1
|
He Y, Zhao Y, Lv RJ, Dong N, Wang X, Yu Q, Yue HM. Curcumin activates the Wnt/β-catenin signaling pathway to alleviate hippocampal neurogenesis abnormalities caused by intermittent hypoxia: A study based on network pharmacology and experimental verification. Int Immunopharmacol 2024; 143:113299. [PMID: 39362017 DOI: 10.1016/j.intimp.2024.113299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
The purpose of this work was to investigate how curcumin (Cur) might enhance cognitive function and to gain a better understanding of the molecular mechanisms behind Cur's impacts on neurogenesis deficits brought on by intermittent hypoxia (IH). Using network pharmacology, we explored possible targets for Cur's obstructive sleep apnea (OSA) therapy. We established an IH model using C57BL/6 mice and c17.2 cells, and we assessed the influence of Cur on treatment outcomes as well as the effect of IH on cognitive function. Hippocampal damage and neurogenesis, as well as expression of core targets, were then examined. Network pharmacology analysis revealed that Cur has the potential for multi-target, multi-pathway therapy, with CTNNB1 and MYC as core target genes. The Morris water maze test showed that Cur (100 mg/kg, intragastrically) significantly improved cognitive dysfunction induced by IH. The hematoxylin and eosin (H&E) and Nissl staining indicated that Cur could alleviate damage to the hippocampus caused by IH. Immunohistochemistry, immunofluorescence, and western blotting results showed that Cur might promote neurogenesis and upregulate the expression of β-catenin and c-myc. In vitro, Cur (0.5 μM) has a protective effect on IH-induced neural stem cells (NSCs) injury and apoptosis and can restore the Wnt/β-catenin. Cur significantly increased the neurogenesis via the Wnt/β-catenin pathway, providing the scientific groundwork for the development of new treatment strategies for neurological damage linked to OSA.
Collapse
Affiliation(s)
- Yao He
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yan Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ren-Jun Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Na Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qin Yu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China; Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Hong-Mei Yue
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China; Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
2
|
Liu H, Wei G, Wang T, Hou Y, Hou B, Li X, Wang C, Sun M, Su M, Guo Z, Wang L, Kang N, Li M, Jia Z. Angelica keiskei water extract Mitigates Age-Associated Physiological Decline in Mice. Redox Rep 2024; 29:2305036. [PMID: 38390941 PMCID: PMC10896161 DOI: 10.1080/13510002.2024.2305036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE Angelica keiskei is a medicinal and edible plant that has been reported to possess potent antioxidant properties in several in vitro models, but its effectiveness on naturally aging organisms is still lacking. This study explores the antioxidant and health-promoting effects of Angelica keiskei in naturally aging mice. METHODS We treated 48-week-old mice with Angelica keiskei water extract (AKWE) 30 days, and measured indicators related to aging and antioxidants. In addition, we conducted network pharmacology analysis, component-target molecular docking, real-time PCR, and MTS assays to investigate relevant factors. RESULTS The results indicated that administration of AKWE to mice led to decrease blood glucose levels, improve muscle fiber structure, muscle strength, gait stability, and increase levels of glutathione and superoxide dismutase in serum. Additionally, it decreased pigmentation of the heart tissues. Angelica keiskei combats oxidative stress by regulating multiple redox signaling pathways, and its ingredients Coumarin and Flavonoids have the potential to bind to SIRT3 and SIRT5. CONCLUSIONS Our findings indicated the potential of Angelica keiskei as a safe and effective dietary supplement to combat aging and revealed the broad prospects of medicinal and edible plants for addressing aging and age-related chronic diseases.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
| | - Gang Wei
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Tongxing Wang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Yunlong Hou
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Bin Hou
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
| | - Xiaoyan Li
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
| | - Chao Wang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
| | - Mingzhe Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Min Su
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Zhifang Guo
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Lu Wang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Ning Kang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Mengnan Li
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Zhenhua Jia
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, People’s Republic of China
- High-Level TCM Key Disciplines of National Administration of Traditional Chinese, Shijiazhuang, People's Republic of China
| |
Collapse
|
3
|
Wang S, Jing W, Gu G, Li S, Pang J, Cong H, Zhang K, Yang J, Wu C. Improvement effect and mechanism of XuanFuDaiZhe tang on rats with diarrheal irritable bowel syndrome induced by colorectal dilation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118938. [PMID: 39419305 DOI: 10.1016/j.jep.2024.118938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE XuanFuDaiZhe Tang (XFDZT) is used in traditional Chinese medicine (TCM) to treat diarrhoea-predominant irritable bowel syndrome (IBS-D). Our laboratory has demonstrated that XFDZT remarkably improves various gastrointestinal motility disorders in animal models. However, previous studies have only focused on one or several protein targets without systematically investigating dynamic changes and protein interrelations. AIM OF THE STUDY To explore the mechanisms underlying the therapeutic action of XFDZT in IBS-D using a network pharmacology approach and in vivo experiments. MATERIALS AND METHODS The active compounds of XFDZT were selected from TCM Systems Pharmacology and TCM Integrated databases, and potential targets were identified using the Swiss Target Prediction databases. Targets related to IBS-D were mined from the DisGeNet, Drug Bank, and Therapeutic Target databases. The intersecting protein-protein interactions (PPIs) of the drug-disease crossover genes were analysed, and a central PPI network was constructed using the STRING database and Cytoscape 3.7.2. Following Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, a gene pathway network was constructed to identify key target genes and pathways. Using haematoxylin and eosin staining and western blotting, we validated how XFDZT controls water expression in the body to treat IBS-D infection. RESULTS First, the results showed that XFDZT contained 1037 active ingredients and 1458 corresponding targets. After intersecting the 252 IBS targets, 108 targets were identified. The main targets of XFDZT were albumin, aquaporins such as AQP1 and AQP3, calmodulin, and the cellular enzyme CYP2C9. GO and KEGG enrichment predicted that the action pathways were the neuroactive ligand-receptor interaction, calcium signalling pathway, serotonergic synapse signalling pathway, cGMP-PKG signalling pathway, cAMP signalling pathway, and MLCK-MLC signalling pathway. Second, an IBS-D rat model was constructed using colorectal dilation (CRD). CRD can significantly induce IBS-D symptoms such as diarrhoea, abdominal pain, and anxiety and depression-like behaviour in rats. XFDZT (10, 20, and 40 g/kg) administered for 14, 21, and 28 days significantly reversed these changes in IBS-D rats in a time- and dose-dependent manner, suggesting that XFDZT significantly improved IBS-D. Finally, the mechanism by which XFDZT improves IBS-D was explored from the perspective of AQPs, tight junction proteins, and motility-related proteins in colon tissue. Compared with the control group, the protein expression of AQP1, AQP3, and AQP8 in the colon tissue of IBS-D rats was significantly downregulated, whereas the protein expression of AQP7 was significantly upregulated. The expression of tight junction-related proteins claudin-1, occludin, and ZO-1 in colon tissue was significantly downregulated, whereas the expression of motility-related proteins p-MLC, MLC, MLCK, and CaM in colon tissue was significantly upregulated, suggesting that IBS-D rats had AQP disorders, epithelial intercellular connections, and motility in colon tissue. The above changes were significantly reversed by XFDZT administration (5, 10, and 20 g/kg) for 14 days. CONCLUSION XFDZT significantly improved diarrhoea, abdominal pain, anxiety, and depression in IBS-D rats, and its mechanism of action may be related to the regulation of AQPs, tight junction proteins, and the MLCK-MLC pathway. This study provided a pharmacological experimental basis for the development of XFDZT as a novel drug for the treatment of IBS-D.
Collapse
Affiliation(s)
- Shasha Wang
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China
| | - Weiliang Jing
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China
| | - Guanliang Gu
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China
| | - Shile Li
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China
| | - Jie Pang
- College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China
| | - Huan Cong
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China
| | - Kuo Zhang
- College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China.
| | - Jingyu Yang
- College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China.
| | - Chunfu Wu
- College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China.
| |
Collapse
|
4
|
Li P, Wang C, Chen G, Han Y, Lu H, Li N, Lv Y, Chu C, Peng X. Molecular mechanisms of Tetrastigma hemsleyanum Diels&Gilg against lung squamous cell carcinoma: From computational biology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118326. [PMID: 38750988 DOI: 10.1016/j.jep.2024.118326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrastigma hemsleyanum (T. hemsleyanum), valued in traditional medicine for its potential to boost immunity and combat tumors, contains uncharacterized active compounds and mechanisms. This represents a significant gap in our understanding of its ethnopharmacological relevance. AIM OF THE STUDY To involve the mechanism of anti-lung cancer effect of T. hemsleyanum by means of experiment and bioinformatics analysis. MATERIALS AND METHODS The anticancer mechanism of T. hemsleyanum against lung squamous carcinoma (LUSC) in zebrafish was investigated. The LUSC model was established by injecting NCI-H2170 cells in the zebrafish and evaluating its anti-tumor efficacy. Next, component targets and key genes were obtained by molecular complex detection (MCODE) analysis and protein-protein interaction (PPI) network analysis. Component analysis of T. hemsleyanum was performed by UPLC-Q-TOF-MS. Molecular docking was used to simulate the binding activities of key potential active components to core targets were simulated using. Prognostic and pan-cancer analyses were then performed to validate the signaling pathways involved in the prognostic genes using gene set enrichment analysis (GSEA). Subsequently, Molecular dynamics simulations were then performed for key active components and core targets. Finally, cellular experiments were used to verify the expression of glutamate metabotropic receptor 3 (GRM3) and glutamate metabotropic receptor 7 (GRM7) in the anticancer effect exerted of T. hemsleyanum. RESULTS We experimentally confirmed the inhibitory effect of T. hemsleyanum on LUSC by transplantation of NCI-H2170 cells into zebrafish. There are 20 main compounds in T. hemsleyanum, such as procyanidin B1, catechin, quercetin, and kaempferol, etc. A total of 186 component targets of T. hemsleyanum and sixteen hub genes were screened by PPI network and MCODE analyses. Molecular docking and molecular dynamics simulation results showed that Gingerglycolipid B and Rutin had higher affinity with GRM3 and GRM7, respectively. Prognostic analysis, Pan-cancer analysis and verification experiment also confirmed that GRM3 and GRM7 were targets for T. hemsleyanum to exert anti-tumor effects and to participate in immune and mutation processes. In vitro experiments suggested that the inhibitory effect of T. hemsleyanum on cancer cells was correlated with GRM3 and GRM7. CONCLUSION In vivo, in vitro and in silico results confirmed the potential anticancer effects against LUSC of T. hemsleyanum, which further consolidated the claim of its traditional uses.
Collapse
Affiliation(s)
- Ping Li
- The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China.
| | - Changchang Wang
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, China.
| | - Gun Chen
- The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China.
| | - Yixiao Han
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, China.
| | - Hanyu Lu
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, China.
| | - Nan Li
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, China.
| | - Yangbin Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315000, China.
| |
Collapse
|
5
|
Pan S, Yu X, Liu M, Liu J, Wang C, Zhang Y, Ge F, Fan A, Zhang D, Chen M. Banxia Xiexin decoction promotes gastric lymphatic pumping by regulating lymphatic smooth muscle cell contraction and energy metabolism in a stress-induced gastric ulceration rat model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118015. [PMID: 38499261 DOI: 10.1016/j.jep.2024.118015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine (TCM) formula Banxia Xiexin decoction (BXD) has definite therapeutic effect in treating stress-induced gastric ulceration (SIGU) and many other gastrointestinal diseases, but its effect on gastric lymphatic pumping (GLP) remains unclear. AIM OF THE STUDY Elucidating the role of GLP in SIGU and BXD treatment, and exploring the molecular mechanisms of GLP regulation. MATERIALS AND METHODS In vivo GLP imaging were performed on SIGU rat model, and the lymphatic dynamic parameters were evaluated. Gastric antrum tissues and serum were collected for macroscopic, histopathological and ulcerative parameters analysis. Gastric lymphatic vessel (GLV) tissues were collected for RNA-Seq assays. Differentially expressed genes (DEGs) were screened from RNA-Seq result and submitted for transcriptomic analysis. Key DEGs and their derivative proteins were measured by qRT-PCR and WB. RESULTS GLP was significantly suppressed in SIGU rats. BXD could recover GLP, ameliorate stomach lymphostasis, and alleviate the ulcerative damage. Transcriptome analysis of GLV showed the top up-DEGs were concentrated in smooth muscle contraction signaling pathway, while the top the down-DEGs were concentrated in energy metabolism pathways especially fatty acid degradation pathway, which indicated BXD can promote lymphatic smooth muscle contraction, regulate energy metabolism, and reduce fatty acid degradation. The most possible target of these mechanisms was the lymphatic smooth muscle cells (LSMCs) which drove the GLP. This speculation was further validated by the qRT-PCR and WB assessments for the level of key genes and proteins. CONCLUSIONS By activating the smooth muscle contraction signaling pathway, restoring energy supply, modulating energy metabolism program and reducing fatty acid degradation, BXD effectively recovered GLP, mitigated the accumulation of inflammatory cytokines and metabolic wastes in the stomach, which importantly contributes to its efficacy in treating SIGU.
Collapse
Affiliation(s)
- Shutao Pan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Mingyu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiaqi Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yao Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fei Ge
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Angran Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongmei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing, 101121, China.
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
6
|
Zhao Y, Zhu S, Li Y, Niu X, Shang G, Zhou X, Yin J, Bao B, Cao Y, Cheng F, Li Z, Wang R, Yao W. Integrated component identification, network pharmacology, and experimental verification revealed mechanism of Dendrobium officinale Kimura et Migo against lung cancer. J Pharm Biomed Anal 2024; 243:116077. [PMID: 38460276 DOI: 10.1016/j.jpba.2024.116077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo (DO), a valuable Chinese herbal medicine, has been reported to exhibit potential effects in the prevention and treatment of lung cancer. However, its material basis and mechanism of action have not been comprehensively analyzed. PURPOSE The objective of this study was to preliminarily elucidate the active components and pharmacological mechanisms of DO in treating lung cancer, according to UPLC-Q/TOF-MS, HPAEC-PAD, network pharmacology, molecular docking, and experimental verification. METHODS The chemical components of DO were identified via UPLC-Q/TOF-MS, while the monosaccharide composition of Dendrobium officinale polysaccharide (DOP) was determined by HPAEC-PAD. The prospective active constituents of DO as well as their respective targets were predicted in the combined database of Swiss ADME and Swiss Target Prediction. Relevant disease targets for lung cancer were searched in OMIM, TTD, and Genecards databases. Further, the active compounds and potential core targets of DO against lung cancer were found by the C-T-D network and the PPI network, respectively. The core targets were then subjected to enrichment analysis in the Metascape database. The main active compounds were molecularly docked to the core targets and visualized. Finally, the viability of A549 cells and the relative quantity of associated proteins within the major signaling pathway were detected. RESULTS 249 ingredients were identified from DO, including 39 flavonoids, 39 bibenzyls, 50 organic acids, 8 phenanthrenes, 27 phenylpropanoids, 17 alkaloids, 17 amino acids and their derivatives, 7 monosaccharides, and 45 others. Here, 50 main active compounds with high degree values were attained through the C-T-D network, mainly consisting of bibenzyls and monosaccharides. Based on the PPI network analysis, 10 core targets were further predicted, including HSP90AA1, SRC, ESR1, CREBBP, MAPK3, AKT1, PIK3R1, PIK3CA, HIF1A, and HDAC1. The results of the enrichment analysis and molecular docking indicated a close association between the therapeutic mechanism of DO and the PI3K-Akt signaling pathway. It was confirmed that the bibenzyl extract and erianin could inhibit the multiplication of A549 cells in vitro. Furthermore, erianin was found to down-regulate the relative expressions of p-AKT and p-PI3K proteins within the PI3K-Akt signaling pathway. CONCLUSIONS This study predicted that DO could treat lung cancer through various components, multiple targets, and diverse pathways. Bibenzyls from DO might exert anti-lung cancer activity by inhibiting cancer cell proliferation and modulating the PI3K-Akt signaling pathway. A fundamental reference for further studies and clinical therapy was given by the above data.
Collapse
Affiliation(s)
- Yan Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Shuaitao Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Yuan Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Xuan Niu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Guanxiong Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Xiaoqi Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Jiu Yin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Zhipeng Li
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China.
| | - Ran Wang
- China Tobacco Anhui Industrial Co., Ltd., Hefei, Anhui 210088, China.
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
7
|
Tu H, Feng Y, Wang W, Zhou H, Cai Q, Feng Y. Exploring the mechanism of bioactive components of Prunella vulgaris L. in treating hepatocellular carcinoma based on network pharmacology. Chem Biol Drug Des 2024; 103:e14413. [PMID: 38040415 DOI: 10.1111/cbdd.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
In traditional Chinese Medicine, Prunella vulgaris L. (PVL) is potentially effective in the treatment of some human malignancies including hepatocellular carcinoma (HCC). However, the detailed mechanism of action remains unclear. The purpose of this study was to decipher the constitutes of the bioactive ingredients of PVL, and its mechanism against HCC using network pharmacology and in vitro experiments. The bioactive components of PVL were obtained by Traditional Chinese Medicine System Pharmacology Database and Analysis platform database, and the targets of bioactive components of PVL was investigated by Swiss Target Prediction database. HCC related targets were obtained from GEO database, GeneCards database and DisGeNET database, and the gene ontology function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted for annotating the biological function of gene targets. A protein-protein interaction network was constructed using STRING database. Molecular docking of key bioactive ingredients was performed using AutoDock Vina. Cell proliferation and apoptosis were detected by cell counting kit-8 and flow cytometry, respectively. The expression level of the target genes of PI3K/Akt pathway were detected by qPCR. In the present work, 11 bioactive components of PVL were screened out, which acted on 177 potential targets. In addition, 13,517 genes were strongly associated with HCC pathogenesis, of which 158 targets are overlapped with PVL's targets. KEGG results identified 39 signaling pathways closely associated with the 158 targets. Molecular docking showed that the main bioactive components of PVL, kaempferol, morin, quercetin, luteolin, and spinasterol, had good binding activity with the core proteins in cancer biology such as AKT1, EGFR, SRC, ESR1, and PPARG. In vitro assays showed that quercetin, one of the main components of PVL extracts effectively inhibited HCC cell proliferation, and promoted apoptosis, which may be associated with PI3K/AKT signaling pathway. In summary, PVL may regulate HCC progression by regulating core targets such as AKT1, EGFR, SRC, ESR1, and PPARG, and acting on PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Huahua Tu
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Yanqing Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Huadong Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Qinghe Cai
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Yong Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| |
Collapse
|
8
|
Ning Y, Wu Y, Zhou Q, Teng Y. The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway. Comb Chem High Throughput Screen 2024; 27:863-876. [PMID: 37259219 DOI: 10.2174/1386207326666230530095355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND It remains a challenge to effectively treat prostate cancer (PCa) that affects global men's health. It is essential to find a natural alternative drug and explore its antitumor mechanism due to the serious toxic side effects of chemotherapy. METHODS The targets and signaling pathways were analyzed by network pharmacology and verified by molecular docking and LC-MS. The proliferation, apoptosis, invasion, and migration of DU145 cells were detected by the CCK-8 method, flow cytometry, and Transwell, respectively. The Bcl-2, caspase-3, CXCL12, and CXCR4 expressions and Akt1 phosphorylation were determined by Western blot. Akt1 overexpression was applied to identify the involvement of the Akt1- related CXCL12/CXCR4 pathway in regulating PCa. Nude mouse tumorigenesis was performed to analyze the effect of quercetin on PCa in vivo. RESULTS Network pharmacology analysis displayed that quercetin was the main active component of the Yishen Tongluo Jiedu recipe and Akt1 was the therapy target of PCa. LC-MS analysis showed that quercetin existed in the Yishen Tongluo Jiedu recipe, and molecular docking proved that quercetin bound to Akt1. Quercetin inhibited the proliferation of DU145 cells by upregulating caspase-3 and downregulating Bcl-2 expression, promoting apoptosis and reducing invasion and migration abilities. In vivo, quercetin downregulated CXCL12 and CXCR4 expressions and inhibited PCa development by the Akt1-related CXCL12/CXCR4 pathway. CONCLUSION As the active component of the Yishen Tongluo Jiedu recipe, quercetin inhibited PCa development through the Akt1-related CXCL12/CXCR4 pathway. This study provided a new idea for PCa treatment and a theoretical basis for further research.
Collapse
Affiliation(s)
- Yu Ning
- Department of Anesthesiology Surgery, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| | - Yongrong Wu
- Academy of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410218, China
| | - Qing Zhou
- Surgery of traditional Chinese Medicine, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| | - Yongjie Teng
- Department of Anesthesiology Surgery, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| |
Collapse
|
9
|
Zhang F, Zhou K, Yuan W, Sun K. Radix Bupleuri-Radix Paeoniae Alba Inhibits the Development of Hepatocellular Carcinoma through Activation of the PTEN/PD-L1 Axis within the Immune Microenvironment. Nutr Cancer 2023; 76:63-79. [PMID: 37909316 DOI: 10.1080/01635581.2023.2276525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE This study investigated how Radix Bupleuri-Radix Paeoniae Alba (BP) was active against hepatocellular carcinoma (HCC). METHODS Traditional Chinese medicine systems pharmacology (TCMSP) database was employed to determine the active ingredients of BP and potential targets against HCC. Molecular docking analysis verified the binding activity of PTEN with BP ingredients. H22 cells were used to establish an HCC model in male balb/c mice. Immunofluorescence staining, immunohistochemistry, flow cytometry, western blotting, enzyme-linked immunosorbent assay, and real-time quantitative PCR were used to study changes in proliferation, apoptosis, PTEN levels, inflammation, and T-cell differentiation in male balb/c mice. RESULTS The major active ingredients in BP were found to be quercetin, kaempferol, isorhamnetin, stigmasterol, and beta-sitosterol. Molecular docking demonstrated that these five active BP ingredients formed a stable complex with PTEN. BP exhibited an anti-tumor effect in our HCC mouse model. BP was found to increase the CD8+ and IFN-γ+/CD4+ T cell levels while decreasing the PD-1+/CD8+ T and Treg cell levels in HCC mice. BP up-regulated the IL-6, IFN-γ, and TNF-α levels but down-regulated the IL-10 levels in HCC mice. After PTEN knockdown, BP-induced effects were abrogated. CONCLUSION BP influenced the immune microenvironment through activation of the PTEN/PD-L1 axis, protecting against HCC.
Collapse
Affiliation(s)
- Fan Zhang
- Department of TCM, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kun Zhou
- Department of Hepatology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Yuan
- Department of Hepatology, The First Affiliated Hospital of Hu'nan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Kewei Sun
- Department of Hepatology, The First Affiliated Hospital of Hu'nan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
10
|
Wang H, Shi J, Tang B, Liu Y, Wang Q. Forecast and verification of the active compounds and latent targets of Guyuan decoction in treating frequently relapsing nephrotic syndrome based on network pharmacology. Ren Fail 2023; 45:2184654. [PMID: 36866869 PMCID: PMC9987733 DOI: 10.1080/0886022x.2023.2184654] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Our study majorly utilizes network pharmacology combined with molecular docking to explore the latent active components and associated pivotal targets of Guyuan Decoction (GYD) in the treatment of frequently relapsing nephrotic syndrome (FRNS). METHODS All active components and latent targets of GYD were retrieved from TCMSP database. The target genes for FRNS in our research were obtained from the GeneCards database. The drug-compounds-disease-targets (D-C-D-T) network was established using Cytoscape 3.7.1. STRING database was applied to observe the protein interaction. Pathway enrichment analyses (GO and KEGG) were conducted in R software. Moreover, molecular docking was employed to further validate the binding activity. MPC-5 cells were treated with adriamycin to mimic FRNS in vitro and to determine the effects of luteolin on modeled cells. RESULTS A total of 181 active components and 186 target genes of GYD were identified. Meanwhile, 518 targets related to FRNS were also revealed. Based on the intersection using a Venn diagram, 51 common latent targets were recognized to be associated with active ingredients and FRNS. Additionally, we identified the biological processes and signaling pathways involved in the action of these targets. Molecular docking analyses illustrated that AKT1 and CASP3 interacted with luteolin, wogonin, and kaempferol, respectively. Moreover, luteolin treatment enhanced the viability but inhibited the apoptosis of adriamycin-treated MPC-5 cells via regulating AKT1 and CASP3. CONCLUSION Our study forecasts the active compounds, latent targets, and molecular mechanisms of GYD in FRNS, which helps us to understand the action mechanism of GYD in FRNS comprehensive treatment.
Collapse
Affiliation(s)
- Haiyun Wang
- Traditional Chinese Medicine Pediatrics Department, Second Outpatient Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Junjie Shi
- Clinical School of Medicine, Hangzhou Medical College, Hangzhou, China
| | - Binbin Tang
- Internal Medicine of Traditional Chinese Medicine Department, Second Outpatient Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yanfeng Liu
- Traditional Chinese Medicine Department, Jinan Maternal and Child Health Hospital Shunyu Road Community Health Service Center, Jinan, China
| | - Qili Wang
- Pediatrics Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
11
|
Dai X, Yu Y, Zou C, Pan B, Wang H, Wang S, Wang X, Wang C, Liu D, Liu Y. Traditional Banxia Xiexin decoction inhibits invasion, metastasis, and epithelial mesenchymal transition in gastric cancer by reducing lncRNA TUC338 expression. Heliyon 2023; 9:e21064. [PMID: 37964840 PMCID: PMC10641127 DOI: 10.1016/j.heliyon.2023.e21064] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Background Banxia Xiexin decoction (BXD) is a classic traditional Chinese medicine (TCM) formula clinically used to treat chronic gastritis, gastric ulcers, gastric cancer, and many other gastrointestinal diseases. Long noncoding RNAs (lncRNAs) have been shown to play an important role in maintaining the malignant phenotype of tumors. However, no relevant studies have shown whether Banxia Xiexin decoction regulates and controls lncRNA TUC338, and the effect of TUC338 on the regulation of gastric cancer invasion and metastasis remains unclear. Purpose To investigate the ability of the traditional Chinese medicine (TCM) Banxia Xiexin decoction (BXD) to inhibit the migration and invasion of human gastric cancer AGS cells by regulating the long noncoding RNA (lncRNA) TUC338. Methods UHPLC‒MS/MS was used to analyze the chemical components of BXD. MTT was performed to determine the effects of BXD on the proliferation of AGS cells. qRT‒PCR was used to determine the expression of lncRNA TUC338 in gastric cancer tissues, paracarcinoma tissues, AGS human gastric cancer cells and GES-1 normal gastric mucosa cells and to evaluate the effects of BXD on the expression of lncRNA TUC338 in AGS cells. Lentiviral transfection was used to establish human gastric cancer AGS cells with knocked down lncRNA TUC338 expression. The effects of lncRNA TUC338 knockdown on the migration and invasion of AGS cells were observed by a scratch assay and Transwell migration assay, respectively. Western blotting was performed to analyze the effects of lncRNA TUC338 knockdown on epithelial-to-mesenchymal transition (EMT) in AGS cells. We performed quality control on three batches of BXD. We used UHPLC‒MS/MS to control the quality of three random batches of BXD used throughout the study. Results Ninety-five chemical components were identified from the water extract of BXD, some of which have anticancer effects. The expression of TUC.338 in gastric cancer tissues was higher than that in para-carcinoma tissues. BXD inhibited the invasion and migration of gastric cancer cells by inhibiting the expression of lncRNA TUC338, which reduced EMT. After knockdown of lncRNA TUC338, the migration and invasion of AGS cells were reduced; the expression of the EMT-related protein E-cadherin was increased, and the expression of N-cadherin and vimentin was reduced. Conclusions The present results suggest that BXD has potential as an effective treatment for gastric cancer through the inhibition of lncRNA TUC338 expression.
Collapse
Affiliation(s)
- Xiaojun Dai
- Clinical College of Traditional Chinese Medicine, Yangzhou University, 577 Wenchang Middle Road, Yangzhou, 225002, China
- Traditional Chinese Medicine Hospital of Yangzhou, 577 Wenchang Middle Road, Yangzhou, 225002, China
- Medical School, Yangzhou University, 136 Jiangyang Middle Road, Yangzhou, 225001, China
| | - Yanwei Yu
- Medical School, Yangzhou University, 136 Jiangyang Middle Road, Yangzhou, 225001, China
| | - Chen Zou
- Medical School, Yangzhou University, 136 Jiangyang Middle Road, Yangzhou, 225001, China
| | - Bo Pan
- Medical School, Yangzhou University, 136 Jiangyang Middle Road, Yangzhou, 225001, China
| | - Haibo Wang
- Medical School, Yangzhou University, 136 Jiangyang Middle Road, Yangzhou, 225001, China
| | - Shanshan Wang
- Clinical College of Traditional Chinese Medicine, Yangzhou University, 577 Wenchang Middle Road, Yangzhou, 225002, China
| | - Xiaojuan Wang
- Medical School, Yangzhou University, 136 Jiangyang Middle Road, Yangzhou, 225001, China
| | - Chenghai Wang
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, 225009, China
| | - Dongmei Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 225002, China
- Jianghai Polytechnic College, 5 Yangzijiang South Road, Yangzhou, 225002, China
| | - Yanqing Liu
- Clinical College of Traditional Chinese Medicine, Yangzhou University, 577 Wenchang Middle Road, Yangzhou, 225002, China
- Medical School, Yangzhou University, 136 Jiangyang Middle Road, Yangzhou, 225001, China
| |
Collapse
|
12
|
Yang Y, Xiao G, Cheng P, Zeng J, Liu Y. Protective Application of Chinese Herbal Compounds and Formulae in Intestinal Inflammation in Humans and Animals. Molecules 2023; 28:6811. [PMID: 37836654 PMCID: PMC10574200 DOI: 10.3390/molecules28196811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.
Collapse
Affiliation(s)
- Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
| | - Pi Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| |
Collapse
|
13
|
Qu J, Wang J, Zheng B, Jiang X, Liu J, Chen J. Exploring the effects and mechanisms of Guizhigancao Decoction on heart failure using an integrated approach based on experimental support and network pharmacology strategy. J Tradit Complement Med 2023; 13:454-464. [PMID: 37693095 PMCID: PMC10491989 DOI: 10.1016/j.jtcme.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Background and aim HF (Heart Failure) is the leading cause of mortality and is a significant clinical problem affecting millions of patients worldwide. To date, the mechanisms of HF remain largely elusive. The effective treatments contributing to HF remain incompletely understood. Therefore, the development of an effective strategy for HF is urgently needed. Experimental procedure In the present study, we devoted to investigating the effective treatments and sought to systematically decipher the related molecular mechanisms of Guizhigancao Decoction (GZGCD, Cinnamomum cassia Presl and Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle) for treating HF. We examined the therapeutic effect of GZGCD on HF in vivo. An integrative approach combining biomarker examination, echocardiography, myocardial fibrosis and cardiac apoptosis condition using Masson and TUNEL staining was performed to assess the efficacy of GZGCD against HF. Subsequently, comprehensive network pharmacology analyses were performed to explore the mechanisms involved in GZGCD therapeutic effects on HF. Results and conclusions The results showed that GZGCD could reverse cardiac function in rats with HF by reducing NT-proBNP, increasing EF, decreasing LVESV, LVEDV, LVIDs, LVIDd, increasing running time, and ameliorate myocardial collagen fiber hyperplasia and cardiomyocyte apoptosis. We showed that GZGCD might contribute to HF treatment via oxidative related pathways through bioinformatics. Eventually, promising compound quercetin in GZGCD for HF therapeutics was proposed in database-based analysis. Collectively, our findings indicate that GZGCD has a treatment effect on HF. We proposed that GZGCD might contribute HF treatment via oxidative response-related pathways.
Collapse
Affiliation(s)
- Jianhua Qu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jiao Wang
- Flow Cytometry Center, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province, China
| | - Biao Zheng
- Department of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital / Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong Province, China
| | - Xiaoxiao Jiang
- Department of Cardiovascular Surgery, First Hospital, Dalian Medical University, Dalian, Liaoning Province, China
| | - Jikui Liu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jing Chen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
14
|
Zhou Z, An R, You L, Liang K, Wang X. Banxia Xiexin decoction: A review on phytochemical, pharmacological, clinical and pharmacokinetic investigations. Medicine (Baltimore) 2023; 102:e34891. [PMID: 37657053 PMCID: PMC10476818 DOI: 10.1097/md.0000000000034891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/02/2023] [Indexed: 09/03/2023] Open
Abstract
Banxia Xiexin decoction (BXD), a famous traditional Chinese prescription constituted by Pinelliae Rhizoma, Zingiberis Rhizoma, Scutellariae Radix, Coptidis Rhizoma, Ginseng Radix et Rhizoma, Jujubae Fructus and Glycyrrhizae Radix et Rhizoma Praeparata Cum Mell, has notable characteristics of acrid-opening, bitter down-bearing and sweet-tonification, interfering with tumors, gastrointestinal diseases, central nervous system diseases and much more. Based on the wide clinical applications, current investigations of BXD focused on several aspects: chemical analysis to explore the underlying substrates responsible for the therapeutic effects; basic studies on pharmacological actions of the whole prescription or of those representative ingredients to demonstrate the intriguing molecular targets for specific pathological processes; pharmacokinetic feature studies of single or all components of BXD to reveal the chemical basis and synergistic actions contributing to the pharmacological and clinically therapeutic effects. In this review, we summarized the main achievements of phytochemical, pharmacological, clinical and pharmacokinetic profiles of BXD and its herbal or pharmacologically active chemicals, as well as discussions of our understanding which further reveals the significance of BXD clinically.
Collapse
Affiliation(s)
- Zehua Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui An
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lisha You
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kun Liang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinhong Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Choi NR, Kwon MJ, Choi WG, Kim SC, Park JW, Nam JH, Kim BJ. The traditional herbal medicines mixture, Banhasasim-tang, relieves the symptoms of irritable bowel syndrome via modulation of TRPA1, NaV1.5 and NaV1.7 channels. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116499. [PMID: 37059250 DOI: 10.1016/j.jep.2023.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The cause of irritable bowel syndrome (IBS), a functional gastrointestinal (GI) disorder, remains unclear. Banhasasim-tang (BHSST), a traditional herbal medicines mixture, mainly used to treat GI-related diseases, may have a potential in IBS treatment. IBS is characterized by abdominal pain as the main clinical symptom, which seriously affects the quality of life. AIM OF THE STUDY We conducted a study to evaluate the effectiveness of BHSST and its mechanisms of action in treating IBS. MATERIALS AND METHODS We evaluated the efficacy of BHSST in a zymosan-induced diarrhea-predominant animal model of IBS. Electrophysiological methods were used to confirm modulation of transient receptor potential (TRP) and voltage-gated Na+ (NaV) ion channels, which are associated mechanisms of action. RESULTS Oral administration of BHSST decreased colon length, increased stool scores, and increased colon weight. Weight loss was also minimized without affecting food intake. In mice administered with BHSST, the mucosal thickness was suppressed, making it similar to that of normal mice, and the degree of tumor necrosis factor-α was severely reduced. These effects were similar to those of the anti-inflammatory drug-sulfasalazine-and antidepressant-amitriptyline. Moreover, pain-related behaviors were substantially reduced. Additionally, BHSST inhibited TRPA1, NaV1.5, and NaV1.7 ion channels associated with IBS-mediated visceral hypersensitivity. CONCLUSIONS In summary, the findings suggest that BHSST has potential beneficial effects on IBS and diarrhea through the modulation of ion channels.
Collapse
Affiliation(s)
- Na Ri Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Min Ji Kwon
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Sang Chan Kim
- College of Oriental Medicine Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Jae-Woo Park
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Kyungju, 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, 10326, Republic of Korea.
| | - Byung Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
16
|
Lu M, Ou J, Deng X, Chen Y, Gao Q. Exploring the pharmacological mechanisms of Tripterygium wilfordii against diabetic kidney disease using network pharmacology and molecular docking. Heliyon 2023; 9:e17550. [PMID: 37416640 PMCID: PMC10320109 DOI: 10.1016/j.heliyon.2023.e17550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/29/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Background Tripterygium wilfordii (TW), when formulated in traditional Chinese medicine (TCM), can effectively treat diabetic kidney disease (DKD). However, the pharmacological mechanism associated with its success has not yet been elucidated. The current work adopted network pharmacology and molecular docking for exploring TW-related mechanisms in treating DKD. Methods: In the present work, the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was employed to obtain the effective components and candidate targets of TW. Additionally, this work utilized the UniProt protein database for screening and standardizing human-derived targets for effective components. The Cytoscape software was utilized to construct an effective component-target network for TW. Targets for DKD were acquired in the GEO, DisGeNET, GeneCards, and OMIM databases. Additionally, a Venn diagram was also plotted to select the possible targets of TW for treating DKD. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted to explore the TW-related mechanism underlying DKD treatment. This work also built a protein-protein interaction (PPI) network based on the Cytoscape and String platform. Then, molecular docking was conducted in order to assess the affinity of key proteins for related compounds. Results: In total, 29 active components and 134 targets of TW were acquired, including 63 shared targets, which were identified as candidate therapeutic targets. Some key targets and important pathways were included in the effect of TW in treating DKD. Genes with higher degrees, including TNF and AKT1, were identified as hub genes of TW against DKD. Molecular docking showed that TNF and AKT1 bind well to the main components in TW (kaempferol, beta-sitosterol, triptolide, nobiletin, and stigmasterol). Conclusions TW primarily treats DKD by acting on two targets (AKT1 and TNF) via the five active ingredients kaempferol, beta-sitosterol, triptolide, nobiletin, and stigmasterol.
Collapse
Affiliation(s)
- Meiqi Lu
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Juanjuan Ou
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoqi Deng
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yixuan Chen
- The School of Clinical Medicine, Fujian Medical University Fuzhou, China
| | - Qing Gao
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University Fuzhou, China
| |
Collapse
|
17
|
Yang Q, Zhao Y, Zhao X, Sun S, Chen Y, Chen J, Zou D, Zhang L. Exploring the potential targets of Biling Weitong Granules on visceral hypersensitivity through integration of network pharmacology and in vivo analysis. JOURNAL OF ETHNOPHARMACOLOGY 2023:116701. [PMID: 37257703 DOI: 10.1016/j.jep.2023.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/13/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Biling Weitong Granules(BLWTG) are a newly developed traditional Chinese medicine prescription based on the ancient prescription Jinlingzi San and Zuojin Wan. It is used for the treatment of functional gastrointestinal disorders (FGIDs) featured as visceral hypersensitivity(VH). However, its active ingredients and protein targets involved still remain unknown. AIM OF THE STUDY To explore the potential targets of BLWTG for the treatment of visceral hypersensitivity. MATERIALS AND METHODS Active components and their protein targets of BLWTG were screened from TCMSP database and the component-target network were constructed with Cytoscape software. Irritable bowel syndrome (IBS) was the representative disease in this study and information on its linked pathways was obtained from NCBI, Drugbank and Genecard. Target pathways of BLWTG were analyzed through KEGG to verify the correlation with IBS related pathways.Then, the VH mouse models was induced by maternal separation(MS), randomly divided into normal saline(NS),BLWTG1(low-dosage) and BLWTG2(high-dosage) group. After intervention, threshold intensity of colorectal distension (CRD) and body weight were measured to evaluate relief of IBS symptoms. Elisa was performed to evaluate 5-HT concentration changes of colon tissues. Flow cytometry was performed to assess changes of colon eosinophils and mast cells proportion. Transcriptome sequencing was employed to analyze changes of pathways and differential genes. RESULTS 199 protein targets and 132 active components of BLWTG were identified. KEGG analysis revealed the overlap between BLWTG target pathways and IBS related pathways such as neuroactive ligand-receptor interaction, tryptophan metabolism and inflammatory reaction. 34 genes were not only BLWTG target proteins but also recognized targets for treating IBS. After maternal separation(MS), the mice showed a significant decrease in threshold intensity of CRD, a progressive decrease in body weight and an increase of 5-HT concentration of colon tissue. The proportion of mast cells and eosinophils in the colon increased. Differential genes including Hp,Ido1 and Aqp7 were significantly increased in MS mice group and IBS-related pathways were upregulated. After treatment of BLWTG, threshold intensity of CRD and body weight were significantly improved and IBS related pathways were downregulated. In addition, among BLWTG protein targets, Il1b,Tnf,Adrb1 and Nos2 were found upregulated in MS + NS mice and downregulated after BLWTG intervention through combination of transcriptome sequencing. CONCLUSIONS In maternal separation-induced mouse models, BLWTG could alleviate visceral hypersensitivity, possibly through downregulation of 5-HT concentration and eosinophils and mast cells proportion in colon and critical pathways such as neuroactive ligand-receptor pathway. Potential targets of BLWTG including Il1b,Tnf,Adrb1 and Nos2 were found through integration of network pharmacology database and transcriptome sequencing, providing evidence for further study on mechanisms underlying visceral hypersensitivity.
Collapse
Affiliation(s)
- Qidi Yang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Yizhou Zhao
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Xiangyu Zhao
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Sishen Sun
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Yifei Chen
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Jiayin Chen
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Ling Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| |
Collapse
|
18
|
Zhang D, Lu R, Wang M, Ji J, Zhang S, Wang S, Zhang D, Chen M. Effects of Banxia Xiexin Decoction on apoptosis of interstitial cells of cajal by regulation of MiR-451-5p: An in vivo and in vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116606. [PMID: 37192721 DOI: 10.1016/j.jep.2023.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) is a traditional Chinese medical formula applied to gastrointestinal (GI) motility disorders. Previous studies showed that miR-451-5p was down-regulated in rats with GI motility disorders induced by gastric electrical dysrhythmia. Interstitial cells of cajal (ICCs) are pacemakers for GI motility, while loss of ICCs is responsible for GI motility disturbance. Thus, the underlying interaction mechanisms for BXD regulating ICCs apoptosis via miR-451-5p remain to be explored. AIM OF THE STUDY In this work, the main objectives were to examine the efficacy of BXD on ICCs via miR-451-5p both in GI motility disorders rats model and in vitro, as well as the potential contributions of SCF/c-kit signaling. MATERIALS AND METHODS Rats with gastric electrical dysrhythmia were established in male SD rats by using a single-day diet and a double fasting method (drinking diluted hydrochloric acid water during the period) for 4 weeks. The gastric slow wave (GSW) recording, RT-qPCR, and western blot were performed to examine the effects of BXD on ICCs apoptosis in rats with GED and miR-451-5p expression. In vitro assays included CCK-8, flow cytometry analysis, RT-qPCR, and western blot were applied to investigate the potential molecular mechanism of BXD on ICCs apoptosis via miR-451-5p. RESULTS BXD promoted gastric motility, reduced ICCs apoptosis, and elevated miR-451-5p in GED rats. In addition, miR-451-5p was significantly up-regulated in ICCs after BXD treatment compared with that in ICCs with miR-451-5p inhibitor transfection. Meanwhile, high miR-451-5p expression with either BXD treatment or miRNA mimics enhanced ICCs proliferation and inhibit apoptosis. Moreover, overexpression of miR-451-5p can reverse G0/G1 arrest in ICCs by BXD treatment. Further, SCF and c-kit protein levels were detected to demonstrate that modulation of miR-451-5p by BXD treatment was involved in this signaling. CONCLUSIONS Through this study, we demonstrated that BXD could promote ICCs proliferation and inhibit apoptosis via miR-451-5p and may involve the modulations of SCF/c-kit signaling, thus suggesting a new therapy basis for GI motility dysfunction from the perspective of modulation of ICCs apoptosis by targeting miR-451-5p.
Collapse
Affiliation(s)
- Di Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Ruimin Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Mengwei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Dongmei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, No.5 Haiyuncang Road, Dongcheng District, Beijing, 101121, PR China.
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| |
Collapse
|
19
|
Li Y, Yang X, Wang F, Zhao J, Zhang C, Wu D, Yang B, Gao R, Zhao P, Zan Y, Su M, He Z, Liu Y, Wang J, Tang D. Mechanism of action of Asparagus officinalis extract against multiple myeloma using bioinformatics tools, in silico and in vitro study. Front Pharmacol 2023; 14:1076815. [PMID: 37229244 PMCID: PMC10203399 DOI: 10.3389/fphar.2023.1076815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Asparagus (Asparagus officinalis) is a perennial flowering plant species. Its main components have tumor-prevention, immune system-enhancement, and anti-inflammation effects. Network pharmacology is a powerful approach that is being applied increasingly to research of herbal medicines. Herb identification, study of compound targets, network construction, and network analysis have been used to elucidate how herbal medicines work. However, the interaction of bioactive substances from asparagus with the targets involved in multiple myeloma (MM) has not been elucidated. We explored the mechanism of action of asparagus in MM through network pharmacology and experimental verification. Methods: The active ingredients and corresponding targets of asparagus were acquired from the Traditional Chinese Medicine System Pharmacology database, followed by identification of MM-related target genes using GeneCards and Online Mendelian Inheritance in Man databases, which were matched with the potential targets of asparagus. Potential targets were identified and a target network of traditional Chinese medicine was constructed. The STRING database and Cytoscape were utilized to create protein-protein interaction (PPI) networks and further screening of core targets. Results: The intersection of target genes and core target genes of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway was enriched, the top-five core target genes were selected, and the binding affinity of corresponding compounds to the top-five core targets was analyzed using molecular docking. Network pharmacology identified nine active components of asparagus from databases based on oral bioavailability and drug similarity, and predicted 157 potential targets related to asparagus. Enrichment analyses showed that "steroid receptor activity" and the "PI3K/AKT signaling pathway" were the most enriched biological process and signaling pathway, respectively. According to the top-10 core genes and targets of the PPI pathway, AKT1, interleukin (IL)-6, vascular endothelial growth factor (VEGF)A, MYC, and epidermal growth factor receptor (EGFR) were selected for molecular docking. The latter showed that five core targets of the PI3K/AKT signaling pathway could bind to quercetin, among which EGFR, IL-6, and MYC showed strong docking, and the diosgenin ligand could bind to VEGFA. Cell experiments showed that asparagus, through the PI3K/AKT/NF-κB pathway, inhibited the proliferation and migration of MM cells, and caused retardation and apoptosis of MM cells in the G0/G1 phase. Discussion: In this study, the anti-cancer activity of asparagus against MM was demonstrated using network pharmacology, and potential pharmacological mechanisms were inferred using in vitro experimental data.
Collapse
Affiliation(s)
- Yanju Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xu Yang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Feiqing Wang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin City, China
| | - Jianing Zhao
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chike Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Wu
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Bo Yang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Rui Gao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yun Zan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Min Su
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yang Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dongxin Tang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
20
|
Hu X, Liu W, He M, Qiu Q, Zhou B, Liu R, Wu F, Huang Z. Comparison of the molecular mechanisms of Fuzi Lizhong Pill and Huangqin decoction in the treatment of the cold and heat syndromes of ulcerative colitis based on network pharmacology. Comput Biol Med 2023; 159:106870. [PMID: 37084637 DOI: 10.1016/j.compbiomed.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE The aim of this study was to illuminate the similarities and differences of two prescriptions as "cold" and "heat" drugs for treating ulcerative colitis (UC) with the simultaneous occurrence of heat and cold syndrome via network pharmacology. METHODS (1) Active compounds of Fuzi-Lizhong Pill (FLP) and Huangqin Decoction (HQT) were retrieved from the TCMSP database, and their common active compounds were compared using the Venn diagram. (2) Potential proteins targeted to three sets of compounds either (i) shared by FLP and HQT, (ii) unique to FLP or (iii) unique to HQT were screened from the STP, STITCH and TCMSP databases, and three corresponding core compound sets were identified in Herb-Compound-Target (H-C-T) networks. (3) Targets related to UC were identified from the DisGeNET and GeneCards databases and compared with the FLP-HQT common targets to identify potential targets of FLP-HQT compounds related to UC. (4) Three potential target sets were imported into the STRING database for protein‒protein interaction (PPI) analysis, and three core target sets were defined. (5) The binding capabilities and interacting modes between core compounds and key targets were verified by molecular docking via Discovery Studio 2019 and molecular dynamics (MD) simulations via Amber 2018. (6) The target sets were enriched for KEGG pathways using the DAVID database. RESULTS (1) FLP and HQT included 95 and 113 active compounds, respectively, with 46 common compounds, 49 FLP-specific compounds and 67 HQT-specific compounds. (2) 174 targets of FLP-HQT common compounds, 168 targets of FLP-specific compounds, and 369 targets of HQT-specific compounds were predicted from the STP, STITCH and TCMSP databases; six core compounds specific to FLP and HQT were screened in the FLP-specific and HQT-specific H-C-T networks, respectively. (3) 103 targets overlapped from the 174 predicted targets and the 4749 UC-related targets; two core compounds for FLP-HQT were identified from the FLP-HQT H-C-T network. (4) 103 FLP-HQT-UC common targets, 168 of FLP-specific targets and 369 of HQT-specific targets had shared core targets (AKT1, MAPK3, TNF, JUN and CASP3) based on the PPI network analysis. (5) Molecular docking demonstrated that naringenin, formononetin, luteolin, glycitein, quercetin, kaempferol and baicalein of FLP and HQT play a critical role in treating UC; meanwhile, MD simulations revealed the stability of protein‒ligand interactions. (6) The enriched pathways indicated that most targets were related to anti-inflammatory, immunomodulatory and other pathways. Compared with the pathways identified using traditional methods, FLP-specific pathways included the PPAR signaling pathway and the bile secretion pathway, and HQT-specific pathways included the vascular smooth muscle contraction pathway and the natural killer cell-mediated cytotoxicity pathway etc. CONCLUSION: In this study, we clarified the common mechanisms of FLP and HQT in treating UC and their specific mechanisms in treating cold and heat syndrome in UC through compound, target and pathway distinction and a literature comparison based on network pharmacology; these results provide a new perspective on the detailed mechanism of "multidrugs and single-disease" thought in traditional Chinese medicine.
Collapse
Affiliation(s)
- Xiyun Hu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Weidong Liu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Meiqi He
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Qimiao Qiu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Bingjie Zhou
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Ruining Liu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Fengxu Wu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China; Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
| |
Collapse
|
21
|
Yang N, Shao H, Deng J, Liu Y. Network pharmacology-based analysis to explore the therapeutic mechanism of Cortex Dictamni on atopic dermatitis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116023. [PMID: 36535327 DOI: 10.1016/j.jep.2022.116023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dermatitis is a common clinical chronic inflammatory skin disease, which incidence has been on the rise in recent years. It not only seriously affects the physical and mental health of patients but also increase economic burden. Currently, commonly used drugs such as corticosteroids, anti-histamines have certain side effects or are expensive. Therefore, the search for an alternative therapy for dermatitis has important clinical significance. Cortex Dictamni is a commonly used traditional Chinese medicine for expelling wind and itching, but its mechanism for treating dermatitis is still unclear. MATERIALS AND METHODS Network pharmacological analysis was performed to predict the potential targets and pathways of Cortex Dictamni against dermatitis. Molecular docking was used to assess the binding affinity of active compounds and core targets. By repeatedly stimulating the ears with 1-fluoro-2,4-dinitrobenzene (DNFB), an atopic dermatitis (AD) mouse model was established in order to study the anti-dermatitis effect of Cortex Dictamni. The skin thickness and inflammatory cell infiltration in mouse ears were assessed by tissue staining and flow cytometric. The levels of inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA), and the total protein and phosphorylation levels of related pathways were analyzed by western blotting. RESULTS In this study, 11 active ingredients, 122 Cortex Dictamni and dermatitis intersection targets were identified. The results from Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the core targets were mainly enriched in immune response and inflammatory signaling pathways. AD mice treated with ethanol extract of Cortex Dictamni (ECD) improved the symptoms of ear skin lesions, alleviated epidermis and dermis thickening of the AD mice ears, decreased pathological immune cell infiltration and attenuated the levels of inflammatory cytokines (TLR4, IL-6, IL-17), and inhibited the hyperactivation of the PI3K-AKT, JAK1-STAT3/STAT6 signal pathways. CONCLUSIONS Cortex Dictamni can improve the symptoms of skin lesions and the degree of inflammation caused by AD, and may inhibit AD through multiple pathways, such as regulating PI3K-AKT and JAK1-STAT3/STAT6 pathways. These results not only provide experimental evidence for the clinical application of Cortex Dictamni but also provide some help for the research and development of dermatitis drugs.
Collapse
Affiliation(s)
- Niuniu Yang
- Department of Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, 225002, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225002, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225002, China.
| | - Haifeng Shao
- Department of Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, 225002, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225002, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225002, China
| | - Jialin Deng
- Department of Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, 225002, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225002, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225002, China
| | - Yanqing Liu
- Department of Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, 225002, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225002, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225002, China.
| |
Collapse
|
22
|
Wang T, You W, Zhao L, Zhang B, Wang H. Network Pharmacology Revealed the Mechanisms of Action of Lithospermum erythrorhizon Sieb on Atopic Dermatitis. Clin Cosmet Investig Dermatol 2023; 16:651-658. [PMID: 36936755 PMCID: PMC10022454 DOI: 10.2147/ccid.s403736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Aim The application of network analysis algorithms promoted the development of network pharmacology. This study aimed to combine network pharmacology and signed random walk with restart (SRWR) to reveal the mechanism by which Lithospermum erythrorhizon Sieb (LES) exerts effects on atopic dermatitis (AD). Methods The compounds and targets of LES were retrieved from Traditional Chinese Medicine Integrated Database (TCMID) and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and important compounds and targets were identified by intersection analysis and protein-protein interaction (PPI) network. Results We found that active LES-derived compounds such as caffeic acid, Isovaleric acid, Arnebinol, and Alannan may inhibit PTGS2, HSP90AA1 and MAPK14, which are key mediators involved in PI3K-Akt pathway, vascular endothelial growth factor signaling pathway, Fc epsilon RI signaling pathway, and calcium signaling pathway. Conclusion The application of SRWR could identify potential targets of LES with a low false-positive rate and help elucidate the mechanism of action of traditional Chinese medicine.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Dermatology, First Teaching Hospital of Tianjin University of TCM, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Wang You
- Department of Internal Medicine, Hexi Hospital of TCM, Tianjin, People’s Republic of China
| | - Linna Zhao
- Department of Experimental Center, First Teaching Hospital of Tianjin University of TCM, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Bingxin Zhang
- Department of Dermatology, First Teaching Hospital of Tianjin University of TCM, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Hongmei Wang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
23
|
Shen C, Wang Y, Zhang H, Li W, Chen W, Kuang M, Song Y, Zhong Z. Exploring the active components and potential mechanisms of Rosa roxburghii Tratt in treating type 2 diabetes mellitus based on UPLC-Q-exactive Orbitrap/MS and network pharmacology. Chin Med 2023; 18:12. [PMID: 36747287 PMCID: PMC9903504 DOI: 10.1186/s13020-023-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/14/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a global disease with growing prevalence that is difficult to cure. Rosa roxburghii Tratt is an edible and medicinal plant, and modern pharmacological studies have shown that it has potential anti-diabetic activity. This is the first study to explore the active components and potential mechanisms of Rosa roxburghii Tratt fruit for treating T2DM based on UPLC-Q-Exactive Orbitrap/MS and network pharmacology. METHODS The active components of Rosa roxburghii Tratt fruit were obtained from UPLC-Q-Exactive Orbitrap/MS analysis and retrieval in the SciFinder, PubMed, Web of Science, and CNKI databases. The potential targets of the active components were obtained from the SwissTargetPrediction and PharmMapper databases. The disease targets for T2DM were obtained from GeneCards, OMIM, TTD, DisGENent, and GEO databases. The intersection of the two datasets was used to obtain the potential targets of Rosa roxburghii Tratt fruit against T2DM. The target protein interaction network was constructed using the String database and Cytoscape software. The R software ClusterProfiler package was used for target enrichment analysis and the Cytoscape CytoNCA plug-in was used to screen core targets. Molecular docking and result visualization were performed using PyMOL and Autodock Vina software. RESULTS We obtained 20 bioactive ingredients, including alphitolic acid, quercetin, and ellagic acid, as well as 13 core targets, such as AKT1, TNF, SRC, and VEGFA. All bioactive ingredients in Rosa roxburghii Tratt fruit were active against T2DM-related therapeutic targets. Rosa roxburghii Tratt fruit may play a therapeutic role in T2DM by regulating the PI3K/AKT, RAS, AGE-RAGE, and other signaling pathways. CONCLUSIONS This study explored the active components and potential mechanisms of Rosa roxburghii Tratt fruit in the treatment of T2DM, laying the foundation for a further experimental study based on pharmacodynamic substances and their mechanisms of action.
Collapse
Affiliation(s)
- Chenxiao Shen
- grid.437123.00000 0004 1794 8068Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR 999078 China
| | - Yu Wang
- Guangzhou Wanglaoji Health Industry Co, Ltd, Guangzhou, 510632 China
| | - Hui Zhang
- Guangzhou Wanglaoji Health Industry Co, Ltd, Guangzhou, 510632 China
| | - Wei Li
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Wenyue Chen
- grid.437123.00000 0004 1794 8068Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR 999078 China
| | - Mingqing Kuang
- Guangzhou Wanglaoji Health Industry Co, Ltd, Guangzhou, 510632 China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR 999078, China.
| |
Collapse
|
24
|
Wen F, Yu J, Cheng Y. Network Pharmacology-Based Dissection of the Mechanism of Drynariae Rhizoma for Low Back Pain. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6092424. [PMID: 36299706 PMCID: PMC9592205 DOI: 10.1155/2022/6092424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022]
Abstract
Objective To explain the potential mechanisms of Drynariae Rhizoma (DR) in the treatment of low back pain (LBP). Design Network pharmacology was used to reveal the potential mechanisms including collecting the active ingredients of DR, analyzing the common gene targets of LBP and DR, constructing protein-protein interaction (PPI) network, collecting protein classification, performing Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and verifying significant gene targets. Results 234 different gene targets and 18 active compounds altogether were obtained. AKT1, VEGFA, and HIF1A were deemed to be major gene targets based on the degree values. According to GO analysis, steroid metabolic process involved 42 (18.10%) potential therapeutic LBP targets, neuronal cell body involved 24 (10.30%) potential therapeutic LBP targets, and protein serine/threonine kinase activity involved 28 (12.02%) potential therapeutic LBP targets in biological process (BP), cellular component (CC), and molecular function (MF), respectively. According to KEGG and pathway interaction analyses, the PI3K-Akt signaling pathway involved 34 (15.89%) potential therapeutic LBP targets, and PI3K-Akt signaling pathway played a significant role in the treatment of LBP. The mRNA expression levels of AKT1 and HIF1A were upregulated in healthy nucleus pulposus (NP) tissue than in degenerative NP tissue. In contrast, the mRNA expression level of VEGFA was downregulated in healthy NP tissue than in degenerative NP tissue. Conclusions In this study, we identified a potential relationship between LBP and DR in this work, as well as a synergistic mechanism of DR in the treatment of LBP, which serves as a benchmark for further in vivo and in vitro research.
Collapse
Affiliation(s)
- Feng Wen
- Hubei University of Chinese Medicine, Wuhan 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430073, China
| | - Jun Yu
- Hubei Aerospace Hospital, Xiaogan 432000, China
| | - Yan Cheng
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430073, China
| |
Collapse
|
25
|
Zhang J, Wang F, Wu D, Zhao D. Revealing the mechanisms of Weishi Huogu I capsules used for treating osteonecrosis of the femoral head based on systems pharmacology with one mechanism validated with in vitro experiments. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115354. [PMID: 35577160 DOI: 10.1016/j.jep.2022.115354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weishi Huogu I (WH I) capsules, developed through traditional Chinese medicine, have been used to treat clinical osteonecrosis of the femoral head (ONFH) for decades. However, the mechanisms have not been systematically studied. AIM OF THE STUDY In this study, the mechanisms of WH I capsules used in treating ONFH were examined through a systems pharmacology strategy, and one mechanism was validated with in vitro experiments. MATERIALS AND METHODS WH I capsules compounds were identified by screening databases; then, a database of the potential active compounds was constructed after absorption, distribution, metabolism and excretion (ADME) evaluation. The compounds were identified through a systematic approach in which the probability of an interaction of every candidate compound with each corresponding target in the DrugBank database was calculated. Gene Ontology (GO) and pathway enrichment analyses of the targets was performed with the Metascape and KEGG DISEASE databases. Then, a compound-target network (C-T) and target-pathway network (T-P) of WH I capsule components were constructed, and network characteristics and related information were used for systematically identifying WH I capsule multicomponent-target interactions. Furthermore, the effects of WH I capsule compounds identified through the systematic pharmacology analysis of the osteogenic transformation of human umbilical mesenchymal stem cells (HUMSCs) were validated in vitro. RESULTS In total, 152 potentially important compounds and 176 associated targets were identified. Twenty-two crucial GO biological process (BP) or pathways were related to ONFH, mainly in regulatory modules regulating blood circulation, modulating growth, and affecting pathological processes closely related to ONFH. Furthermore, the GO enrichment analysis showed that corydine, isorhamnetin, and bicuculline were enriched in "RUNX2 regulates osteoblast differentiation", significantly increased alkaline phosphatase activity and calcium deposition and upregulated runt-related transcription factor 2 mRNA and protein expression and osteocalcin mRNA expression in HUMSCs, suggesting that these compounds promoted the mesenchymal stem cell (MSC) osteogenic transformation. CONCLUSIONS The study showed that the pharmacological mechanisms of WH I capsule attenuation of ONFH mainly involve three therapeutic modules: blood circulation, modulating growth, and regulating pathological processes. The crosstalk between GOBPs/pathways may constitute the basis of the synergistic effects of the compounds in WH I capsules in attenuating ONFH. One of the pharmacological mechanisms in the WH I capsule effect on ONFH involves enhancement of the osteogenic transformation of MSCs, as validated in experiments performed in vitro; however, more mechanisms should be validated in further studies.
Collapse
Affiliation(s)
- Jiaoyue Zhang
- Department of Orthopedics, Affifiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China; Ansteel Group Hospital, Anshan, 114002, China.
| | - Fanli Wang
- Ansteel Group Hospital, Anshan, 114002, China.
| | - Dengbin Wu
- Ansteel Group Hospital, Anshan, 114002, China.
| | - Dewei Zhao
- Department of Orthopedics, Affifiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| |
Collapse
|
26
|
Mechanisms of Banxia Xiexin Decoction Underlying Chronic Atrophic Gastritis via Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4237040. [PMID: 36158124 PMCID: PMC9499768 DOI: 10.1155/2022/4237040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Chronic atrophic gastritis (CAG) is a common chronically digestive disease which is notoriously characterized by atrophy of the epithelium and glands of the gastric mucosa, reduced number, thinning of the gastric mucosa, thickening of the mucosal base, or pyloric glandular hyperplasia and intestinal glandular hyperplasia, or with atypical hyperplasia. Banxia Xiexin decoction (BXD) has been applied for two thousand years and is considered an effective therapy for functional dyspepsia, gastroesophageal reflux disease and colon cancer. In this current study, to probe into the underlying mechanism of BXD on CAG, network pharmacology was conducted to collect druggable ingredients and predicted targets of BXD and the CAG-associated targets were harvested to take intersection with druggable ingredients from BXD predicted targets to obtain potential critical action targets. Subsequently, GO enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were conducted to elucidate the underlying mechanisms and roles from the perspective of overall pathways and cellular functions. Eventually, molecular docking integrated with molecular dynamics simulations was conducted to further investigate the mechanism of action of BXD active ingredients on CAG from drug molecule-target interactions and to provide a theoretical basis for BXD drug development.
Collapse
|
27
|
Jiao Y, Li X, Tang Y, Peng Y, Chen G, Wang X, Yan L, Liu H, Nie Z. Distribution and metabolism of daidzein and its benzene sulfonates in vivo (in mice) based on MALDI-TOF MSI. Front Pharmacol 2022; 13:918087. [PMID: 36034806 PMCID: PMC9399426 DOI: 10.3389/fphar.2022.918087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Daidzein (D1) has been proved to be of great benefit to human health. More and more attention was paid to the metabolic process of D1. Most studies focused on the metabolites of D1 and analogs were determined through the excretion of animals and humans by traditional HPLC-MS, while their in situ distribution and metabolism in organs in vivo has not been reported. In our group, novel daidzein sulfonate derivatives were synthesized and confirmed to have excellent pharmaceutical properties. They exhibited good anti-inflammatory, inhibitory activities on human vascular smooth muscle cell proliferation and other bioactivities. Compared with traditional analytical methods, matrix-assisted laser desorption ionization time-of-flight mass spectrometry imaging (MALDI-TOF MSI) can directly analyze the distribution of compounds in tissues and organs. In this study, we investigate the in situ distribution and metabolism of D1 and its derivatives (DD2, DD3) in the organs of mice based on MALDI-TOF MSI for the first time. Trace prototype compounds were detected in the plasma 4 h after the intravenous injection of D1, DD2, and DD3. Seven phase I metabolites and seven phase II metabolites were detected. D1 sulfates were found in the plasma and in organs except the heart. The presence of D1 and DD3 monosulfates in the brain indicated that they could penetrate the blood–brain barrier. DD2 and DD3 could be hydrolyzed into D1 and their metabolic pathways were similar to those of D1. In addition, a ligand-receptor docking of D1 and DD2 with mitogen-activated protein kinase 8 (JNK1) was performed because of their significant anti-inflammatory activities through the JNK signaling pathway. It showed that the binding energy of DD2 with JNK1 was obviously lower than that of D1 which was consistent with their anti-inflammatory activities. It provided a theoretical basis for further validation of their anti-inflammatory mechanism at the protein level. In summary, the research will provide beneficial guidance for further pharmacological, toxicological studies and the clinical-use research of these compounds.
Collapse
Affiliation(s)
- Yanxiao Jiao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, China
| | - Xueqin Li
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, China
| | - Yao Tang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - You Peng
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, China
- *Correspondence: You Peng, ; Zongxiu Nie,
| | - Guisen Chen
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, China
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, China
| | - Long Yan
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, China
| | - Huihui Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Zongxiu Nie
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
- *Correspondence: You Peng, ; Zongxiu Nie,
| |
Collapse
|
28
|
Li J, Yang M, Song Y. Molecular mechanism of vitiligo treatment by bailing tablet based on network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e29661. [PMID: 35777015 PMCID: PMC9239666 DOI: 10.1097/md.0000000000029661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bailing tablet, a patent Chinese medicine, is widely used to treat vitiligo in China. However, the underlying mechanism of this combined drug in treating vitiligo still remains unclear. OBJECTIVE This study aimed to investigate the pharmacological mechanism of bailing tablet in the prevention and treatment of vitiligo using network pharmacology and molecular docking. METHODS Genetic data of vitiligo and normal people were obtained by gene expression omnibus (GEO) DataSets database and GEO difference analysis was conducted to obtain differential genes. The main active compounds and corresponding target genes of bailing tablet were collected from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. Combined with the results of GEO difference analysis, the main compounds and corresponding target genes of bailing tablet in the treatment of vitiligo were screened. The network diagram of "traditional Chinese medicine compound target" was constructed by Cytoscape software. According to the differential genes, the core targets with potential therapeutic effect were searched, the protein-protein interaction network was constructed, and the key proteins were explored by topological analysis (CytoNCA). Meanwhile, the core targets were analyzed by biological process (gene ontology) and signal pathway (Kyoto encyclopedia of genes and genomes) function enrichment. Molecular docking technology was adopted to verify the combination of main components and core targets. RESULTS A total of 170 active compounds and 1777 prediction targets were screened from 11 traditional Chinese medicines of bailing tablet, of which 65 active components and 68 related prediction targets were closely related to vitiligo. A total of 320 key proteins were obtained by analyzing the topological characteristics of the protein-protein interaction network, mainly including neurotrophic receptor tyrosine kinase 1, tumor protein P53, cullin 3, estrogen receptor 1, etc. The main biological processes involve oxidative stress response, cell response to reactive oxygen species, and reactive oxygen species metabolism. Bailing tablet treats vitiligo mainly by regulating immune inflammation, apoptosis, and autophagy, which involves phosphatidylinositol-4,5-bisphosphate 3-kinase Akt signal pathway, mitogen-activated protein kinase signal pathway, Janus kinase signal transducer and activator of transcription signal pathway, melanin production, and helper T cell (Th)1, Th2, and Th17 differentiation pathway, etc. Molecular docking results showed that the main components could bind to the target protein well. CONCLUSIONS Based on network pharmacology and molecular docking, the mechanism of bailing tablet in the treatment of vitiligo through multicomponent, multitarget, and multichannel was deeply explored.
Collapse
Affiliation(s)
- Jinming Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Cosmetic Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Yang
- Department of Cosmetic Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yeqiang Song
- Department of Cosmetic Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
29
|
Wang W, Gu W, He C, Zhang T, Shen Y, Pu Y. Bioactive components of Banxia Xiexin Decoction for the treatment of gastrointestinal diseases based on flavor-oriented analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115085. [PMID: 35150814 DOI: 10.1016/j.jep.2022.115085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) was first recorded in a Chinese medical classic, Treatise on Febrile Diseases and Miscellaneous Diseases, which was written in the Eastern Han dynasty of China. This ancient prescription consists of seven kinds of Chinese herbal medicine, namely, Pinellia ternata, Rhizoma Coptidis, Radix scutellariae, Rhizoma Zingiberis, Ginseng, Jujube, and Radix Glycyrrhizaepreparata. In clinic practice, its original application in China mainly has focused on the treatment of chronic gastritis for several hundred years. BXD is also effective in treating other gastrointestinal diseases (GIDs) in modern medical application. Despite available literature support and clinical experience, the treatment mechanisms or their relationships with the bioactive compounds in BXD responsible for its pharmacological actions, still need further explorations in more diversified channels. According to the analysis based on the five-flavor theory of TCM, BXD is traditionally viewed as the most representative prescription for pungent-dispersion, bitter-purgation and sweet-tonification. Consequently, based on the flavor-oriented analysis, the compositive herbs in BXD can be divided into three flavor groups, namely, the pungent, bitter, and sweet groups, each of which has specific active ingredients that are possibly relevant to GID treatment. AIM OF THE REVIEW This paper summarized recent literatures on BXD and its bioactive components used in GID treatment, and provided the pharmacological or chemical basis for the further exploration of the ancient prescription and the relative components. METHOD ology: Relevant literature was collected from various electronic databases such as Pubmed, Web of Science, and China National Knowledge Infrastructure (CNKI). Citations were based on peer-reviewed articles published in English or Chinese during the last decade. RESULTS Multiple components were found in the pungent, bitter, and sweet groups in BXD. The corresponding bioactive components include gingerol, shogaol, stigmasterol, and β-sitosterol in the pungent group; berberine, palmatine, coptisine, baicalein, and baicalin in the bitter group; and ginsenosides, polysaccharides, liquiritin, and glycyrrhetinic acid in the sweet group. These components have been found directly or indirectly responsible for the remarkable effects of BXD on GID. CONCLUSION This review provided some valuable reference to further clarify BXD treatment for GID and their possible material basis, based on the perspective of the flavor-oriented analysis.
Collapse
Affiliation(s)
- Weiwei Wang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weiliang Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao He
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yao Shen
- Shanghai Center of Biomedicine Development, Shanghai, 201203, China.
| | - Yiqiong Pu
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
30
|
Wang K, Qian R, Li H, Wang C, Ding Y, Gao Z. Interpreting the Pharmacological Mechanisms of Sho-saiko-to on Thyroid Carcinoma through Combining Network Pharmacology and Experimental Evaluation. ACS OMEGA 2022; 7:11166-11176. [PMID: 35415320 PMCID: PMC8991932 DOI: 10.1021/acsomega.1c07335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Sho-saiko-to is a well-known traditional Chinese medicine compound and is considered to have therapeutic effects against many diseases, including thyroid cancer (TC). However, the mechanisms and therapeutic targets of Sho-saiko-to against TC remain unclear. In this study, network pharmacology, molecular docking, and cell experiments were combined to predict and verify the targets and mechanisms of the active ingredients of Sho-saiko-to against TC. The results demonstrated that the main chemical ingredients of Sho-saiko-to could suppress the viability and proliferation of TC cells, promote apoptosis through the caspase3 pathway, and induce autophagy through the PI3K-AKT pathway. In addition, Sho-saiko-to could also induce the redifferentiation of anaplastic thyroid cancer. Our study provides a novel approach for treating differentiated thyroid cancer (DTC) or radioactive iodine refractory differentiated thyroid cancer (RAIR-DTC).
Collapse
Affiliation(s)
- Kun Wang
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ruijie Qian
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Hongyan Li
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chenyang Wang
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ying Ding
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Zairong Gao
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
31
|
He D, Dan W, Du Q, Shen BB, Chen L, Fang LZ, Kuang JJ, Tang CY, Cai P, Yu R, Zhang SH, Huang JH. Integrated Network Pharmacology and Metabolomics Analysis to Reveal the Potential Mechanism of Siwu Paste on Aplastic Anemia Induced by Chemotherapy Drugs. Drug Des Devel Ther 2022; 16:1231-1254. [PMID: 35517983 PMCID: PMC9061215 DOI: 10.2147/dddt.s327433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose This study aimed to reveal the multicomponent synergy mechanisms of SWP based on network pharmacology and metabolomics for exploring the relationships of active ingredients, biological targets, and crucial metabolic pathways. Materials Network pharmacology, including TRRUST, GO, and KEGG, enrichment was used to discover the active ingredients and potential regulation mechanisms of SWP. LC-MS and multivariate data analysis method were further applied to analyze serum metabolomics profiling for discovering the potential metabolic mechanisms of SWP on AA induced by Cyclophosphamide (CTX) and 1-Acetyl-2-phenylhydrazine (APH). Results A total of 27 important bioactive ingredients meeting the ADME (absorption, distribution, metabolism, and excretion) screening criteria from SWP were selected. Interaction networks were constructed and validated based on the 10 associated ingredients with the relevant targets. A total of 125 biomarkers were found by Metabolomics approach, which associated with the development of AA, mainly involved in amino acid metabolism and lipid metabolism. While SWP can reverse the above 12 metabolites changed by AA. Network analysis revealed the synergistic effects of SWP through the 43 crucial pathways, including Sphingolipid signaling pathway, Sphingolipid metabolism, Arginine and proline metabolism, VEGF signaling pathway, Estrogen signaling pathway. Conclusion The study suggested that SWP is a useful alternative for the treatment of AA induced by CTX + APH. Its potential mechanisms are to improve hematopoietic microenvironment and promote bone marrow hematopoiesis therapies.
Collapse
Affiliation(s)
- Dan He
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Wan Dan
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Qing Du
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Bing-Bing Shen
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Lin Chen
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Liang-zi Fang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Jian-Jun Kuang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Chun-yu Tang
- Hunan Times Sunshine Pharmaceutical Co., Ltd., Changsha, Hunan, 425007, People’s Republic of China
| | - Ping Cai
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Rong Yu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine Hunan, Changsha, Hunan, 410208, People’s Republic of China
| | - Shui-han Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
- Correspondence: Shui-han Zhang; Jian-hua Huang, Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China, Tel +86 13637400650; +86 18692265317, Email ;
| | - Jian-hua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine Hunan, Changsha, Hunan, 410208, People’s Republic of China
| |
Collapse
|
32
|
El-Haggar SM, Hegazy SK, Abd-Elsalam SM, Elkaeed EB, Al-Karmalawy AA, Bahaa MM. A Potential Role of Ethosuximide and Pentoxifylline in Relieving Abdominal Pain in Irritable Bowel Syndrome Patients Treated with Mebeverine: A Randomized, Double-Blind, Placebo-Controlled Trial. J Inflamm Res 2022; 15:1159-1172. [PMID: 35221706 PMCID: PMC8867223 DOI: 10.2147/jir.s346608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Background and Purpose Irritable bowel syndrome (IBS) is defined as an association of chronic abdominal pain with bowel habit abnormalities, without clear organic dysfunction. T-type calcium channels and low-grade mucosal inflammation are linked to abdominal pain; however, medical treatments for IBS abdominal pain are largely ineffective. In this study, we investigated if pentoxifylline (PTX) and ethosuximide could potentially alleviate abdominal pain in patients with IBS treated with mebeverine. Methods We recruited 150 patients from Tanta University Hospital to this randomized, prospective, and double blinded study. Patients were randomly allocated to three groups (n = 50). Group 1 (mebeverine) received 135 mg mebeverine three times/day (t.i.d). Group 2 (ethosuximide group) received 135 mg mebeverine t.i.d plus 250 mg ethosuximide twice daily (b.i.d) and group 3 (PTX group) received 135 mg mebeverine t.i.d plus 400 mg PTX b.i.d. Patients were assessed by a gastroenterologist at baseline and 6 months after therapy. Serum interleukin-8 (IL-8), IL-6, tumor necrosis-α (TNF-α), fecal myeloperoxidase, and fecal neutrophil gelatinase associated lipocalin (NGAL) levels were measured before and after therapy. The numeric pain rating scale (NRS) was also assessed before and after therapy. Primary Outcomes Reduced NRS scores and abdominal pain relief. Secondary Outcomes Decreased inflammatory biomarkers. Results After 6 months, groups 2 and 3 showed a significantly greater reduction in serum IL-8, IL-6, TNF-α, fecal myeloperoxidase, and fecal NGAL levels when compared to group 1 after therapy. Both groups 2 and 3 showed significant reductions in NRS scores when compared to the group 1. Conclusion Ethosuximide and PTX may be promising, novel adjunct drugs to antispasmodics for relieving abdominal pain in patients with IBS. Trial Registration Identifier: NCT04217733.
Collapse
Affiliation(s)
- Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Gharbia Government, Tanta, 31527, Egypt
| | - Sahar K Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Gharbia Government, Tanta, 31527, Egypt
| | - Sherief M Abd-Elsalam
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University, Tanta, 315274, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 13713, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
- Correspondence: Mostafa M Bahaa, Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt, Tel +201025538337, Email ;
| |
Collapse
|
33
|
Huang X, Zhou Z, Zheng Y, Fan G, Ni B, Liu M, Zhao M, Zeng L, Wang W. Network Pharmacological Study on Mechanism of the Therapeutic Effect of Modified Duhuo Jisheng Decoction in Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:860649. [PMID: 35432213 PMCID: PMC9008312 DOI: 10.3389/fendo.2022.860649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Modified Duhuo Jisheng Decoction (MDHJSD) is a traditional Chinese medicine prescription for the treatment of osteoporosis (OP), but its mechanism of action has not yet been clarified. This study aims to explore the mechanism of MDHJSD in OP through a combination of network pharmacology analysis and experimental verification. METHODS The active ingredients and corresponding targets of MDHJSD were acquired from the Traditional Chinese Medicine System Pharmacology (TCMSP) database. OP-related targets were acquired from databases, including Genecards, OMIM, Drugbank, CTD, and PGKB. The key compounds, core targets, major biological processes, and signaling pathways of MDHJSD that improve OP were identified by constructing and analysing the relevant networks. The binding affinities between key compounds and core targets were verified using AutoDock Vina software. A rat model of ovariectomized OP was used for the experimental verification. RESULTS A total of 100 chemical constituents, 277 targets, and 4734 OP-related targets of MDHJSD were obtained. Subsequently, five core components and eight core targets were identified in the analysis. Pathway enrichment analysis revealed that overlapping targets were significantly enriched in the tumour necrosis factor-alpha (TNF-α) signaling pathway, an inflammation signaling pathway, which contained six of the eight core targets, including TNF-α, interleukin 6 (IL-6), transcription factor AP-1, mitogen-activated protein kinase 3, RAC-alpha serine/threonine-protein kinase, and caspase-3 (CASP3). Molecular docking analysis revealed close binding of the six core targets of the TNF signaling pathway to the core components. The results of experimental study show that MDHJSD can protect bone loss, inhibit the inflammatory response, and downregulate the expression levels of TNF-α, IL-6, and CASP3 in ovariectomized rats. CONCLUSION The mechanism of MDHJSD in the treatment of OP may be related to the regulation of the inflammatory response in the bone tissue.
Collapse
Affiliation(s)
- Xudong Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhou Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingyi Zheng
- School of Basic Medical Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Guoshuai Fan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baihe Ni
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meichen Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghua Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingfeng Zeng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Weiguo Wang, ; Lingfeng Zeng,
| | - Weiguo Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Weiguo Wang, ; Lingfeng Zeng,
| |
Collapse
|
34
|
Zhen Z, Xia L, You H, Jingwei Z, Shasha Y, Xinyi W, Wenjing L, Xin Z, Chaomei F. An Integrated Gut Microbiota and Network Pharmacology Study on Fuzi-Lizhong Pill for Treating Diarrhea-Predominant Irritable Bowel Syndrome. Front Pharmacol 2021; 12:746923. [PMID: 34916934 PMCID: PMC8670173 DOI: 10.3389/fphar.2021.746923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Diarrhea-predominant irritable bowel syndrome (IBS-D) is one of the most common chronic functional gastrointestinal diseases with limited treatments. Gut microbiota play an important role in chronic gastrointestinal diseases. In traditional Chinese medicine (TCM), Spleen-Yang deficiency (SYD) is one of the root causes of IBS-D. Fuzi-Lizhong pill (FLZP) is well known for its powerful capacity for treating SYD and has a good clinical effect on IBS-D. However, the mechanism of FLZP on the gut microbiota of IBS-D has not been fully clarified. Our present study aimed to reveal the mechanism of FLZP regulating gut microbiota of IBS-D. The body mass, CCK, MTL, and Bristol fecal character score were used to verify the establishment of the IBS-D model. IL-6, TNF, IL-1β, and IFN-γ were crucial targets screened by network pharmacology and preliminarily verified by ELISA. Eighteen gut microbiota were important for the treatment of IBS-D with FLZP. Bacteroidetes, Blautia, Turicibacter, and Ruminococcus_torques_group were the crucial gut microbiota that FLZP inhibits persistent systemic inflammation in the IBS-D model. Lactobacillus is the crucial gut microbiota that FLZP renovates intestinal immune barrier in the IBS-D model. In summary, FLZP can affect bacterial diversity and community structures in the host and regulate inflammation and immune system to treat IBS-D.
Collapse
Affiliation(s)
- Zhang Zhen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Key Laboratory of Quality Control and Efficacy Evaluation of Traditional Chinese Medicine Formula Granules, Sichuan New Green Medicine Science and Technology Development Co., Ltd., Pengzhou, China
| | - Lin Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huang You
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhou Jingwei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Shasha
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Xinyi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lai Wenjing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Xin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Chaomei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
35
|
Wang K, Li K, Chen Y, Wei G, Yu H, Li Y, Meng W, Wang H, Gao L, Lu A, Peng J, Guan D. Computational Network Pharmacology-Based Strategy to Capture Key Functional Components and Decode the Mechanism of Chai-Hu-Shu-Gan-San in Treating Depression. Front Pharmacol 2021; 12:782060. [PMID: 34867413 PMCID: PMC8633106 DOI: 10.3389/fphar.2021.782060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Traditional Chinese medicine (TCM) usually plays therapeutic roles on complex diseases in the form of formulas. However, the multicomponent and multitarget characteristics of formulas bring great challenges to the mechanism analysis and secondary development of TCM in treating complex diseases. Modern bioinformatics provides a new opportunity for the optimization of TCM formulas. In this report, a new bioinformatics analysis of a computational network pharmacology model was designed, which takes Chai-Hu-Shu-Gan-San (CHSGS) treatment of depression as the case. In this model, effective intervention space was constructed to depict the core network of the intervention effect transferred from component targets to pathogenic genes based on a novel node importance calculation method. The intervention-response proteins were selected from the effective intervention space, and the core group of functional components (CGFC) was selected based on these intervention-response proteins. Results show that the enriched pathways and GO terms of intervention-response proteins in effective intervention space could cover 95.3 and 95.7% of the common pathways and GO terms that respond to the major functional therapeutic effects. Additionally, 71 components from 1,012 components were predicted as CGFC, the targets of CGFC enriched in 174 pathways which cover the 86.19% enriched pathways of pathogenic genes. Based on the CGFC, two major mechanism chains were inferred and validated. Finally, the core components in CGFC were evaluated by in vitro experiments. These results indicate that the proposed model with good accuracy in screening the CGFC and inferring potential mechanisms in the formula of TCM, which provides reference for the optimization and mechanism analysis of the formula in TCM.
Collapse
Affiliation(s)
- Kexin Wang
- National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangzhou, China.,Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kai Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Genxia Wei
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hailang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Handuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, China
| | - Junxiang Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Combining Network Pharmacology with Molecular Docking for Mechanistic Research on Thyroid Dysfunction Caused by Polybrominated Diphenyl Ethers and Their Metabolites. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2961747. [PMID: 34840968 PMCID: PMC8613503 DOI: 10.1155/2021/2961747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022]
Abstract
Network pharmacology was used to illuminate the targets and pathways of polybrominated diphenyl ethers (PBDEs) causing thyroid dysfunction. A protein-protein interaction (PPI) network was constructed. Molecular docking was applied to analyze PBDEs and key targets according to the network pharmacology results. A total of 247 targets were found to be related to 16 PBDEs. Ten key targets with direct action were identified, including the top five PIK3R1, MAPK1, SRC, RXRA, and TP53. Gene Ontology (GO) functional enrichment analysis identified 75 biological items. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified 62 pathways mainly related to the regulation of the thyroid hormone signaling pathway, MAPK signaling pathway, PI3K-Akt signaling, pathways in cancer, proteoglycans in cancer, progesterone-mediated oocyte maturation, and others. The molecular docking results showed that BDE-99, BDE-153, 5-OH-BDE47, 5'-OH-BDE99, 5-BDE47 sulfate, and 5'-BDE99 sulfate have a good binding effect with the kernel targets. PBDEs could interfere with the thyroid hormone endocrine through multiple targets and biological pathways, and metabolites demonstrated stronger effects than the prototypes. This research provides a basis for further research on the toxicological effects and molecular mechanisms of PBDEs and their metabolites. Furthermore, the application of network pharmacology to the study of the toxicity mechanisms of environmental pollutants provides a new methodology for environmental toxicology.
Collapse
|
37
|
El-Haggar SM, Hegazy SK, Abd-Elsalam SM, Bahaa MM. Pentoxifylline, a nonselective phosphodiesterase inhibitor, in adjunctive therapy in patients with irritable bowel syndrome treated with mebeverine. Biomed Pharmacother 2021; 145:112399. [PMID: 34775240 DOI: 10.1016/j.biopha.2021.112399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a functional gastrointestinal condition marked by chronic bowel pain or discomfort, as well as changes in abdominal motility. Despite its worldwide prevalence and clinical impact, the cause of IBS is unknown. Inflammation could play a fundamental role in the development of IBS. The aim of this study was to examine whether pentoxifylline, a competitive nonselective phosphodiesterase inhibitor, is useful in alleviating abdominal pain in IBS patients treated with mebeverine. METHODS A randomized, controlled, and prospective clinical study that included 50 outpatients who met the inclusion criteria for IBS. Patients are allocated randomly into two groups (n = 25). Group 1 (mebeverine group) received mebeverine 135 mg three times daily (t.i.d) for three months. Group 2 (pentoxifylline group) received mebeverine 135 mg t.i.d and pentoxifylline 400 mg two times daily for three months. Patients were assessed by a gastroenterologist at baseline and three months after the medication had been started. The serum levels of interleukin-6, interleukin-8 and tumor necrosis factor-alpha, fecal Neutrophil Gelatinase Associated Lipocalin (NGAL), and fecal myeloperoxidase were measured at the start and after three months of therapy. The Numeric Pain Rating scale (NRS) was assessed at baseline and after therapy. RESULTS the pentoxifylline group showed a significant decrease in the level of measured biomarkers and a significant decrease in NRS. CONCLUSION Pentoxifylline could be a promising adjuvant anti-inflammatory drug in the treatment of abdominal pain in IBS patients treated with mebeverine.
Collapse
Affiliation(s)
- Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta 31527, Egypt
| | - Sahar K Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta 31527, Egypt
| | - Sherief M Abd-Elsalam
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| |
Collapse
|
38
|
El-Haggar SM, Hegazy SK, M Abd-Elsalam S, Bahaa MM. Open-label pilot study of ethosuximide as adjunctive therapy for relieving abdominal pain related to Irritable Bowel Syndrome. J Clin Pharm Ther 2021; 47:306-312. [PMID: 34726293 DOI: 10.1111/jcpt.13556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/22/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVES There is clear evidence for an association between irritable bowel syndrome (IBS) and visceral hypersensitivity. This clinical study aimed to assess the adjunct role of ethosuximide, an antiepileptic drug with T-type calcium channel blocking activity, in the relieving of IBS-related abdominal pain. METHODS This is a prospective, 3-month, randomized and controlled study of parallel groups. Fifty outpatients who met the inclusion criteria participated in the trial. Patients were allocated randomly: 25 received mebeverine 135 mg three times daily (t.i.d), whereas the other 25 received mebeverine 135 mg t.i.d and ethosuximide 500 mg t.i.d. At baseline and 12 weeks after starting the drug, patients were evaluated by a gastroenterologist. Serum tumour necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), interleukin-8 (IL-8), faecal myeloperoxidase and faecal neutrophile gelatinase-associated lipocalin (NGAL) levels were tested before and after treatment. The Numeric Pain Rating Scale (NRS) was assessed before and after three months of therapy. RESULTS AND DISCUSSION After 12 weeks, the ethosuximide group showed a statistically and significantly greater reduction in the serum levels of TNF-α, IL-6, IL-8, faecal myeloperoxidase and faecal NGAL in comparison with the control group after the treatment. Moreover, the ethosuximide group showed a statistically significant decrease in NRS compared with the mebeverine group. WHAT IS NEW AND CONCLUSION Ethosuximide could be a promising adjunct to antispasmodics in the treatment of IBS patients. Trial registration identifier: NCT04217733.
Collapse
Affiliation(s)
- Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Gharbia Government, Tanta, Egypt
| | - Sahar K Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Gharbia Government, Tanta, Egypt
| | - Sherief M Abd-Elsalam
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
39
|
Chen GR, Xie XF, Peng C. Treatment of Irritable Bowel Syndrome by Chinese Medicine: A Review. Chin J Integr Med 2021; 29:377-384. [PMID: 34546535 DOI: 10.1007/s11655-021-3521-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Irritable bowel syndrome (IBS) is a common refractory disease. Chinese medicine (CM) has remarkable efficacy and advantages on the treatment of IBS. This review summarized the articles focusing on the treatment of IBS with CM to sum up the latest treatment methods for IBS and the underlying mechanisms. Literature analysis showed that prescriptions, acupuncture, and moxibustion are the primary methods of CM treatment for IBS. The potential mechanism centers on the regulation of the enteric nervous system, the alleviation of visceral hypersensitivity, the stability of intestinal flora, and the regulation of the immune system.
Collapse
Affiliation(s)
- Guan-Ru Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
| | - Xiao-Fang Xie
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Peng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China. .,State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
40
|
Wu L, Chen Y, Chen M, Yang Y, Che Z, Li Q, You X, Fu W. Application of network pharmacology and molecular docking to elucidate the potential mechanism of Astragalus-Scorpion against prostate cancer. Andrologia 2021; 53:e14165. [PMID: 34185887 DOI: 10.1111/and.14165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/29/2021] [Accepted: 06/05/2021] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to investigate the molecular mechanism of the Astragalus-Scorpion drug pair in the treatment of prostate cancer (PCa). We employed network pharmacology and molecular docking technology to retrieving the active ingredients and corresponding targets of Astragalus-Scorpion by using TCMSP, BATMAN-TCM, TCMID and Swiss Target Prediction Databases. The targets related to PCa were retrieved through GeneCards. Cytoscape software was used to construct the 'active ingredient-target disease' network, and GO and KEGG enrichment analyses were performed on the common targets. Autodock software was used for molecular docking verification. In total, 26 active ingredients, 340 potential targets related to active ingredients and 122 common targets were screened from Astragalus-Scorpion drug pair. The core targets of the protein-protein interaction (PPI) network were JUN, AKT1, IL6, MAPK1 and RELA, whereas the core active ingredients were quercetin, kaempferol, formononetin, 7-o-methylisomucronulatol and calycosin. Nearly 762 GO entries and 154 pathways were obtained by using the pathway enrichment analysis. Molecular docking results revealed that quercetin and kaempferol bind to AKT1 and formononetin binds to RELA, all of which were found to be stable bounds.
Collapse
Affiliation(s)
- Litong Wu
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China.,School of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China.,School of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minjing Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China.,School of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueqin Yang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China.,School of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuzhao Che
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China.,School of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qixin Li
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xujun You
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wei Fu
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
41
|
Liu X, Fan Y, Du L, Mei Z, Fu Y. In Silico and In Vivo Studies on the Mechanisms of Chinese Medicine Formula (Gegen Qinlian Decoction) in the Treatment of Ulcerative Colitis. Front Pharmacol 2021; 12:665102. [PMID: 34177580 PMCID: PMC8232523 DOI: 10.3389/fphar.2021.665102] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease, and Gegen Qinlian Decoction (GQD), a Chinese botanical formula, has exhibited beneficial efficacy against UC. However, the mechanisms underlying the effect of GQD still remain to be elucidated. In this study, network pharmacology approach and molecular docking in silico were applied to uncover the potential multicomponent synergetic effect and molecular mechanisms. The targets of ingredients in GQD were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM) database, while the UC targets were retrieved from Genecards, therapeutic target database (TTD) and Online Mendelian Inheritance in Man (OMIM) database. The topological parameters of Protein-Protein Interaction (PPI) data were used to screen the hub targets in the network. The possible mechanisms were investigated with gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecular docking was used to verify the binding affinity between the active compounds and hub targets. Network pharmacology analysis successfully identified 77 candidate compounds and 56 potential targets. The targets were further mapped to 20 related pathways to construct a compound-target-pathway network and an integrated network of GQD treating UC. Among these pathways, PI3K-AKT, HIF-1, VEGF, Ras, and TNF signaling pathways may exert important effects in the treatment of UC via inflammation suppression and anti-carcinogenesis. In the animal experiment, treatment with GQD and sulfasalazine (SASP) both ameliorated inflammation in UC. The proinflammatory cytokines (TNF-α, IL-1β, and IL-6) induced by UC were significantly decreased by GQD and SASP. Moreover, the protein expression of EGFR, PI3K, and phosphorylation of AKT were reduced after GQD and SASP treatment, and there was no significance between the GQD group and SASP group. Our study systematically dissected the molecular mechanisms of GQD on the treatment of UC using network pharmacology, as well as uncovered the therapeutic effects of GQD against UC through ameliorating inflammation via downregulating EGFR/PI3K/AKT signaling pathway and the pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6.
Collapse
Affiliation(s)
- Xiaolu Liu
- Institute of Basic Theory for Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, China
| | - Yuling Fan
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, China
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, China
| | - Zhigang Mei
- Institute of Basic Theory for Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, China
| | - Yang Fu
- Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang, China
| |
Collapse
|
42
|
Based on Network Pharmacology and Molecular Docking to Explore the Underlying Mechanism of Huangqi Gegen Decoction for Treating Diabetic Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9928282. [PMID: 34035828 PMCID: PMC8121566 DOI: 10.1155/2021/9928282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022]
Abstract
Background Huangqi Gegen decoction (HGD), a Chinese herb formula, has been widely used to treat diabetic nephropathy in China, while the pharmacological mechanisms are still unclear. Therefore, the present study aims to explore the underlying mechanism of HGD for treating diabetic nephropathy (DN). Materials and Methods Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), UniProt, and SwissTargetPrediction databases were used to search the active ingredients and potential targets of HGD. In addition, multiple disease-related databases were used to collect DN-related targets. Common targets of the protein-protein interaction (PPI) network were established using the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database. At last, AutoDockVina was used to conduct molecular docking verification for the core components and targets. Results A total of 27 active ingredients and 354 putative identified target genes were screened from HGD, of which 99 overlapped with the targets of DN and were considered potential therapeutic targets. Further analysis showed that the HGD activity of quercetin, formononetin, kaempferol, isorhamnetin, and beta-sitosterol ingredients is possible through VEGFA, IL6, TNF, AKT1, and TP53 targets involved in TNF, toll-like receptors, and MAPK-related pathways, which have anti-inflammatory, antiapoptosis, antioxidation, and autophagy effects, relieve renal fibrosis and renal cortex injury, and improve renal function, thus delaying the development of DN. The molecular docking results showed that quercetin, formononetin, kaempferol, isorhamnetin, beta-sitosterol had a good binding activity with VEGFA, IL6, TNF, AKT1, and TP53. Conclusion This study demonstrated that HGD might take part in the treatment of DN through multicomponent, multitarget, and multichannel combined action.
Collapse
|
43
|
Yang Y, Vong CT, Zeng S, Gao C, Chen Z, Fu C, Wang S, Zou L, Wang A, Wang Y. Tracking evidences of Coptis chinensis for the treatment of inflammatory bowel disease from pharmacological, pharmacokinetic to clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113573. [PMID: 33181286 DOI: 10.1016/j.jep.2020.113573] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/20/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis (C. chinensis, Huanglian in Chinese), a famous traditional herbal medicine used for clearing heat and detoxification since thousands of years ago, is widely and traditionally used for clinical treatment of stomach inflammation, duodenum and digestive tract ulcers alone or through combing with other herbs in compound formulations. AIM OF THE REVIEW Through literature reviews of C. chinensis and berberine (one of the most important bioactive compounds derived from this plant) for the treatment of inflammatory bowel disease (IBD), this review aims to provide beneficial information for further exploration of the potent bioactive constituents from C. chinensis, deep investigation on the molecular mechanisms for the treatment of IBD, as well as further research and development of brand new products from C. chinensis for clinical therapy of IBD. METHODS "C. chinensis" and "IBD" were selected as the main keywords, and various online search engines, such as Google Scholar, PubMed, Web of Science, China National Knowledge Infrastructure database (CNKI) and other publication resources, were used for searching literatures. RESULTS To present, C. chinensis together with other herbs are involved in plenty of Chinese herbal prescriptions for the treatment of IBD, but little research focused on the single therapeutic effects of C. chinensis or extracts from this herb for the treatment of this disease. Berberine, one of important and representative bioactive compound isolated from C. chinensis, was reported to treat IBD effectively at a big arising speed in recent years. However, systematically and comprehensively reviews on the research of C. chinensis and berberine for the treatment of IBD from the aspects of chemical constituents, pharmacological effects, pharmacokinetics as well as clinical studies are seldom accomplished by researchers. Bioactive components from C. chinensis exert therapeutic effects for the treatment of IBD mainly through the inhibition of oxidative stress, antinociception, protection of intestinal mucosal epithelial barrier, regulation of T helper cells, as well as antibacterial activity. Although numerous studies on bioactive compounds from C. chinense have been performed by clinical investigators in recent years, most of them should be performed in a more strict and standard way to ensure the safety and efficacy of these compounds. CONCLUSIONS Berberine is considered as the representative and effective component from C. chinensis, but many other chemical components isolated from C. chinensis also have therapeutic effects for the treatment of IBD, which need deep research and further exploration. To accelerate research and development of C. chinensis and its bioactive components for the treatment of IBD, clinical trials are needed to clarify the effectiveness and safety of these chemical components from C. chinensis, as well as their molecular mechanisms for IBD treatment in vitro and in vivo. It is believed that continuous research and exploration on C. chinensis together with its bioactive compounds will bring great hope to the treatment of IBD.
Collapse
Affiliation(s)
- Yuhan Yang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, China.
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Shan Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, China.
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, 610106, China.
| | - Anqi Wang
- School of Medicine, Chengdu University, Chengdu, 610106, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
44
|
Wu T, Yue R, Li L, He M. Study on the Mechanisms of Banxia Xiexin Decoction in Treating Diabetic Gastroparesis Based on Network Pharmacology. Interdiscip Sci 2020; 12:487-498. [PMID: 32914205 DOI: 10.1007/s12539-020-00389-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
In China, Banxia Xiexin decoction (BXD) is applied to treat diabetic gastroparesis (DGP), but its key active ingredients and mechanisms against DGP are unclear. This study is designated to reveal the molecular mechanisms of BXD in treating DGP by adopting a creative approach known as network pharmacology to explore the active ingredients and therapeutic targets of BXD. In our study, 730 differentially expressed genes of DGP were obtained, and 30 potential targets of BXD against DGP were screened out (including ADRB2, DRD1, FOS, MMP9, FOSL1, FOSL2, JUN, MAP2, DRD2, MYC, F3, CDKN1A, IL6, NFKBIA, ICAM1, CCL2, SELE, DUOX2, MGAM, THBD, SERPINE1, ALOX5, CXCL11, CXCL2, CXCL10, RUNX2, CD40LG, C1QB, MCL1, and ADCYAP1). Based on the findings, BXD contains 60 compounds with therapeutic effect on DGP, including the key active ingredients such as quercetin, wogonin, baicalein, beta-sitosterol, and kaempferol. Sixty-eight pathways including TNF signaling pathway, IL-17 signaling pathway, and AGE-RAGE signaling pathway were significantly enriched. In this study, the mechanisms of BXD in treating DGP are affirmed to be a complex network with multi-target and multi-pathway, which provides a reference for future experimental studies.
Collapse
Affiliation(s)
- Tingchao Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, SiChuan, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, SiChuan, China.
| | - Liang Li
- University of Electronic Science and Technology of China, Chengdu, SiChuan, China
| | - Mingmin He
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, SiChuan, China
| |
Collapse
|
45
|
Study on the Multitarget Mechanism of Sanmiao Pill on Gouty Arthritis Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9873739. [PMID: 32831884 PMCID: PMC7424379 DOI: 10.1155/2020/9873739] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Sanmiao pill (SMP), a Chinese traditional formula, had been used to treat gouty arthritis (GA). However, the active compounds and underlying mechanism remained unclear. Hence, network pharmacology and molecular docking were utilized to explore bioactive compounds and potential mechanism of action of SMP in treating GA. In the study, the compounds of SMP, corresponding targets, and GA-related targets were mined from various pharmacological databases. Then, herb-compound-target, compound-target, PPI, and target-pathway networks were constructed. Ultimately, molecular docking was carried out to verify the predicted results. The results indicated that 47 active compounds, 338 targets, and 144 disease targets were collected. Network analysis implied that Phellodendron chinense Schneid. played a vital role in the whole formula. Moreover, 7 compounds (quercetin, kaempferol, wogonin, rutaecarpine, baicalein, beta-sitosterol, and stigmasterol) and 4 targets (NFKB1, RELA, MAPK1, and TNF) might be the kernel compounds and targets of SMP against GA. According to GOBP and KEGG pathway enrichment analysis and target-pathway network, SMP might exert a therapeutic role in GA by regulating numerous biological processes and pathways, including lipopolysaccharide-mediated signaling pathway, positive regulation of transcription, Toll-like receptor signaling pathway, JAK-STAT signaling pathway, NOD-like receptor signaling pathway, and MAPK signaling pathway. The results of molecular docking showcased that 11 pairs of compound with targets had tight binding strength. Thereinto, 4 compounds of MAPK1 and 5 compounds of NFKB1 possessed a better combination, suggesting that MAPK1 and NFKB1 might be considered as therapeutic targets in treatment of GA. This study verified that SMP had synergistic effect on GA by multicomponents, multitargets, and multipathways.
Collapse
|
46
|
Zhang JQ, Wang R, Zhou T, Zhao Q, Zhao CC, Ma BL. Pharmacokinetic incompatibility of the Huanglian-Gancao herb pair. BMC Complement Med Ther 2020; 20:61. [PMID: 32087732 PMCID: PMC7076871 DOI: 10.1186/s12906-020-2845-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background Pharmacokinetic interaction is one of the most important indices for the evaluation of the compatibility of herbal medicines. Both Gancao (Glycyrrhizae Radix et Rhizoma) and Huanglian (Coptidis Rhizoma) are commonly used traditional Chinese medicines (TCMs). In this study, the influence of Gancao on the pharmacokinetics of Huanglian was systematically studied by using berberine as a pharmacokinetic marker. Methods Extracts of the herbal pieces of Huanglian and the herb pair (Huanglian plus Gancao) were prepared with boiling water. The concentration of berberine in the samples was analyzed using liquid chromatography-mass spectrometry. The total amounts of berberine in all extract samples were compared. Comparative pharmacokinetic studies of Huanglian and the herb pair were conducted in ICR mice. In vitro berberine absorption and efflux were studied using mice gut sacs. The equilibrium solubility of berberine in the extracts was determined. The in vitro dissolution of berberine was comparatively studied using a rotating basket method. Results Gancao significantly reduced berberine exposure in the portal circulation (425.8 ng·h/mL vs. 270.4 ng·h/mL) and the liver (29,500.8 ng·h/mL vs. 15,422.4 ng·h/mL) of the mice. In addition, Gancao decreased the peak concentration (Cmax) of berberine in the portal circulation (104.3 ng·h/mL vs. 76.5 ng·h/mL) and liver (4926.1 ng·h/mL vs. 2642.8 ng·h/mL) of mice. Significant influences of Gancao on the amount of berberine extracted (32% reduction), the solubility of berberine (34.7% compared with the control group), and dissolution (88.7% vs. 66.1% at 15 min in acid buffer and 68% vs. 51.8% at 15 min in phosphate buffer) were also revealed. Comparative pharmacokinetic studies in ICR mice indicated that the formation of sediment was unfavorable in terms of berberine absorption (345.3 ng·h/mL vs. 119.8 ng·h/mL). Conclusions Gancao was able to reduce intestinal absorption and in vivo exposure of berberine in Huanglian via the formation of sediment, which caused reductions in the extracted amount, solubility, and dissolution of berberine.
Collapse
Affiliation(s)
- Ji-Quan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rui Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ting Zhou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, China
| | - Qing Zhao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, China
| | - Chun-Cao Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, China.
| |
Collapse
|
47
|
A Systems Pharmacology Approach for Identifying the Multiple Mechanisms of Action for the Rougui-Fuzi Herb Pair in the Treatment of Cardiocerebral Vascular Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5196302. [PMID: 32025235 PMCID: PMC6982690 DOI: 10.1155/2020/5196302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
Abstract
Cardiocerebral vascular diseases (CCVDs) are the main reasons for high morbidity and mortality all over the world, including atherosclerosis, hypertension, myocardial infarction, stroke, and so on. Chinese herbs pair of the Cinnamomum cassia Presl (Chinese name, rougui) and the Aconitum carmichaelii Debx (Chinese name, fuzi) can be effective in CCVDs, which is recorded in the ancient classic book Shennong Bencao Jing, Mingyibielu and Thousand Golden Prescriptions. However, the active ingredients and the molecular mechanisms of rougui-fuzi in treatment of CCVDs are still unclear. This study was designed to apply a system pharmacology approach to reveal the molecular mechanisms of the rougui-fuzi anti-CCVDs. The 163 candidate compounds were retrieved from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP). And 84 potential active compounds and the corresponding 42 targets were obtained from systematic model. The underlying mechanisms of the therapeutic effect for rougui-fuzi were investigated with gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Then, component-target-disease (C-T-D) and target-pathway (T-P) networks were constructed to further dissect the core pathways, potential targets, and active compounds in treatment of CCVDs for rougui-fuzi. We also constituted protein-protein in interaction (PPI) network by the reflect target protein of the crucial pathways against CCVDs. As a result, 21 key compounds, 8 key targets, and 3 key pathways were obtained for rougui-fuzi. Afterwards, molecular docking was performed to validate the reliability of the interactions between some compounds and their corresponding targets. Finally, UPLC-Q-Exactive-MSE and GC-MS/MS were analyzed to detect the active ingredients of rougui-fuzi. Our results may provide a new approach to clarify the molecular mechanisms of Chinese herb pair in treatment with CCVDs at a systematic level.
Collapse
|
48
|
Uncovering Synergistic Mechanism of Chinese Herbal Medicine in the Treatment of Atrial Fibrillation with Obstructive Sleep Apnea Hypopnea Syndrome by Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8691608. [PMID: 31949472 PMCID: PMC6948354 DOI: 10.1155/2019/8691608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Paroxysmal atrial fibrillation (AF) combined with obstructive sleep apnea hypopnea syndrome (OSAHS) is very common in clinical practice. Traditional Chinese medicine (TCM) rule of regulating the liver based on psycho-cardiology shows satisfactory effectiveness in the treatment of paroxysmal AF combined with OSAHS. However, its underlying pharmacological mechanism has not yet been elucidated. This study applied network pharmacology to identify 94 active components in the six TCM liver-regulating herbs and 182 corresponding targets from several databases and comprehensive literature studies, as well as retrieved AF combined with OSAHS-related targets. Cytoscape software was adopted to construct the component-component target network and component-putative target-AF combined with OSAHS target network. Then, we obtained 38 putative therapeutic targets against AF combined with OSAHS. After the production of a putative therapeutic target interaction network, topological analysis was adopted to determine the core targets of TCM liver-regulating herbs in the treatment of paroxysmal AF combined with OSAHS. For all putative therapeutic targets, biological process analysis and pathway enrichment analysis were utilized to investigate the possible mechanism of TCM liver-regulating herbs in the treatment of paroxysmal AF combined with OSAHS. Mechanistically, it included positive regulation of nitric oxide biosynthetic process, aging, response to hypoxia, TNF signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction, and calcium signaling pathway. Especially, six core targets of TCM liver-regulating herbs, namely, TNF, STAT3, AKT1, IL-6, TP53, and INS, were significant in the regulation of the above biological processes and pathways. This study demonstrates the multicomponent, multitarget, and multipathway feature of TCM liver-regulating herbs, provides an extensional foundation for further research, and facilitates the reasonable application of TCM liver-regulating herbs in treating paroxysmal AF combined with OSAHS.
Collapse
|
49
|
He D, Huang JH, Zhang ZY, Du Q, Peng WJ, Yu R, Zhang SF, Zhang SH, Qin YH. A Network Pharmacology-Based Strategy For Predicting Active Ingredients And Potential Targets Of LiuWei DiHuang Pill In Treating Type 2 Diabetes Mellitus. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3989-4005. [PMID: 31819371 PMCID: PMC6890936 DOI: 10.2147/dddt.s216644] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/27/2019] [Indexed: 01/14/2023]
Abstract
Background Traditional Chinese medicine (TCM) formulations have proven to be advantageous in clinical treatment and prevention of disease. LiuWei DiHuang Pill (LWDH Pill) is a TCM that was employed to treat type 2 diabetes mellitus (T2DM). However, a holistic network pharmacology approach to understanding the active ingredients and the therapeutic mechanisms underlying T2DM has not been pursued. Methods A network pharmacology approach including drug-likeness evaluation, oral bioavailability prediction, virtual docking, and network analysis has been used to predict the active ingredients and potential targets of LWDH Pill in the treatment of type 2 diabetes. Results The comprehensive network pharmacology approach was successfully to identify 45 active ingredients in LWDH Pill. 45 active ingredients hit by 163 potential targets related to T2DM. Ten of the more highly predictive components (such as :quercetin, Kaempferol, Stigmasterol, beta-sitosterol, Kadsurenone, Diosgenin, hancinone C, Hederagenin, Garcinone B, Isofucosterol) are involved in anti-inflammatory, anti-oxidative stress, and the reduction of beta cell damage. LWDH Pill may play a role in the treatment of T2DM and its complications (atherosclerosis and nephropathy) through the AGE-RAGE signaling pathway, TNF signaling pathway, and NF-kappa B signaling pathway. Conclusion Based on a systematic network pharmacology approach, our works successfully predict the active ingredients and potential targets of LWDH Pill for application to T2DM and helps to illustrate mechanism of action on a comprehensive level. This study provides identify key genes and pathway associated with the prognosis and pathogenesis of T2DM from new insights, which also demonstrates a feasible method for the research of chemical basis and pharmacology in LWDH Pill.
Collapse
Affiliation(s)
- Dan He
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Jian-Hua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan 410208, People's Republic of China.,2011 Collaboration and Innovation Center for Digital Chinese Medicine in Hunan, Changsha 410013, People's Republic of China
| | - Zhe-Yu Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Qing Du
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Wei-Jun Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Rong Yu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Si-Fang Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Yu-Hui Qin
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
50
|
Hou Q, Huang Y, Zhu Z, Liao L, Chen X, Han Q, Liu F. Tong-Xie-Yao-Fang improves intestinal permeability in diarrhoea-predominant irritable bowel syndrome rats by inhibiting the NF-κB and notch signalling pathways. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:337. [PMID: 31775739 PMCID: PMC6882330 DOI: 10.1186/s12906-019-2749-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Tong-Xie-Yao-Fang (TXYF) has been shown to be effective in diarrhoea-predominant irritable bowel syndrome (IBS-D) patients. However, the underlying mechanism remains to be clarified. The aim of this study was to investigate the efficacy and related mechanisms of TXYF in an IBS-D rat model. METHODS The IBS-D rat model was established with 4% acetic acid and evaluated by haematoxylin-eosin (HE) staining. Then, IBS-D rats were divided into control, TXYF and rifaximin groups and treated intragastrically with normal saline, TXYF and rifaximin, respectively, for 14 days. The following indicators were measured before and after treatment: defecation frequency, faecal water content (FWC) and colorectal distension (CRD). Histopathological changes in the distal colon were observed after treatment. The expression of OCLN and ZO1 in the distal colon of IBS-D rats reflected the intestinal mucosal permeability, as measured by qRT-PCR, western blot, and enzyme-linked immunosorbent assays (ELISAs). The NF-κB and Notch signalling pathways and inflammation-related factors were investigated. RESULTS After treatment with TXYF, the defecation frequency, FWC and CRD were significantly lower than those in the model group (P < 0.05). HE staining showed that colonic epithelial cells (CECs) in the IBS-D rats displayed significant oedema, impaired intestinal mucosal integrity and an increased influx of inflammatory cells. A significant reduction in granulocyte and CEC oedema was observed after the administration of TXYF and rifaximin compared to that of the model group and blank group (P < 0.05). TXYF significantly upregulated the expression of OCLN and ZO-1 and downregulated inflammation-related factors (IL-6, IL-1β, and TNF-α and the chemokine KC) in IBS-D rats compared to those in the model group rats (P < 0.05). In terms of the NF-κB and Notch signalling pathways, the expression of NICD, p-ERK, Hes-1 and p-P65 decreased significantly in the TXYF and rifaximin groups, while the expression of ATOH1 increased significantly compared to that in the model group (P < 0.05). CONCLUSION TXYF can effectively improve intestinal permeability and enhance intestinal mucosal barrier function, which may be related to inhibition of the inflammatory cascade and the NF-κB and Notch signalling pathways.
Collapse
Affiliation(s)
- Qiuke Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yongquan Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoyang Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Liu Liao
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xinlin Chen
- Department of Preventive Medicine and Health Statistics, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Quanbin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|