, depends on the different extraction methods and extracted components. AIM OF THE STUDY This study was to evaluate the anti-influenza virus effect of CGD extracts with different extraction methods, analyze the components and explore their correlation. MATERIALS AND METHODS CGD were prepared with four extraction methods respectively, the traditional decoction (TD), two steps alcohol-water extraction (AWE), alcohol reflux extraction (AE) and water reflux extraction (WE). Based on the influenza mouse model, the efficacy of anti-influenza virus in vivo of the four CGD extracts were evaluated with the therapeutic index of body weight, rectal temperature, lung index, thymus index and lung viral load of mice. The chemical components in four CGD extracts, and compounds absorbed in rats blood with prototypes or metabolites were identified by UPLC-Q-Exactive/MS. The partial least squares (PLS) method was used to explore the correlation between the components variation in CGD extracts and the comprehensive efficacy index. The potential effective components were further accessed by molecular docking. RESULTS Comparing with the other three extracts, AWE has the best anti-influenza effect. It could ameliorate the symptoms caused by influenza virus infection in mice, increase body weight and rectal temperature, reduce the lung index and virus load in lung tissue. 129, 144, 140 and 129 components were identified from TD, AWE, AE, and WE respectively. The identified components were mainly including flavonoids, terpenoids, organic acids, phenylpropanoids, amino acids, nucleosides, phenols, alkaloids, etc. 43 prototypes and 49 metabolites of CGD were detected in rat plasma after oral administration. Seven components, cinnamaldehyde, wogonoside, baicalin, baicalein, gallic acid, oroxylinA-7-O-glucuronide and coumarin, showed significant correlation with anti-influenza effects, all of which had good binding activity with NA, IL-6, STAT3, AKT1, EGFR and TNF. CONCLUSION Two steps alcohol-water extraction was optimal for CGD preparation. Cinnamaldehyde, wogonoside, oroxylinA-7-O-glucuronide, coumarin, gallic acid, baicalein and baicalin play a certain essential role in anti-influenza effects and may be taken as a potential maker compounds for quality evaluation of CGD.
Collapse
Affiliation(s)
- Liangxin Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shensi Qian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tiantian Si
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinke Xu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yong Yang
- Collaborative Innovation Center for Antiviral Traditional Chinese Medicine in Shandong Province, Jinan, 250355, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
5
|
Zhang Y, Cheng L, Liu Y, Zhan S, Wu Z, Luo S, Zhang X. Dietary flavonoids: a novel strategy for the amelioration of cognitive impairment through intestinal microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:488-495. [PMID: 35892267 DOI: 10.1002/jsfa.12151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The chances of people suffering from cognitive impairments increase gradually with age. Diet and lifestyle are closely related to the occurrence and development of cognitive function. Dietary flavonoid supplementation has been shown to be one of the protective factors against cognitive decline. Flavonoids belong to a class of polyphenols that have been proposed for the treatment of cognitive decline. Recent evidence has shown that intestinal flora in the human body can interact with flavonoids. Intestinal microbiota can modify the chemical structure of flavonoids, producing new metabolites, the pharmacological activities of which may be different from those of the parent; meanwhile, flavonoids and their metabolites can, in turn, regulate the composition and structure of intestinal flora. Notably, intestinal flora affect host nervous system activity through the gut-brain axis, ultimately causing changes in cognitive function. This review therefore summarizes the interaction of dietary flavonoids and intestinal flora, and their protective effect against cognitive decline through the gut-brain axis, indicating that dietary flavonoids may ameliorate cognitive impairment through their interaction with intestinal microbiota. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Songmei Luo
- Department of Pharmacy, Lishui Central Hospital, Lishui, People's Republic of China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
6
|
Unique roles in health promotion of dietary flavonoids through gut microbiota regulation: Current understanding and future perspectives. Food Chem 2023; 399:133959. [DOI: 10.1016/j.foodchem.2022.133959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022]
|
7
|
Hanioka N, Tanaka-Kagawa T, Mori Y, Ikushiro S, Jinno H, Ohkawara S, Isobe T. Regioselective Glucuronidation of Flavones at C5, C7, and C4′ Positions in Human Liver and Intestinal Microsomes: Comparison among Apigenin, Acacetin, and Genkwanin. Biol Pharm Bull 2022; 45:1116-1123. [DOI: 10.1248/bpb.b22-00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Yoko Mori
- Faculty of Pharmacy, Meijo University
| | | | | | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy
| |
Collapse
|
8
|
Ma J, Li K, Shi S, Li J, Tang S, Liu L. The Application of UHPLC-HRMS for Quality Control of Traditional Chinese Medicine. Front Pharmacol 2022; 13:922488. [PMID: 35721122 PMCID: PMC9201421 DOI: 10.3389/fphar.2022.922488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
UHPLC-HRMS (ultra-high-performance liquid chromatography-high resolution mass spectrometry) is a new technique that unifies the application of UHPLC with HRMS. Because of the high sensitivity and good separation ability of UHPLC and the sensitivity of HRMS, this technique has been widely used for structure identification, quantitative determination, fingerprint analysis, and elucidation of the mechanisms of action of traditional Chinese medicines (TCMs) in recent years. This review mainly outlines the advantages of using UHPLC-HRMS and provides a survey of the research advances on UHPLC-HRMS for the quality control of TCMs.
Collapse
Affiliation(s)
- Jieyao Ma
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Silin Shi
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Jian Li
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Sunv Tang
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - LiangHong Liu
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
9
|
Zheng T, Han J, Su KX, Sun BY, Liu SM. Regulation mechanisms of flavonoids biosynthesis of Hancheng Dahongpao peels (Zanthoxylum bungeanum Maxim) at different development stages by integrated metabolomics and transcriptomics analysis. BMC PLANT BIOLOGY 2022; 22:251. [PMID: 35596133 PMCID: PMC9123719 DOI: 10.1186/s12870-022-03642-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Flavonoids have strong free radical scavenging and antioxidant capacity. The high abundance of flavonoids in Chinese prickly ash peels have many benefits to human health. In this study, 'Hancheng Dahongpao', a main cultivar, was taken as materials to investigate the flavonoids biosynthesis mechanism of Zanthoxylum bungeanum Maxim at three key development stages by integration of metabolomics and transcriptomics analysis. RESULTS A total of 19 differentially accumulated metabolites were identified, the key flavonoids compounds were kaempferol, quercetin and their glycoside derivatives, and two major anthocyanins (peonidin O-hexoside and peonidin 3-O-glucoside). 5 gene networks/modules including 15 important candidate genes were identified, which was highly correlated with flavonoids. Among these genes, ZM-163828 and ZM-184209 were strongly correlated with kaempferol and quercetin, and ZM-125833 and ZM-97481 were controlled the anthocyanins biosynthesis. Moreover, it was shown that MYB-ZM1, MYB-ZM3, MYB-ZM5, MYB-ZM6 and MYB-ZM7 coordinately controlled flavonoids accumulation through regulating the structural genes. CONCLUSIONS Generally, this study systematically revealed the flavonoids metabolic pathways and candidate genes involved in flavonoids biosynthesis and laid a foundation for the potential targets for the breeding of new valuable Chinese prickly ash cultivars.
Collapse
Affiliation(s)
- Tao Zheng
- Northwest Agriculture and Forestry University, College of Science, Yangling, 712100, China
| | - Jun Han
- Forestry and Grassland Bureau of Xunhua Salar autonomous county, Xunhua, 811100, China.
| | - Ke-Xing Su
- Northwest Agriculture and Forestry University, College of Science, Yangling, 712100, China
| | - Bing-Yin Sun
- Yangling Vocational &Technical College, Yangling, 712100, China
| | - Shu-Ming Liu
- Northwest Agriculture and Forestry University, College of Science, Yangling, 712100, China.
| |
Collapse
|
10
|
Borges G, Fong RY, Ensunsa JL, Kimball J, Medici V, Ottaviani JI, Crozier A. Absorption, distribution, metabolism and excretion of apigenin and its glycosides in healthy male adults. Free Radic Biol Med 2022; 185:90-96. [PMID: 35452808 DOI: 10.1016/j.freeradbiomed.2022.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
The bioavailability of apigenin and its O-glycosides in humans was investigated with apigenin-4'-glucuronide (Ap-4'-GlcUA), apigenin-7-glucuronide and apigenin-7-sulfate being identified as in vivo metabolites. Apigenin per se was poorly absorbed with metabolites equivalent to 0.5% of intake excreted in urine 0-24 h post-intake. Consumption of a parsley drink containing apigenin-7-O-(2″-O-apiosyl)glucoside resulted in the peak plasma concentration (Cmax) of Ap-4'-GlcUA occurring after 4 h, indicative of absorption in the lower gastrointestinal tract (GIT). Urinary excretion of the three metabolites corresponded to 11.2% of intake. Ingestion of dried powdered parsley leaves with yogurt extended the Cmax of Ap-4'-GlcUA to 6 h. Consumption of chamomile tea containing apigenin-7'-O-glucoside resulted in a 2 h Cmax of Ap-4'-GlcUA, in keeping with absorption in the upper GIT. Urinary excretion was equivalent to 34% of intake. Intake of the parsley drink provided information on intra- and inter-individual variations in the level of excretion of the apigenin metabolites. CLINICAL TRAIL REGISTRATION NUMBER: This trail was registered at clinicaltrials.gov as NCT03526081.
Collapse
Affiliation(s)
- Gina Borges
- Department of Nutrition, Meyer Hall, University of California, Davis, CA, 95616-5270, USA
| | - Reedmond Y Fong
- Department of Nutrition, Meyer Hall, University of California, Davis, CA, 95616-5270, USA
| | - Jodi L Ensunsa
- Department of Nutrition, Meyer Hall, University of California, Davis, CA, 95616-5270, USA
| | - Jennifer Kimball
- Department of Nutrition, Meyer Hall, University of California, Davis, CA, 95616-5270, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Javier I Ottaviani
- Department of Nutrition, Meyer Hall, University of California, Davis, CA, 95616-5270, USA; Mars Inc., McLean, VA, 22101, USA
| | - Alan Crozier
- Department of Nutrition, Meyer Hall, University of California, Davis, CA, 95616-5270, USA; Department of Chemistry, King Saud University, Riyadh, 11362, Saudi Arabia.
| |
Collapse
|
11
|
Zhao ZH, Yao ZH, Lin SJ, Chu G, Mu KQ, Wang Y, Bi KS, Wang TJ, Li Q, Liu R. Leonurus Japonicus Houtt. (Motherwort): Systematic research through chemical profiling, stability under controlled conditions and pharmacokinetic analysis on screening Q-markers for quality control. J Pharm Biomed Anal 2022; 213:114707. [DOI: 10.1016/j.jpba.2022.114707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 11/27/2022]
|
12
|
Łuczykowski K, Warmuzińska N, Bojko B. Current approaches to the analysis of bile and the determination of bile acids in various biological matrices as supportive tools to traditional diagnostic testing for liver dysfunction and biliary diseases. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Feng R, Zhang X, Yin J, Zhang Y, Ma Y, Zhang X, Zhang L, Li D. A comprehensive study of the metabolism of flavonoid oroxin B in vivo and in vitro by UHPLC-Q-TOF-MS/MS. J Pharm Biomed Anal 2021; 197:113905. [PMID: 33636644 DOI: 10.1016/j.jpba.2021.113905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/01/2020] [Accepted: 01/14/2021] [Indexed: 01/26/2023]
Abstract
Oroxin B, a flavonoid, is a major bioactive component form Oroxylum indicum (L.) Vent. with enormous anti-hepatoma effects. To data, the oroxin B metabolism studies remain underexplored. This study was designed to characterize oroxin B metabolism in vivo and in vitro by ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). Consequently, 30 metabolites in rats, 8 metabolites in liver microsomes and 18 metabolites in intestinal bacteria were identified, and 9 metabolites were recognized by comparison with standards. The biotransformation processes involved ketone, acetylation, loss of C12H20O10, and loss of C6H10O5. And baicalein and oroxin A were generated after loss of C12H20O10, and loss of C6H10O5, respectively, and further went through some other reactions, such as oxidation, methylation, internal hydrolysis, hydrogenation, loss of O, ketone, glycine conjugation, glucuronide conjugation and their composite reactions. The results provide valuable evidence for elucidation the potential mechanism of oroxin B pharmacological action, and offer reasonable guidelines for further investigations of oroxin B safety and efficacy.
Collapse
Affiliation(s)
- Rui Feng
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China
| | - Xiaowei Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Jintuo Yin
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China; Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yuqian Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Yinling Ma
- Hebei General Hospital, Shijiazhuang, Hebei, 050051, PR China
| | - Xia Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Deqiang Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China.
| |
Collapse
|
14
|
Zhang F, Li Z, Li M, Yuan Y, Cui S, Chen J, Li R. An integrated strategy for profiling the chemical components of Scutellariae Radix and their exogenous substances in rats by ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8823. [PMID: 32396660 DOI: 10.1002/rcm.8823] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Traditional Chinese medicines (TCMs) attract worldwide attention because of their effects in clinical application recorded in China historical ancient codes and in records, such as 'Treatise on Febrile Diseases'. With the developments of drug analysis and research, evaluating the in vivo substances in TCMs has become of great importance. Scutellariae Radix (SR, named as huang-qing in China), the root of Scutellaria baicalensis Georgi, has shown favorable clinical effects and safety in the treatment of infection diseases; however, its in vivo compounds are unclear and need detailed investigation. METHODS An ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF MS) method coupled to an integrated strategy involving diagnostic ions, neutral losses and a prediction platform was used to explore the constituents of SR, and their exogenous substances in rats. RESULTS A total of 118 chemical constituents mainly featuring five chemical structure types (flavone C-glycosides, flavone O-glycosides, free flavones, flavanones and phenylethanoid glycosides) were identified or tentatively characterized in SR, and 175 xenobiotics (68 prototypes and 107 metabolites) were profiled in rat plasma, urine, bile and feces after ingestion of SR. The metabolites were classified into four related chemical groups: flavone C-glycosides, flavone O-glycosides, flavanones and phenylethanoid glycosides. Phase II metabolism reactions, such as glucuronidation and sulfation, were the major metabolic reactions in addition to phase I reactions of hydrolysis and hydrogenation. The corresponding main metabolic features of SR in rats were also elucidated. CONCLUSIONS The metabolism of SR, as a whole, was systemically revealed for the first time, and our work also provided meaningful information for pharmacokinetics studies and pharmacological analysis of SR in future work.
Collapse
Affiliation(s)
- Fengxiang Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ziting Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Min Li
- Hainan Trauma and Disaster Rescue Key Laboratory, The First Affiliated Hospital of Hainan Medical College, Haikou, 571199, China
| | - Yulinglan Yuan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Shuangshuang Cui
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Jiaxu Chen
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ruiman Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
15
|
Liu J, Li T, Wang J, Zhao C, Geng C, Meng Q, Du G, Yin J. Different absorption and metabolism of ginsenosides after the administration of total ginsenosides and decoction of Panax ginseng. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8788. [PMID: 32196768 DOI: 10.1002/rcm.8788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Panax ginseng C.A. Meyer (PG), which contains polysaccharides and ginsenosides as the major bioactive components, has been used to promote health and treat diseases for thousands of years in China. Total ginsenosides were extracted from a decoction of Panax ginseng (GD), which included both ginsenosides and polysaccharides, and dissolved in water to obtain a total ginsenosides aqueous solution (TGAS). To study their absorption and metabolism, the pharmacokinetics (PK) and metabolites of ginsenosides in vivo were investigated after the administration of GD and TGAS. METHODS Rat and mice plasma samples were collected after the administration of GD and TGAS. Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry was used with the UNIFI platform to identify metabolites in the plasma sample. The pharmacokinetic parameters were calculated using a noncompartmental method in the Drug and Statistics software package. RESULTS Thirty ginsenoside metabolites were identified in mice plasma, of which only seven were found in the rat plasma after the administration of GD. The PK of ginsenosides Rb1 , Rc, and Rd were also determined after the oral administration of GD and TGAS and showed significant differences in the pharmacokinetic parameters. CONCLUSIONS There was no difference in the biotransformation pathways after the oral administration of GD and TGAS, indicating that there was no influence of polysaccharides on the biotransformation of ginsenosides in vivo. However, the pharmacokinetic parameters were different after the administration of GD and TGAS, possibly because of the polysaccharides in GD. This study should be of significance in exploring the basis of PG bioactivities and lays the foundation for the further development of new drugs using PG.
Collapse
Affiliation(s)
- Jihua Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Ting Li
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
- Department of Pharmaceutics, Changzhi Medical College, Changzhi, China
| | - Jia Wang
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Chunfang Zhao
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Cong Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qin Meng
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Guangguang Du
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jianyuan Yin
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|
16
|
Zeng Q, Zhang Y, Zhang W, Guo Q. Baicalein suppresses the proliferation and invasiveness of colorectal cancer cells by inhibiting Snail‑induced epithelial‑mesenchymal transition. Mol Med Rep 2020; 21:2544-2552. [PMID: 32323825 PMCID: PMC7185271 DOI: 10.3892/mmr.2020.11051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Scutellaria baicalensis (S. baicalensis) is a plant that is widely used for medicinal purposes. Baicalein, one of the primary bioactive compounds found in S. baicalensis, is thought to possess antitumor activity, although the specific mechanisms remain unclear. Therefore, the present study aimed to evaluate the ability of baicalein to disrupt the proliferation and metastatic potential of colorectal cancer (CRC) cells; a rapid and sensitive ultra-high performance liquid chromatography-tandem mass spectrometric method was employed for the identification of baicalein in an S. baicalensis aqueous extract and in rat plasma. To investigate the effects of baicalein, Cell Counting Kit-8 (CCK-8), western blotting, wound-healing and Transwell assays were performed. The data indicated that baicalein was absorbed into the blood and was able to effectively disrupt the proliferation, migration and invasion abilities of CRC cells in a dose- and time-dependent manner. Baicalein treatment was also revealed to decrease the expression of epithelial-mesenchymal transition (EMT)-promoting factors including vimentin, Twist1, and Snail, but to upregulate the expression of E-cadherin in CRC cells. The expression levels of cell cycle inhibitory proteins p53 and p21 also increased following baicalein treatment. In addition, Snail-induced vimentin and Twist1 upregulation, as well as E-cadherin downregulation, were reversed following treatment with baicalein. In conclusion, the results of the present study indicate that baicalein may suppress EMT, at least in part, by decreasing Snail activity.
Collapse
Affiliation(s)
- Qiongyao Zeng
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yu Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Wenjing Zhang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Qiang Guo
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
17
|
Yang C, Xia T, Wang C, Sun H, Li Y, Gong Z, Li Y, Zheng L, Huang Y. Using the UPLC-ESI-Q-TOF-MS E method and intestinal bacteria for metabolite identification in the nonpolysaccharide fraction from Bletilla striata. Biomed Chromatogr 2019; 33:e4637. [PMID: 31256429 DOI: 10.1002/bmc.4637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/15/2019] [Accepted: 06/25/2019] [Indexed: 11/10/2022]
Abstract
Bletilla striata (Thunb.) Reichb. f. (Orchidaceae), also known as Bai-ji, is a traditional Chinese herb that is widely used in Asia to treat hematemesis, hemoptysis, traumatic bleeding and other similar disorders. Most studies have focused on the pharmacological activities of polysaccharide extracts from B. striata. Our previous studies found that the nonpolysaccharide fraction from B. striata extract also has a hemostatic effect; however, the active constituents responsible for this pharmacological action are unclear. Thus, the metabolic profiles of the nonpolysaccharide fraction were investigated in Sprague-Dawley rats and intestinal bacteria models using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Mass data were acquired by the MSE method. Eight components including five prototypes and three metabolites were identified in rat biofluids after oral administration of the nonpolysaccharide fraction. The parent compounds underwent various metabolic processes, including hydrolysis, deglucosylation, glycosylation and sulfate conjugation. The results not only reveal the possible metabolic pathway, but also indicate the potential pharmacological components. Further mechanistic studies using nonpolysaccharide compounds of the B. striata extract are required to obtain potential candidate compounds.
Collapse
Affiliation(s)
- Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Tao Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Changquan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Huiyuan Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
18
|
Zhao L, Ouyang H, Wang Q, Fan D, Wang Y, Yang S, Li Z, Pan L, Feng Y. Chemical fingerprint analysis and metabolic profiling of 50% ethanol fraction of Lomatogonium rotatum by ultra-performance liquid chromatography/quadrupole-time of flight mass spectrometry. Biomed Chromatogr 2019; 33:e4651. [PMID: 31313844 DOI: 10.1002/bmc.4651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/25/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
Abstract
Lomatogonium rotatum (L.) Fries ex Nym (L. rotatum), a member of Gentianaceae, is an important mongolian medicine in China used to treat febrile diseases in liver and gallbladder. The aim of present study was to investigate the chemical constituents and metabolites of the 50% ethanol fraction of L. rotatum (50EtLR). Firstly, the extract of L. rotatum was partitioned by macroporous resin to obtain the target fraction (50EtLR), then several compounds were isolated from 50EtLR to obtained the standards for further analysis of chemical constituents of 50EtLR. Secondly, the chemical constituents of 50EtLR were characterized using the ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). Finally, prototype constituents and related metabolites were analyzed after orally administerng 50EtLR to rats. As a result, a new compound, 6-O-[β-d-xylopyranosyl-(1 → 6)-O-β-d-glucopyranosyl]-1,4,8-trimethoxyxanthone (6) along with seven known compounds (1-5, 7 and 8) were isolated from the 50EtLR, 92 components were either unambiguously or tentatively identified. Additionally, 34 prototype constituents and 112 metabolites in rat plasma along with 32 prototype constituents and 53 metabolites in rat liver were tentatively identified. Therefore, xanthones and flavonoids were the main chemical constituents of 50EtLR and sulfation and glucuronidation are the main enzyme-induced metabolic pathways involved post-administration.
Collapse
Affiliation(s)
- Lanjun Zhao
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hui Ouyang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Nanchang, China
| | - Qi Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Nanchang, China
| | - Donghui Fan
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang, China
| | - Yuwei Wang
- Heilongjiang Provincial Hospital, Harbin, China
| | - Shinlin Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhifeng Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lingling Pan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yulin Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Nanchang, China
| |
Collapse
|
19
|
Zhang H, Wang L, Lu B, Qi W, Jiao F, Zhang H, Yuan D. Metabolite profiling and quantification of phytochemicals of Tianma-Gouteng granule in human and rat urine using ultra high performance liquid chromatography coupled with tandem mass spectrometry. J Sep Sci 2019; 42:2762-2770. [PMID: 31207093 DOI: 10.1002/jssc.201900029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
Abstract
Tianma-Gouteng granule has been used for the treatment of hypertension, headache, and stroke in China. However, the metabolism of Tianma-Gouteng granule has not been clear. In the present study, an ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method has been developed for rapid identification of 35 prototypes and 43 metabolites in human and rat urine after single oral administration of Tianma-Gouteng granule. The results showed that glucuronidation and sulfation were the main metabolic pathways for flavonoids, alkaloids, iridoidic glycosides, anthraquinones, phenols, and stilbenes that were found in Tianma-Gouteng granule. Moreover, a validated ultra high performance liquid chromatography coupled with tandem mass spectrometry method was applied for the quantification of 14 compounds in rat urine after an oral administration of Tianma-Gouteng granule (2.5 g/kg). During 0-48 h after dosing, the cumulative excretion rates of nine prototype components were 53% for gastrodin, 0.07∼1.6% for geniposide, baicalin and baicalein, wogonoside, rhynchophylline and isorhynchophylline, leonurine, and emodin, indicating that urinary excretion is the major way for gastrodin to eliminate from the body. This study provides a comprehensive understanding of metabolism and excretive kinetics of Tianma-Gouteng granule in human and/or rat, and helpful information for screening of its active components in vivo and clinical application.
Collapse
Affiliation(s)
- Hongye Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Lu Wang
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Bin Lu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Wen Qi
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Fuying Jiao
- 2nd Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, P. R. China
| | - Hong Zhang
- 2nd Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, P. R. China
| | - Dan Yuan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
20
|
|
21
|
Jiang Z, Peng C, Huang W, Wu B, Zhang D, Ouyang H, Feng Y, Yang S. A High Throughput Three-step Ultra-performance Liquid Chromatography Tandem Mass Spectrometry Method to Study Metabolites of Atractylenolide-III. J Chromatogr Sci 2019; 57:163-176. [PMID: 30496359 DOI: 10.1093/chromsci/bmy098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 01/03/2023]
Abstract
Atractylodes macrocephala Koidz (AMK) is a traditional Chinese medicine widely used in the treatment of various diseases, especially spleen deficiency. As the principle active constituents of AMK, however, the metabolites of Atractylenolide-III (A-lactone-III) have not been identified in rats yet. In this study, a three-step high throughput method based on UHPLC-Q-TOF-MS-MS was developed to profile and characterize the metabolites of A-lactone-III in rat feces, urine and plasma. The initial step was a full-scan that utilized a multiple mass defect filter (MMDF) combined with dynamic background subtraction (DBS). PeakView®1.2 and Metabolitepilot™1.5 software was then used to obtain data and seek possible metabolites. Finally, MS-MS spectra of the parent drug and possible metabolites were compared by the fragment ion peaks and retention times, which enabled metabolites to be identified. As a result, 53 metabolites were characterized in rats in vivo. The metabolic pathways of A-lactone-III were identified as including methylation, oxidation, hydroxylation, dihydroxylation, hydrogenation, glycosylation, sulfonation, and glucuronide, cysteine and N-acetylcysteine conjugation.
Collapse
Affiliation(s)
- Zhihui Jiang
- Department of Natural Medicine Chemistry, Institute of Pharmacy, Jiangxi University of Traditional Chinese Medicine, No. 1688 Meiling Avenue, Nanchang, PR China
| | - Chunyan Peng
- Department of Natural Medicine Chemistry, Institute of Pharmacy, Jiangxi University of Traditional Chinese Medicine, No. 1688 Meiling Avenue, Nanchang, PR China
| | - Wenping Huang
- Department of Natural Medicine Chemistry, Institute of Pharmacy, Jiangxi University of Traditional Chinese Medicine, No. 1688 Meiling Avenue, Nanchang, PR China.,State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang, PR China
| | - Bei Wu
- Nanchang Insitute for Food and Drug Control, No. 299 Diezihu Road, Nanchang, PR China
| | - Dan Zhang
- Department of Natural Medicine Chemistry, Institute of Pharmacy, Jiangxi University of Traditional Chinese Medicine, No. 1688 Meiling Avenue, Nanchang, PR China
| | - Hui Ouyang
- Department of Natural Medicine Chemistry, Institute of Pharmacy, Jiangxi University of Traditional Chinese Medicine, No. 1688 Meiling Avenue, Nanchang, PR China
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang, PR China
| | - Shilin Yang
- Department of Natural Medicine Chemistry, Institute of Pharmacy, Jiangxi University of Traditional Chinese Medicine, No. 1688 Meiling Avenue, Nanchang, PR China
| |
Collapse
|
22
|
Zhang H, Duan S, Wang L, Liu J, Qi W, Yuan D. Identification of the absorbed components and their metabolites of Tianma-Gouteng granule in rat plasma and bile using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2019; 33:e4480. [PMID: 30597588 DOI: 10.1002/bmc.4480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022]
Abstract
Tianma-Gouteng granule (TGG), a Chinese herbal formula preparation, is clinically used for the treatment of cardio-cerebrovascular diseases such as hypertension, cerebral ischaemia, acute ischaemic stroke and Parkinson's disease. Although few reports have been published concerning the absorbed prototype components of TGG, the possible metabolic pathways of TGG in vivo remain largely unclear. In this study, a method using UPLC-Q/TOF MS was established for the detection and identification of the absorbed prototype components and related metabolites in rat plasma and bile after oral administration of TGG at high and normal clinical dosages. A total of 68 components were identified or tentatively identified in plasma and bile samples, including absorbed prototypes and their metabolites. The major absorbed components were gastrodin, isorhynchophylline, rhynchophylline, isocorynoxeine, corynoxeine, geissoschizine methyl ether baicalin, baicalein, wogonoside, wogonin, geniposidic acid, leonurine, 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside and emodin. The main metabolic pathways of these components involved phase I (isomerization, hydrolysis and reduction) and phase II (glucuronidation and sulfation) reaction, and the phase II biotransformation pathway was predominant. The present study provides rich information on the in vivo absorption and metabolism of TGG, and the results will be helpful for further studies on the pharmacokinetics and pharmacodynamics of TGG.
Collapse
Affiliation(s)
- Hongye Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shaorong Duan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Lu Wang
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Liu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Wen Qi
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Dan Yuan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
23
|
Chemical Ingredients Identified from the White SAP of Metaplexis japonica Using UPLC-QTOF/MS. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Zhang WD, Jin MM, Jiang HH, Yang JX, Wang Q, Du YF, Cao L, Xu HJ. Study on the metabolites of betulinic acid in vivo and in vitro by ultra high performance liquid chromatography with time-of-flight mass spectrometry. J Sep Sci 2018; 42:628-635. [PMID: 30427118 DOI: 10.1002/jssc.201800960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022]
Abstract
Betulinic acid is a triterpenoid organic acid with remarkable antitumor properties and is naturally present in many fruits, condiments and traditional Chinese medicines. Currently, a strategy was developed for the identification of metabolites following the in vivo and in vitro biotransformation of Betulinic acid with rat intestinal bacteria utilizing ultra high performance liquid chromatography with time-of-flight mass spectrometry with polymeric solid-phase extraction. As a result, 46 metabolites were structurally characterized. The results demonstrated that Betulinic acid is universally metabolized in vivo and in vitro, and Betulinic acid could undergo general metabolic reactions, including oxidation, methylation, desaturation, loss of O and loss of CH2 . Additionally, the main metabolic pathways in vivo and in vitro were determined by calculating the relative content of each metabolite. This is the first study of Betulinic acid metabolism in vivo, whose results provide novel and useful data for better understanding of the safety and efficacy of Betulinic acid.
Collapse
Affiliation(s)
- Wen-Dan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Miao-Miao Jin
- Department of Pharmacy, Kailuan General Hospital, Tangshan, P. R. China
| | - Hong-Hong Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Jian-Xi Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Qiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Ying-Feng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Liang Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Hui-Jun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| |
Collapse
|
25
|
Guan S, Zou Y, Jia B, Wu L, Yang Z, Yuan F, Zhang L. Pharmacokinetic and metabolic studies of Vortioxetine in rats using ultra high performance liquid chromatography with tandem mass spectrometry. J Sep Sci 2018; 41:4469-4479. [DOI: 10.1002/jssc.201800607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/20/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Su Guan
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou P. R. China
- Guangdong Engineering Center for Biopharmaceuticals; Guangzhou P. R. China
| | - Yake Zou
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou P. R. China
| | - Bingjie Jia
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou P. R. China
| | - Lvying Wu
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou P. R. China
| | - Zhicheng Yang
- Department of Clinical Pharmacy and Pharmacy Administration; School of Pharmacy; Guang Dong Pharmaceutical University; Guangzhou P. R. China
| | - Fang Yuan
- Department of Clinical Pharmacy and Pharmacy Administration; School of Pharmacy; Guang Dong Pharmaceutical University; Guangzhou P. R. China
| | - Lei Zhang
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou P. R. China
- Guangdong Engineering Center for Biopharmaceuticals; Guangzhou P. R. China
| |
Collapse
|
26
|
Li Z, Guo X, Cao Z, Liu X, Liao X, Huang C, Xu W, Liu L, Yang P. New MS network analysis pattern for the rapid identification of constituents from traditional Chinese medicine prescription Lishukang capsules in vitro and in vivo based on UHPLC/Q-TOF-MS. Talanta 2018; 189:606-621. [DOI: 10.1016/j.talanta.2018.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/26/2018] [Accepted: 07/10/2018] [Indexed: 01/07/2023]
|
27
|
Liu S, Dai G, Sun L, Sun B, Chen D, Zhu L, Wang Y, Zhang L, Chen P, Zhou D, Ju W. Biotransformation and Metabolic Profile of Limonin in Rat Liver Microsomes, Bile, and Urine by High-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10388-10393. [PMID: 30260225 DOI: 10.1021/acs.jafc.8b02057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Limonin is a triterpenoid in citrus seeds, which has significant biological activities. However, the metabolic profile of limonin has not been fully understood. To expound its metabolism in vivo and in vitro, the metabolites of limonin was studied by rat liver microsomes, urine, and bile. High-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was used for identification. Among the metabolites, the structures of M1 and M3 were confirmed by chemical synthesis and nuclear magnetic resonance spectra analysis. Our results indicated that reduction and hydrolysis were the two major pathways during limonin metabolism in vivo and in vitro. The results from this work are valuable and important for understanding the metabolic process of limonin.
Collapse
Affiliation(s)
- Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Guoliang Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Luning Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Bingting Sun
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210016 , People's Republic of China
| | - Du Chen
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjiaxiang Road , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Yao Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210016 , People's Republic of China
| | - Peidong Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210016 , People's Republic of China
| | - Dong Zhou
- Department of Pathology , University of Pittsburgh School of Medicine , Pittsburgh , Pennsylvania 15213 , United States
| | - Wenzheng Ju
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| |
Collapse
|
28
|
Wang T, Li D, Yu B, Qi J. Screening inhibitors of xanthine oxidase from natural products using enzyme immobilized magnetic beads by high-performance liquid chromatography coupled with tandem mass spectrometry. J Sep Sci 2018; 40:1877-1886. [PMID: 28261954 DOI: 10.1002/jssc.201601438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 01/12/2023]
Abstract
In this study, high-performance liquid chromatography coupled with tandem mass spectrometry was used to assess the results of bioactive compound screening from natural products using immobilized enzyme magnetic beads. We compared three commercial magnetic beads with modified amino, carboxy, and N-hydroxysuccinimide groups, respectively. Amino magnetic beads performed best for immobilization and were selected for further experiments. Xanthine oxidase was immobilized on amino magnetic beads and applied to screen potential inhibitors in fresh Zingiber officinale Roscoe, extracts of Scutellaria baicalensis Georgi, and Pueraria lobata Ohwi. In total, 12 potential xanthine oxidase ligands were identified from fresh Zingiber root and Scutellaria root extracts, of which eight were characterized and the concentration required for 50% inhibition was determined. Preliminary structure-function relationships were discussed based on these results. A convenient and effective method was therefore developed for the identification of active compounds from complex natural product mixtures.
Collapse
Affiliation(s)
- Ting Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P.R. China
| | - Dapeng Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P.R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P.R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Jin Qi
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P.R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| |
Collapse
|
29
|
Rong W, Guo S, Ding K, Yuan Z, Li Q, Bi K. Integrated strategy based on high-resolution mass spectrometry coupled with multiple data mining techniques for the metabolic profiling of Xanthoceras sorbifolia
Bunge husks in rat plasma, urine, and feces. J Sep Sci 2018; 41:2846-2853. [DOI: 10.1002/jssc.201800012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Weiwei Rong
- School of Traditional Chinese Materia Medica; Shenyang Pharmaceutical University; Shengyang China
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Sirui Guo
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Kewen Ding
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Ziyue Yuan
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Qing Li
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Kaishun Bi
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| |
Collapse
|
30
|
Zhou W, Shan J, Meng M. A two-step ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry with mass defect filtering method for rapid identification of analogues from known components of different chemical structure types in Fructus Gardeniae-Fructus Forsythiae herb pair extract and in rat's blood. J Chromatogr A 2018; 1563:99-123. [PMID: 29861306 DOI: 10.1016/j.chroma.2018.05.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/16/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
Abstract
Fructus Gardeniae-Fructus Forsythiae herb pair is an herbal formula used extensively to treat inflammation and fever, but few systematic identification studies of the bioactive components have been reported. Herein, the unknown analogues in the first-step screening were rapidly identified from representative compounds in different structure types (geniposide as iridoid type, crocetin as crocetin type, jasminoside B as monocyclic monoterpene type, oleanolic acid as saponin type, 3-caffeoylquinic acid as organic acid type, forsythoside A as phenylethanoid type, phillyrin as lignan type and quercetin 3-rutinoside as flavonoid type) by UPLC-Q-Tof/MS combined with mass defect filtering (MDF), and further confirmed with reference standards and published literatures. Similarly, in the second step, other unknown components were rapidly discovered from the compounds identified in the first step by MDF. Using the two-step screening method, a total of 58 components were characterized in Fructus Gardeniae-Fructus Forsythiae (FG-FF) decoction. In rat's blood, 36 compounds in extract and 16 metabolites were unambiguously or tentatively identified. Besides, we found the principal metabolites were glucuronide conjugates, with the glucuronide conjugates of caffeic acid, quercetin and kaempferol confirmed as caffeic acid 3-glucuronide, quercetin 3-glucuronide and kaempferol 3-glucuronide by reference standards, respectively. Additionally, most of them bound more strongly to human serum albumin than their respective prototypes, predicted by Molecular Docking and Simulation, indicating that they had lower blood clearance in vivo and possibly more contribution to pharmacological effects. This study developed a novel two-step screening method in addressing how to comprehensively screen components in herbal medicine by UPLC-Q-Tof/MS with MDF.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210046, PR China
| | | |
Collapse
|
31
|
A target-group-change strategy based on the UPLC-Q-TOF-MS E method for the metabolites identification of Fufang-Xialian-Capsule in rat's plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1085:42-53. [DOI: 10.1016/j.jchromb.2018.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
|
32
|
Zeng X, Su W, Zheng Y, Liu H, Li P, Zhang W, Liang Y, Bai Y, Peng W, Yao H. UFLC-Q-TOF-MS/MS-Based Screening and Identification of Flavonoids and Derived Metabolites in Human Urine after Oral Administration of Exocarpium Citri Grandis Extract. Molecules 2018; 23:molecules23040895. [PMID: 29649170 PMCID: PMC6017061 DOI: 10.3390/molecules23040895] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022] Open
Abstract
Exocarpium Citri grandis (ECG) is an important Traditional Chinese Medicine (TCM) for the treatment of cough and phlegm, and the flavonoids contained were considered the main effective components. To date, the systematic chemical profiling of these flavonoids and derived in vivo metabolites in human have not been well investigated. ECG was extracted using boiling water and then provided to volunteers for oral administration. Following the ingestion, urine samples were collected from volunteers over 48 h. The extract and urine samples were analyzed using ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS) system to screen and identify flavonoids and derived in vivo metabolites. A total of 18 flavonoids were identified in the ECG extract, and 20 metabolites, mainly glucuronide and sulfate conjugates, were screened in urine samples collected post consumption. The overall excretion of naringenin metabolites corresponded to 5.45% of intake and occurred mainly within 4–12 h after the ingestion. Meanwhile, another 29 phenolic catabolites were detected in urine. Obtained data revealed that flavonoids were abundant in the ECG extract, and these components underwent extensive phase II metabolism in humans. These results provided valuable information for further study of the pharmacology and mechanism of action of ECG.
Collapse
Affiliation(s)
- Xuan Zeng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Yuying Zheng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Hong Liu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Panlin Li
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Weijian Zhang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Yuting Liang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Yang Bai
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Wei Peng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| | - Hongliang Yao
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China.
| |
Collapse
|
33
|
Liang C, Zhang X, Diao X, Liao M, Sun Y, Zhang L. Metabolism profiling of nevadensin in vitro and in vivo by UHPLC-Q-TOF-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1084:69-79. [PMID: 29573625 DOI: 10.1016/j.jchromb.2018.03.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 11/18/2022]
Abstract
Nevadensin is major constituents of Lysionotus pauciflorus Maxim. (Chinese name: Shidiaolan), which has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive. In this paper, we investigated the metabolism of nevadensin in vitro and in vivo. A strategy was firstly developed to identify the metabolites of nevadensin by using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). An on-line data acquisition method a multiple mass defect filter (MMDF) combined with dynamic background subtraction (DBS) was developed to trace all probable metabolites. Furthermore, some assistant tools, such as key fragment ions (KFI), were employed for compound hunting and identification. Based on the proposed method, 23 metabolites were structurally characterized in vivo including 16 phase I and 7 phase II metabolites, and 12 metabolites were detected in vitro containing 10 phase I and 2 phase II metabolites. The results indicated that oxidation, hydrolysis, demethylation, methylation, sulfate conjugation and glucuronide conjugation were main metabolic pathways of nevadensin. In a word, this study maybe can provide reference and valuable evidence for further investigation of the metabolic mechanism of nevadensin.
Collapse
Affiliation(s)
- Caijuan Liang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xia Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xinpeng Diao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Man Liao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yupeng Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
34
|
Lin TS, Tsai HJ, Lee CH, Song YQ, Huang RS, Hsieh-Li HM, Liang MC, Lin Y. An Improved Drugs Screening System Reveals that Baicalein Ameliorates the Aβ/AMPA/NMDA-Induced Depolarization of Neurons. J Alzheimers Dis 2018; 56:959-976. [PMID: 28106556 DOI: 10.3233/jad-160898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The presence of amyloid-β (Aβ) plaque and tau protein hyperphosphorylation in brain tissue is the pathological hallmark of Alzheimer's disease (AD). At least some Aβ neurotoxicity is caused by the presence of excess glutamate that has been induced by Aβ accumulation. Memantine is currently the only NMDA receptor inhibitor approved for treating moderate-to-severe AD patients. We utilized primary cortical neurons and DiBAC4(3), a slow-response voltage sensitive fluorescence dye, to create a novel system for screening herbal medicines that allows the identification of pure compounds able to ameliorate Aβ-induced abnormal depolarization. The intensity of DiBAC4(3) fluorescence was increased when primary neurons were stimulated by Aβ; furthermore, pre-treatment with memantine abolished this change. Using this system, we identified six crude extracts made from herbal medicines that effectively alleviated this Aβ-induced abnormal depolarization. Among these herbal medicines, one pure compound, baicalein, which was known to be present in Scutellaria baricalensis and is known to improve memory using an AD mouse model, was identified by our assay. However, the compound's molecular mechanism remained unknown. We found that baicalein, in addition to inhibiting Aβ-induced depolarization, possibly functions as an antagonist of AMPA and NMDA receptors. Taken together, we have established a system/platform to identify herbal medicines that ameliorate Aβ-induced depolarization of neurons. Equally important, baicalein is a candidate drug with great potential for the treatment of AD patients.
Collapse
Affiliation(s)
- Tian-Syuan Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Han-Jung Tsai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Han Lee
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yan-Qing Song
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Rih-Sheng Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Mei-Chih Liang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yenshou Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
35
|
Zhang X, Liu S, Xing J, Pi Z, Liu Z, Song F. Systematic study on metabolism and activity evaluation of Radix Scutellaria extract in rat plasma using UHPLC with quadrupole time-of-flight mass spectrometry and microdialysis intensity-fading mass spectrometry. J Sep Sci 2018; 41:1704-1710. [PMID: 29293286 DOI: 10.1002/jssc.201700666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022]
Abstract
Radix Scutellaria is a widely used traditional Chinese medicine in the treatment of various diseases. However, the activities of the absorbed components and metabolites of its main flavones in rat plasma need further investigation. In this study, a systematic method based on ultra-high performance liquid chromatography with quadruple time-of-flight mass spectrometry was developed to speculate the absorbed components and metabolites of the main flavonoids in Radix Scutellaria extract in rat plasma sample after oral administration of the extract. Twelve compounds, including four prototype components and eight metabolites, were confirmed in drug-containing plasma. In these metabolites, five were originally detected in rat plasma. The possible metabolic pathways of these polyhydroxy flavones in vivo were described and clarified. Microdialysis with intensity-fading mass spectrometry was originally employed to investigate the binding affinities of the absorbed components and metabolites with α-glucosidase. The order of their binding affinities was P4 > P3 > P2 > P1≥M5 > M3 > M1. The research result is helpful to deepen the understanding of the absorbed components and metabolic pathways of main flavones from Radix Scutellaria, and provide a new approach to screen potential inhibitors from in vivo components originated from Chinese herb.
Collapse
Affiliation(s)
- Xueju Zhang
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
36
|
Wang K, Qiao M, Chai L, Cao S, Feng X, Ding L, Qiu F. Identification of berberrubine metabolites in rats by using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Fitoterapia 2018; 124:23-33. [DOI: 10.1016/j.fitote.2017.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 11/30/2022]
|
37
|
Zhang X, Yin J, Liang C, Sun Y, Zhang L. UHPLC-Q-TOF-MS/MS Method Based on Four-Step Strategy for Metabolism Study of Fisetin in Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10959-10972. [PMID: 29171267 DOI: 10.1021/acs.jafc.7b04265] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fisetin has been identified as an anticancer agent with antiangiogenic properties in mice. However, its metabolism in vitro (rat liver microsomes) and in vivo (rats) is presently not characterized. In this study, ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was employed for data acquiring, and a four-step analytical strategy was developed to screen and identify metabolites. First, full-scan was applied, which was dependent on a multiple mass defect filter (MMDF) combined with dynamic background subtraction (DBS). Then PeakView 1.2 and Metabolitepilot 1.5 software were used to load data to seek possible metabolites. Finally, metabolites were identified according to mass measurement and retention time. Moreover, isomers were distinguished based on Clog P parameter. Based on the proposed method, 53 metabolites in vivo and 14 metabolites in vitro were characterized. Moreover, metabolic pathways mainly included oxidation, reduction, hydrogenation, methylation, sulfation, and glucuronidation.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University , Shijiazhuang 050017, P.R. China
| | - Jintuo Yin
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University , Shijiazhuang 050017, P.R. China
| | - Caijuan Liang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University , Shijiazhuang 050017, P.R. China
| | - Yupeng Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University , Shijiazhuang 050017, P.R. China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University , Shijiazhuang 050017, P.R. China
| |
Collapse
|
38
|
Zhou L, Zhang Q, Qi W, Yan S, Qu J, Makino T, Yuan D. Identification of metabolites in human and rat urine after oral administration of Xiao-Qing-Long-Tang granule using ultra high performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry. J Sep Sci 2017; 40:3582-3592. [DOI: 10.1002/jssc.201700423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/24/2017] [Accepted: 07/06/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Zhou
- Department of Traditional Chinese Medicine; Shenyang Pharmaceutical University; Shenyang China
| | - Qiang Zhang
- Department of Traditional Chinese Medicine; Shenyang Pharmaceutical University; Shenyang China
| | - Wen Qi
- Department of Traditional Chinese Medicine; Shenyang Pharmaceutical University; Shenyang China
| | - Shuai Yan
- Department of Traditional Chinese Medicine; Shenyang Pharmaceutical University; Shenyang China
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The first affiliated hospital of Dalian; Medical University; Dalian China
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences; Nagoya City University; Nagoya Japan
| | - Dan Yuan
- Department of Traditional Chinese Medicine; Shenyang Pharmaceutical University; Shenyang China
| |
Collapse
|
39
|
Global identification of chemical constituents and rat metabolites of Si-Miao-Wan by liquid chromatography-electrospray ionization/quadrupole time-of-flight mass spectrometry. Chin J Nat Med 2017; 15:550-560. [DOI: 10.1016/s1875-5364(17)30082-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Indexed: 02/07/2023]
|
40
|
Yuan L, Liang C, Diao X, Cheng X, Liao M, Zhang L. Metabolism studies on hydroxygenkwanin and genkwanin in human liver microsomes by UHPLC-Q-TOF-MS. Xenobiotica 2017; 48:332-341. [PMID: 28415902 DOI: 10.1080/00498254.2017.1319991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hydroxygenkwanin (HYGN) and genkwanin (GN) are major constituents of Genkwa Flos for the treatment of edema, ascites, cough, asthma and cancer. This is a report about the investigation of the metabolic fate of HYGN and GN in human liver microsomes and the recombinant UDP-glucuronosyltransferase (UGT) enzymes by using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). An on-line data acquisition method multiple mass defect filter (MMDF) combined with dynamic background subtraction (DBS) was developed to trace all probable metabolites. Based on this analytical strategy, three phase I metabolites and seven glucuronide conjugation metabolites of HYGN, seven phase I metabolites and 12 glucuronide conjugation metabolites of GN were identified in the incubation samples of human liver microsomes. The results indicated that demethylation, hydroxylation and o-glucuronidation were main metabolic pathways of HYGN and GN. The specific UGT enzymes responsible for HYGN and GN glucuronidation metabolites were identified using recombinant UGT enzymes. The results indicated that UGT1A1, UGT1A3, UGT1A9, UGT1A10 and UGT2B7 might play major roles in the glucuronidation reactions. Overall, this study may be useful for the investigation of metabolic mechanism of HYGN and GN, and it can provide reference and evidence for further experiments.
Collapse
Affiliation(s)
- Lin Yuan
- a Department of Pharmaceutical Analysis , School of Pharmacy, Hebei Medical University , Shijiazhuang , PR China
| | - Caijuan Liang
- a Department of Pharmaceutical Analysis , School of Pharmacy, Hebei Medical University , Shijiazhuang , PR China
| | - Xinpeng Diao
- a Department of Pharmaceutical Analysis , School of Pharmacy, Hebei Medical University , Shijiazhuang , PR China
| | - Xiaoye Cheng
- a Department of Pharmaceutical Analysis , School of Pharmacy, Hebei Medical University , Shijiazhuang , PR China
| | - Man Liao
- a Department of Pharmaceutical Analysis , School of Pharmacy, Hebei Medical University , Shijiazhuang , PR China
| | - Lantong Zhang
- a Department of Pharmaceutical Analysis , School of Pharmacy, Hebei Medical University , Shijiazhuang , PR China
| |
Collapse
|
41
|
Wang F, Wang B, Wang L, Xiong ZY, Gao W, Li P, Li HJ. Discovery of discriminatory quality control markers for Chinese herbal medicines and related processed products by combination of chromatographic analysis and chemometrics methods: Radix Scutellariae as a case study. J Pharm Biomed Anal 2017; 138:70-79. [DOI: 10.1016/j.jpba.2017.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/17/2017] [Accepted: 02/02/2017] [Indexed: 11/30/2022]
|
42
|
Xing S, Wang M, Peng Y, Li X. Effects of Intestinal Microecology on Metabolism and Pharmacokinetics of Oral Wogonoside and Baicalin. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Baicalin and wogonoside are two of the most abundant flavonoid glycosides in the root of Scutellaria baicalensis Georgi, which is a widely used peroral herbal medicine with anticancer, antiviral, antibacterial and anti-inflammatory properties. In the present study, the effects of intestinal microecology on the metabolism and pharmacokinetics of orally administered baicalin and wogonoside were investigated by UPLC-QTOF/MS measurement of the difference in metabolites between normal and antibiotic-pretreated rats. In the antibiotic-pretreated rats, the plasma concentration-time profile and pharmacokinetic parameters of the two flavonoid glycosides and their relevant aglycone forms were significantly changed compared with those in normal rats. Further, hydrolysis and glucuronidated metabolites were not detected in the cecum contents and urine samples from antibiotic-pretreated rats. These results suggested that intestinal microbiota may play a key role in the pharmacokinetics and metabolism of peroral baicalin and wogonoside. According to our findings, it is recommended that the root of S. baicalensis should not be co-administered with antibiotics in clinical use.
Collapse
Affiliation(s)
- Shihua Xing
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
43
|
Yang ZW, Xu F, Liu X, Cao Y, Tang Q, Chen QY, Shang MY, Liu GX, Wang X, Cai SQ. An untargeted metabolomics approach to determine component differences and variation in their in vivo distribution between Kuqin and Ziqin, two commercial specifications of Scutellaria Radix. RSC Adv 2017. [DOI: 10.1039/c7ra10705f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kuqin (KQ) and Ziqin (ZQ), derived from the roots of Scutellaria baicalensis Georgi, are two important commercial specifications of Scutellariae Radix (SR, termed Huang qin in Chinese).
Collapse
Affiliation(s)
- Zhi-Wei Yang
- Department of Chemical Biology
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- PR China
| | - Feng Xu
- State Key Laboratory of Natural and Biomimetic Drugs
- Peking University
- Beijing 100191
- PR China
| | - Xin Liu
- Technical Center, Beijing Entry-Exit Inspection and Quarantine Bureau
- Beijing
- PR China
| | - Yi Cao
- Department of Chemical Biology
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- PR China
| | - Qi Tang
- Department of Chemical Biology
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- PR China
| | - Qian-Yu Chen
- Department of Chemical Biology
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- PR China
| | - Ming-Ying Shang
- State Key Laboratory of Natural and Biomimetic Drugs
- Peking University
- Beijing 100191
- PR China
| | - Guang-Xue Liu
- State Key Laboratory of Natural and Biomimetic Drugs
- Peking University
- Beijing 100191
- PR China
| | - Xuan Wang
- Department of Chemical Biology
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- PR China
| | - Shao-Qing Cai
- State Key Laboratory of Natural and Biomimetic Drugs
- Peking University
- Beijing 100191
- PR China
| |
Collapse
|
44
|
Song Z, Chang H, Han N, Liu Z, Liu Y, Wang H, Shao J, Wang Z, Gao H, Yin J. He-Wei granules (HWKL) combat cisplatin-induced nephrotoxicity and myelosuppression in rats by inhibiting oxidative stress, inflammatory cytokines and apoptosis. RSC Adv 2017. [DOI: 10.1039/c7ra02830j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
He-Wei granules (HWKL) combat cisplatin-induced nephrotoxicity and myelosuppression in rats by inhibiting oxidative stress, inflammatory cytokines and apoptosis
Collapse
|
45
|
Song Z, Chang H, Han N, Liu Z, Wang Z, Gao H, Yin J. He-Wei granules inhibit chemotherapy-induced vomiting (CINV) in rats by reducing oxidative stress and regulating 5-HT, substance P, ghrelin and obestatin. RSC Adv 2017. [DOI: 10.1039/c7ra06312a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
As a common side effect of a variety of chemotherapy drugs, CINV severely limits the clinical use of chemotherapy drugs.
Collapse
Affiliation(s)
- Zehai Song
- Development and Utilization Key Laboratory of Northeast Plant Materials
- School of Traditional Chinese Materia Medica 48#
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Hang Chang
- Development and Utilization Key Laboratory of Northeast Plant Materials
- School of Traditional Chinese Materia Medica 48#
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Na Han
- Development and Utilization Key Laboratory of Northeast Plant Materials
- School of Traditional Chinese Materia Medica 48#
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Zhihui Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials
- School of Traditional Chinese Materia Medica 48#
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Zhonglin Wang
- Development and Utilization Key Laboratory of Northeast Plant Materials
- School of Traditional Chinese Materia Medica 48#
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Hao Gao
- Development and Utilization Key Laboratory of Northeast Plant Materials
- School of Traditional Chinese Materia Medica 48#
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials
- School of Traditional Chinese Materia Medica 48#
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
46
|
Song G, Jin M, Du Y, Cao L, Xu H. UPLC-QTOF-MS/MS based screening and identification of the metabolites in rat bile after oral administration of imperatorin. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1022:21-29. [DOI: 10.1016/j.jchromb.2016.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/02/2016] [Accepted: 04/02/2016] [Indexed: 12/17/2022]
|
47
|
Evaluation of the distribution and metabolism of polyphenols derived from cupuassu ( Theobroma grandiflorum ) in mice gastrointestinal tract by UPLC-ESI-QTOF. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
48
|
Wu C, Zhang H, Wang C, Qin H, Zhu M, Zhang J. An Integrated Approach for Studying Exposure, Metabolism, and Disposition of Multiple Component Herbal Medicines Using High-Resolution Mass Spectrometry and Multiple Data Processing Tools. ACTA ACUST UNITED AC 2016; 44:800-8. [PMID: 27013399 DOI: 10.1124/dmd.115.068189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/23/2016] [Indexed: 11/22/2022]
Abstract
A typical prescription of traditional Chinese medicine (TCM) contains up to a few hundred prototype components. Studying their absorption, metabolism, distribution, and elimination (ADME) presents great challenges. The objective of this study was to develop a practical approach for investigating ADME of individual prototypes in TCM. An active fraction of Xiao-Xu-Ming decoction (AF-XXMD) as a model TCM prescription was orally administered to rats. AF-XXMD-related components in plasma, urine, bile, and feces were detected using high-resolution mass spectrometry and background subtraction, an untargeted data-mining tool. Components were then structurally characterized on the basis of MS(n) spectral data. Connection of detected AF-XXMD metabolites to their precursor species, either prototypes or upstream metabolites, were determined on the basis of mass spectral similarity and the matching of biotransformation reactions. As a result, 247 AF-XXMD-related components were detected and structurally characterized in rats, 134 of which were metabolites. Among 198 AF-XXMD prototypes dosed, 65 were fully or partially absorbed and 13 prototypes and 34 metabolites were found in the circulation. Glucuronidation, isomerization, and deglycosylation followed by biliary and urinary excretions and direct elimination of prototypes via kidney and liver were the major clearance pathways of AF-XXMD prototypes. As an example, the ADME profile of H56, the single major AF-XXMD component in rat plasma, was elucidated on the basis of profiles of H56-related components in plasma and excreta. The results demonstrate that the new analytical approach is a useful tool for rapid and comprehensive detection and characterization of TCM components in biologic matrix in a TCM ADME study.
Collapse
Affiliation(s)
- Caisheng Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (C.Wu., C.Wa., H.Q., J.Z.); Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (H.Z., M.Z.)
| | - Haiying Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (C.Wu., C.Wa., H.Q., J.Z.); Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (H.Z., M.Z.)
| | - Caihong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (C.Wu., C.Wa., H.Q., J.Z.); Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (H.Z., M.Z.)
| | - Hailin Qin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (C.Wu., C.Wa., H.Q., J.Z.); Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (H.Z., M.Z.)
| | - Mingshe Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (C.Wu., C.Wa., H.Q., J.Z.); Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (H.Z., M.Z.)
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (C.Wu., C.Wa., H.Q., J.Z.); Department of Biotransformation, Bristol-Myers Squibb Company, Princeton, New Jersey (H.Z., M.Z.)
| |
Collapse
|
49
|
Zhang F, La M, Gong X, Gao S, Wu Z, Sun L, Tao X, Chen W. Metabolite identification and pharmacokinetic study of Lamiophlomis rotata in rats. RSC Adv 2016. [DOI: 10.1039/c5ra25264d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
An ultra-high performance liquid chromatography coupled with time-of-flight mass spectrometry technique and a subsequent LC-MS/MS method were developed for metabolite profile study of Lamiophlomis rotata extract after its oral administration.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacy
- Changzheng Hospital
- Second Military Medical University
- Shanghai 200003
- P. R. China
| | - Mingping La
- Department of Pharmacy
- Changzheng Hospital
- Second Military Medical University
- Shanghai 200003
- P. R. China
| | - Xiaobin Gong
- Department of Pharmacy
- Changzheng Hospital
- Second Military Medical University
- Shanghai 200003
- P. R. China
| | - Shouhong Gao
- Department of Pharmacy
- Changzheng Hospital
- Second Military Medical University
- Shanghai 200003
- P. R. China
| | - Zhijun Wu
- Department of Pharmacy
- Changzheng Hospital
- Second Military Medical University
- Shanghai 200003
- P. R. China
| | - Lianna Sun
- Department of Identification of Traditional Chinese Medicine
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Xia Tao
- Department of Pharmacy
- Changzheng Hospital
- Second Military Medical University
- Shanghai 200003
- P. R. China
| | - Wansheng Chen
- Department of Pharmacy
- Changzheng Hospital
- Second Military Medical University
- Shanghai 200003
- P. R. China
| |
Collapse
|
50
|
Jia D, Chen X, Cao Y, Wu X, Ding X, Zhang H, Zhang C, Chai Y, Zhu Z. On-line comprehensive two-dimensional HepG2 cell membrane chromatographic analysis system for charactering anti-hepatoma components from rat serum after oral administration of Radix scutellariae : A strategy for rapid screening active compounds in vivo. J Pharm Biomed Anal 2016; 118:27-33. [DOI: 10.1016/j.jpba.2015.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/22/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023]
|