1
|
Bhadra F, Vasundhara M. Anti-inflammatory potential of aconitine produced by endophytic fungus Acremonium alternatum. World J Microbiol Biotechnol 2024; 40:274. [PMID: 39030384 DOI: 10.1007/s11274-024-04083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Argemone mexicana belonging to family Papaveraceae is a traditional medicinal plant widely utilized by tribal people in India for treating various ailments like skin infections, wounds and inflammation. This plant is very rich in alkaloidal content, which has a great potential in the treatment of anti-inflammatory disorders. Therapeutically promising bioactive molecules are often produced by endophytic fungi associated with medicinal plants. In this investigation, endophytic fungi were isolated from various parts of A. mexicana and screened for alkaloidal content. Among these, one of the fungal isolate, Acremonium alternatum AMEF-5 producing maximum alkaloids showed significant anti-inflammatory activity. Fractionation of this crude fungal extract through column chromatography yielded eight fractions, which were further screened for anti-inflammatory activities. Fraction 3 exhibited significant anti-inflammatory activity by the inhibition of lipoxygenase enzyme (IC50 15.2 ± 0.09 µg/ml), scavenging of the nitric oxide radicals (IC50 11.38 ± 0.35 µg/ml), protein denaturation (IC50 14.93 ± 0.4 µg/ml), trypsin inhibition (IC50 12.06 ± 0.64 µg/ml) and HRBC stabilization (IC50 11.9 ± 0.22 µg/ml). The bioactive alkaloid in fraction 3 was identified as aconitine which was confirmed by UV, FTIR, HPLC, HRMS, 1H NMR, and 13C NMR analysis. This study demonstrates that endophytic fungi serve a potential source for sustainable production of therapeutically important alkaloids.
Collapse
Affiliation(s)
- Fatima Bhadra
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
2
|
Sutour S, Doan VC, Mateo P, Züst T, Hartmann ER, Glauser G, Robert CAM. Isolation and Structure Determination of Drought-Induced Multihexose Benzoxazinoids from Maize ( Zea mays). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3427-3435. [PMID: 38336361 PMCID: PMC10885146 DOI: 10.1021/acs.jafc.3c09141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Benzoxazinoids (BXDs) are plant specialized metabolites exerting a pivotal role in plant nutrition, allelopathy, and defenses. Multihexose benzoxazinoids were previously observed in cereal-based food products such as whole-grain bread. However, their production in plants and exact structure have not been fully elucidated. In this study, we showed that drought induced the production of di-, tri-, and even tetrahexose BXDs in maize roots and leaves. We performed an extensive nuclear magnetic resonance study and elucidated the nature and linkage of the sugar units, which were identified as gentiobiose units β-linked (1″ → 6') for the dihexoses and (1″ → 6')/(1‴ → 6″) for the trihexoses. Drought induced the production of DIMBOA-2Glc, DIMBOA-3Glc, HMBOA-2Glc, HMBOA-3Glc, and HDMBOA-2Glc. The induction was common among several maize lines and the strongest in seven-day-old seedlings. This work provides ground to further characterize the BXD synthetic pathway, its relevance in maize-environment interactions, and its impact on human health.
Collapse
Affiliation(s)
- Sylvain Sutour
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Van Cong Doan
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
- Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern 3012, Switzerland
- Plant Physiology Unit, The Department of Life Sciences and Systems Biology of the University of Turin, Via Accademia Albertina 13, Torino 10123, Italy
| | - Pierre Mateo
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Tobias Züst
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich 8008, Switzerland
| | | | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Christelle Aurélie Maud Robert
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
- Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern 3012, Switzerland
| |
Collapse
|
3
|
Kanlayavattanakul M, Khongkow M, Lourith N. Wound healing and photoprotection properties of Acanthus ebracteatus Vahl. extracts standardized in verbascoside. Sci Rep 2024; 14:1904. [PMID: 38253627 PMCID: PMC10803370 DOI: 10.1038/s41598-024-52511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
Acanthus spp. have been documented in traditional Thai herbal medicine and are applicable for the treatment of inflamed skin with wound healing property. Nonetheless, the scientific evidence necessary to prove the herb's doctrine has not yet been revealed. Verbascoside-rich extracts of the herbal medicine A. ebracteatus Vahl., were therefore prepared. The extracts and verbascoside were examined for their wound healing abilities using a scratch assay with fibroblasts. The anti-inflammatory effect suppressing MMP-9 was assessed in cocultures of keratinocyte (HaCaT cells) and fibroblasts. The extracts significantly improved wound healing compared with the control (p < 0.001). The wound healing effect of the extracts significantly (p < 0.01) increased with increasing verbascoside content. It should be noted that the extract was significantly (p < 0.05) better than verbascoside at the same test concentration. The extracts were capable of protecting cocultures of HaCaT cells and fibroblasts from photodamage. The extracts significantly (p < 0.001) suppressed cellular MMP-9 secretion following UV exposure, showing a better effect than that of verbascoside (p < 0.01). A. ebracteatus extract is promising for wound healing and photoprotection, and a prominent source of verbascoside. Verbascoside-rich A. ebracteatus could be utilized for the development of innovative skin-care products.
Collapse
Affiliation(s)
- Mayuree Kanlayavattanakul
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
- Phytocosmetics and Cosmeceuticals Research Group, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Nattaya Lourith
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Phytocosmetics and Cosmeceuticals Research Group, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
4
|
Matos P, Batista MT, Veiga F, Figueirinha A, Figueiras A. Acanthus mollis Formulations for Transdermal Delivery: From Hydrogels to Emulsions. Gels 2023; 10:36. [PMID: 38247759 PMCID: PMC10815486 DOI: 10.3390/gels10010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Topical formulations of Acanthus mollis L. leaf and the optimization of the release of their active compounds and their topical bioavailability were investigated for the first time. In vitro, the release of active compounds from three formulations-an oil-in-water cream and two hydrogels (Carbopol 940 and Pluronic F-127)-was determined using Franz diffusion cells. Detection and quantification of the compounds was performed via high-performance liquid chromatography with a photodiode array (HPLC-PDA). DIBOA, a bioactive compound of this medicinal plant, exhibited release kinetics of the Weibull model for the Carbopol and Pluronic F-127 formulation, identifying it as a potential active agent to optimize the topical distribution of the formulations. The implications extend to applications in inflammation treatment and tyrosinase inhibition, suggesting that it can make a significant contribution to addressing skin conditions, including melanoma and various inflammatory diseases.
Collapse
Affiliation(s)
- Patrícia Matos
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (P.M.); (F.V.)
- University of Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Maria Teresa Batista
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Francisco Veiga
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (P.M.); (F.V.)
- University of Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (P.M.); (F.V.)
- University of Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (P.M.); (F.V.)
- University of Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| |
Collapse
|
5
|
Acero N, Muñoz-Mingarro D, Navarro I, León-González AJ, Martín-Cordero C. Phytochemical Analysis and Anti-Inflammatory Potential of Acanthus mollis L. Rhizome Hexane Extract. Pharmaceuticals (Basel) 2023; 16:159. [PMID: 37259310 PMCID: PMC9966330 DOI: 10.3390/ph16020159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 11/26/2023] Open
Abstract
The rhizomes of Acanthus mollis have traditionally been used for the treatment of several ailments involving inflammation. However, to the best of our knowledge, their chemical composition and pharmacological properties have not been studied until now. As a first approach, this study analyses the A. mollis rhizome hexane extract phytochemistry and its anti-inflammatory and antioxidant capacities in HepG2 and RAW 264.7 cell culture assays. Chemical profiling was performed with gas chromatography mass spectrometry without the modification of native molecules. Free phytosterols (such as β-sitosterol) account for 70% of detected compounds. The anti-inflammatory capacity of the rhizome extract of A. mollis is mediated by the decrease in the NO production in RAW 264.7 that has previously been stimulated with lipopolysaccharide in a dose-dependent manner. Furthermore, HepG2 pre-treatment with the rhizome extract prevents any damage being caused by oxidative stress, both through ROS scavenge and through the antioxidant cellular enzyme system. In this respect, the extract reduced the activity of glutathione peroxidase and reductase, which were stimulated under oxidative stress conditions. Our results suggest that the extract from the rhizomes of A. mollis may constitute a potential source of natural products with anti-inflammatory activity and could validate the traditional use of A. mollis.
Collapse
Affiliation(s)
- Nuria Acero
- Pharmaceutical and Health Sciences Department, San Pablo-CEU University, CEU Universities, Urb. Montepríncipe, 28668 Madrid, Spain
| | - Dolores Muñoz-Mingarro
- Chemistry and Biochemistry Department, San Pablo-CEU University, CEU Universities, Urb. Montepríncipe, 28668 Madrid, Spain
| | - Inmaculada Navarro
- Department of Physical Chemistry, Faculty of Pharmacy, University of Seville, C/P. García González, 2, 41012 Seville, Spain
| | - Antonio J. León-González
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/P. García González, 2, 41012 Seville, Spain
| | - Carmen Martín-Cordero
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/P. García González, 2, 41012 Seville, Spain
| |
Collapse
|
6
|
Matos P, Paranhos A, Batista MT, Figueirinha A. Synergistic Effect of DIBOA and Verbascoside from Acanthus mollis Leaf on Tyrosinase Inhibition. Int J Mol Sci 2022; 23:13536. [PMID: 36362321 PMCID: PMC9653606 DOI: 10.3390/ijms232113536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 10/29/2023] Open
Abstract
Overexpression of melanin contributes to darkening of plant and fruit tissues and skin hyperpigmentation, leading to melasma or age spots. Although melanin biosynthesis is complex and involves several steps, a single enzyme known as tyrosinase is key to regulating this process. The melanogenesis pathway is initiated by oxidation of the starting material l-tyrosine (or l-DOPA) to dopaquinone by tyrosinase; the resulting quinone then serves as a substrate for subsequent steps that eventually lead to production of melanin. Medicinal plants are considered a good source of tyrosinase inhibitors. This study investigated the tyrosinase inhibitory activity of A. mollis leaf extracts and their phytochemicals. Significant activity was verified in the ethanol extract -EEt (IC50 = 1.21 µg/mL). Additionally, a kinetic study showed that this tyrosinase inhibition occurs by DIBOA (2,4-dihydroxy-1,4-benzoxazin-3-one) and verbascoside contribution through a non-competitive reaction mechanism. A synergistic effect on tyrosinase inhibition was observed in the binary combination of the compounds. In conclusion, both EEt and a mixture of two of its phytochemicals can be effective tyrosinase inhibitors and can be used as a bleaching agent for cosmetic formulations in the future.
Collapse
Affiliation(s)
- Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, FCTUC, Department of Chemical Engineering, University of Coimbra, 3000-213 Coimbra, Portugal
| | - António Paranhos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Batista
- CIEPQPF, FCTUC, Department of Chemical Engineering, University of Coimbra, 3000-213 Coimbra, Portugal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
7
|
Matos P, Batista MT, Figueirinha A. A review of the ethnomedicinal uses, chemistry, and pharmacological properties of the genus Acanthus (Acanthaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115271. [PMID: 35430290 DOI: 10.1016/j.jep.2022.115271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Acanthus genus belongs to the Acanthaceae family, and its species are distributed in all continents, mainly in tropical and subtropical regions. Several traditional applications are referred to, but few scientific studies validate them. Despite this, studies in animal models corroborate some of its uses in folk medicine, such as anticancer, antidiabetic, anti-inflammatory, and antinociceptive, which encourages the research on plants of this genus. AIM OF THE REVIEW To our knowledge, this document is the first comprehensive review study that provides information on the geographic distribution, botanical characteristics, ethnomedicinal uses, phytochemicals, and pharmacological activities of some Acanthus species to understand the correlation between traditional uses, phytochemical, and pharmacological activities, providing perspectives for future studies. RESULTS In traditional medicine, Acanthus species are mainly used for diseases of respiratory, nervous and reproductive system, gastrointestinal and urinary tract, and skin illness. The most used species are A. montanus, A. ilicifolius, and A. ebracteatus. Chemical compounds (125) from different chemical classes were isolated and identified in seven species, mainly from A. ilicifolius, about 80, followed by A. ebracteatus and A. montanus, appearing with a slightly lower number with fewer phytochemical profile studies. Isolated phytoconstituents have been mainly alkaloids, phenylpropanoid glycosides, and phenylethanoids. In addition, aliphatic glycosides, flavonoids, lignan glycosides, megastigmane derivatives, triterpenoids, steroids, fatty acids, alcohols, hydroxybenzoic acids, simple phenols were also cited. Scientific studies from Acanthus species extracts and their phytoconstituents support their ethnomedical uses. Antimicrobial activity that is the most studied, followed by the antioxidant, anti-inflammatory, and anticancer properties, underlie many Acanthus species activities. A. dioscoridis, A. ebracteatus, A. hirsutus, A. ilicifolius, A. mollis, A. montanus, and A. polystachyus have studies on these activities, A. ilicifolius being the one with the most publications. Most studies were essentially performed in vitro. However, the anticancer, antidiabetic, anti-inflammatory and antinociceptive properties have been studied in vivo. CONCLUSION Acanthus species have remarkable phytoconstituents with different biological activities, such as antioxidant, antimicrobial, anti-inflammatory, antinociceptive, hepatoprotective, and leishmanicidal, supporting traditional uses of some species. However, many others remain unexplored. Future studies should focus on these species, especially pharmacological properties, toxicity, and action mechanisms. This review provides a comprehensive report on Acanthus genus plants, evidencing their therapeutic potential and prospects for discovering new safe and effective drugs from Acanthus species.
Collapse
Affiliation(s)
- Patrícia Matos
- University of Coimbra, Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142, Oporto, Portugal
| | - Maria Teresa Batista
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; University of Coimbra, CIEPQPF, FFUC, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Artur Figueirinha
- University of Coimbra, Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142, Oporto, Portugal.
| |
Collapse
|
8
|
Malheiros J, Simões DM, Antunes PE, Figueirinha A, Cotrim MD, Fonseca DA. Vascular Effects of Polyphenols from Agrimonia eupatoria L. and Role of Isoquercitrin in Its Vasorelaxant Potential in Human Arteries. Pharmaceuticals (Basel) 2022; 15:ph15050638. [PMID: 35631463 PMCID: PMC9143967 DOI: 10.3390/ph15050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Agrimonia eupatoria L. has been traditionally used for the treatment of inflammatory diseases but also as a hypotensive. To our knowledge, only one study has previously suggested an improvement in vascular endothelial function in diabetic conditions, as the underlying mechanisms and responsible compounds are unknown. In this study, we aimed to assess the direct vascular effects of Agrimonia eupatoria L. in human arteries. The infusion elicited a mild increase in basal vascular tone and a significant potentiation of the adrenergic contraction of 49.18% at 0.02 mg/mL, suggesting the presence of compounds with mild vasoconstrictor activity. In contrast, the ethyl acetate fraction inhibited adrenergic contraction by 80.65% at 2 mg/mL and elicited no effect on basal vascular tone. A potent concentration-dependent vasorelaxation was observed for both the infusion and the ethyl acetate fraction (maximal relaxation above 76% and 47%, respectively). Inhibition of nitric oxide synthase and cyclooxygenase elicited significant decreases in the vasorelaxation to the infusion, as, for the ethyl acetate fraction, only the cyclooxygenase pathway appeared to be involved. Isoquercitrin elicited a vasoactivity consistent with the ethyl acetate fraction, suggesting this is a major component responsible for the vasorelaxant properties of A. eupatoria. Further research is warranted to fully evaluate its vasoprotective properties with therapeutic potential in several conditions, e.g., atherosclerosis.
Collapse
Affiliation(s)
- Jéssica Malheiros
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.); (D.M.S.); (M.D.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniela M. Simões
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.); (D.M.S.); (M.D.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Pedro E. Antunes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Centre of Cardiothoracic Surgery, University Hospital and Faculty of Medicine of Coimbra, 3000-075 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, CACC, 3000-075 Coimbra, Portugal
| | - Artur Figueirinha
- Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, 4051-401 Oporto, Portugal
- Correspondence: (A.F.); (D.A.F.); Tel.: +35-12-3948-8400 (D.A.F.)
| | - Maria Dulce Cotrim
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.); (D.M.S.); (M.D.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diogo A. Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.); (D.M.S.); (M.D.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (A.F.); (D.A.F.); Tel.: +35-12-3948-8400 (D.A.F.)
| |
Collapse
|
9
|
Özenver N, Efferth M, Efferth T. Ethnopharmacology, phytochemistry, chemical ecology and invasion biology of Acanthus mollis L. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114833. [PMID: 34785251 DOI: 10.1016/j.jep.2021.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthus mollis L. (Bear's Breeches) is a wide-spread medicinal and ornamental plant and is particularly suited to exemplarily illustrate the diverse aspects of invasion biology by neophytes. Since ancient times, it has been a popular Mediterranean ornamental plant in horticulture and served as model for the decoration of column capitals in architecture. AIM OF THE STUDY In the present review, we aimed to give an overview about ethnopharmacology, phytochemistry, chemical ecology, and invasion biology of A. mollis. Thus, the importance of plantation cultivation in the presence of ecologically problematic species and environmental protection were emphasized. MATERIALS AND METHODS We conducted an extensive literature search via screening PubMed, Scopus, and Web of Science, in order to compile the data about A. mollis and its role on invasion biology and thereby attracting attention to the prominence of the horticultural and agricultural cultivation of plant species with a special focus on A. mollis as a model. RESULTS AND CONCLUSION Phytochemical analyses revealed secondary metabolites from the classes of flavonoids, phenols, phenylpropanoids, anthraquinones arylnaphthalene lignans, phytosterols and others. Extracts of A. mollis and isolated phytochemicals not only exert assorted activities including antioxidant, anti-inflammatory and neuroprotective in murine and human experimental models, but also act against plant parasites (bacteria, insects, mollusks, fungi), protecting the plant from microbial attack and herbivorous predators. A. mollis has been used in traditional medicine to treat dermatological ailments, gastrointestinal diseases, ulcers and even tumors. Nevertheless, the robustness and rapid growth of A. mollis as well as the global horticultural trade facilitated its invasion into fragile ecosystems of Australia, New Zealand, and several other spots around the globe in Northern Europe (Great Britain), Asia (China, India), South Africa, and South America (Argentina). The release of A. mollis from gardens into the wild represents a considerable danger as invasive species are threatening biodiversity and leading to the extinction of domestic plants in the long run. Likewise, the likelihood of other medicinal plants in terms of invasion biology are needed to be fully recognized and discussed.
Collapse
Affiliation(s)
- Nadire Özenver
- Johannes Gutenberg University, Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, 55128, Mainz, Germany; Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, 06100, Ankara, Turkey.
| | - Monika Efferth
- Johannes Gutenberg University, Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, 55128, Mainz, Germany.
| | - Thomas Efferth
- Johannes Gutenberg University, Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, 55128, Mainz, Germany.
| |
Collapse
|
10
|
Bhattarai B, Steffensen SK, Gregersen PL, Kristensen HL, Fomsgaard IS. Stepwise mass spectrometry-based approach for confirming the presence of benzoxazinoids in herbs and vegetables. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:283-297. [PMID: 32688439 DOI: 10.1002/pca.2973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Benzoxazinoids (BXs) are plant phytochemicals that have both defensive properties in plants and therapeutic effects in humans. The presence of BXs has been largely studied in the Poaceae family (monocots). To study the presence or absence of BXs in dicotyledons and monocotyledons outside the Poaceae family, parts of 24 plant species at several growth stages were selected for analysis, some of which were already known to contain BXs. OBJECTIVES To devise a stepwise mass spectrometry-based approach for confirming the presence of BXs in plant samples, and to use the method to explore the status of BXs in selected plant species. EXPERIMENTAL Plant samples were extracted using accelerated solvent extraction and analysed using triple-quadrupole liquid chromatography-mass spectrometry. RESULTS The use of different columns, double mass transitions, and ion ratios proved to be a robust tool for confirming the presence of BXs in different plant species. By this method, the presence of BXs was confirmed in three of the 24 species. Double-hexose forms of BXs, which have not been reported before in dicotyledons, were confirmed to be present in the dicotyledon plants Acanthus mollis and Lamium galeobdolon, and the presence of BXs in the seeds of Consolida orientalis is reported for the first time here. High concentrations of BXs were found in the aerial parts of Acanthus mollis and Lamium galeobdolon, at 20 and 32 μmol/g plant dry weight, respectively. CONCLUSIONS The stepwise approach described in this work confirmed the presence of BXs in new samples.
Collapse
Affiliation(s)
- Bina Bhattarai
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Per L Gregersen
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | | |
Collapse
|
11
|
Gaikar N, Raval M, Patel S, Patel P, Hingorani L. Isolation, characterization and estimation of benzoxazinoid glycoside from seeds of
Blepharis persica
(Burm.f) O. Kuntze. SEPARATION SCIENCE PLUS 2021. [DOI: 10.1002/sscp.202000090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nilesh Gaikar
- Ramanbhai Patel College of Pharmacy Charotar University of Science and Technology (CHARUSAT) Gujarat India
| | - Manan Raval
- Ramanbhai Patel College of Pharmacy Charotar University of Science and Technology (CHARUSAT) Gujarat India
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy Charotar University of Science and Technology (CHARUSAT) Gujarat India
| | - Preksha Patel
- Ramanbhai Patel College of Pharmacy Charotar University of Science and Technology (CHARUSAT) Gujarat India
| | | |
Collapse
|
12
|
Neuroprotective Potential of Verbascoside Isolated from Acanthus mollis L. Leaves through Its Enzymatic Inhibition and Free Radical Scavenging Ability. Antioxidants (Basel) 2020; 9:antiox9121207. [PMID: 33266151 PMCID: PMC7759776 DOI: 10.3390/antiox9121207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
The phenomenon of today’s ageing population has increased interest in the search for new active substances that delay the onset and development of neurodegenerative diseases. In this respect, the search for natural compounds, mainly phenolic compounds, with neuroprotective activity has become the focus of growing interest. Verbascoside is a phenylethanoid that has already presented several pharmacological activities. The purpose of this study is to isolate and identify verbascoside from Acanthus mollis leaves. Consequently, its neuroprotective ability through enzymatic inhibition and free radical scavenging ability has been analyzed both in vitro and in cell culture assays. The antioxidant capacity of verbascoside was evaluated in vitro through total antioxidant capacity, DPPH•, •OH, and O2•—scavenging activity assays. The effect of verbascoside on intracellular reactive oxygen species (ROS) levels of HepG2 and SH-SY5Y cell lines was studied in normal culture and under induced oxidative stress. The inhibitory ability of the phenylethanoid against several enzymes implied in neurodegenerative diseases (tyrosinase, MAO-A, and AChE) was analyzed in vitro. Verbascoside neuroprotective activity is at least in part related to its free radical scavenging ability. The effect of verbascoside on ROS production suggests its potential in the prevention of harmful cell redox changes and in boosting neuroprotection.
Collapse
|