1
|
Akash SR, Tabassum A, Aditee LM, Rahman A, Hossain MI, Hannan MA, Uddin MJ. Pharmacological insight of rutin as a potential candidate against peptic ulcer. Biomed Pharmacother 2024; 177:116961. [PMID: 38901206 DOI: 10.1016/j.biopha.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
Peptic ulcer is a sore on the stomach lining that results from the erosion of the gastrointestinal tract mucosa due to various influencing factors. Of these, Helicobacter pylori infection and non-steroidal anti-inflammatory drugs (NSAIDs) stand out as the most prominent causes. This condition poses a significant global health concern due to its widespread impact on individuals worldwide. While various treatment strategies have been employed, including proton pump inhibitors and histamine-2 receptor antagonists, these have notable side effects and limitations. Thus, there is a pressing need for new treatments to address this global health issue. Rutin, a natural flavonoid, exhibits a range of biological activities, including anti-inflammatory, anticancer, and antioxidant properties. This review explores the potential anti-ulcer effect of rutin in experimental models and how rutin can be a better alternative for treating peptic ulcers. We used published literature from different online databases such as PubMed, Google Scholar, and Scopus. This work highlights the abundance of rutin in various natural sources and its potential as a promising option for peptic ulcer treatment. Notably, the anti-inflammatory properties of rutin, which involve inhibiting inflammatory mediators and the COX-2 enzyme, are emphasized. While acknowledging the potential of rutin, it is important to underscore the necessity for further research to fully delineate its therapeutic potential and clinical applicability in managing peptic ulcers and ultimately improving patient outcomes. This review on the anti-ulcer potential of rutin opened a new door for further study in the field of alternative medicine in peptic ulcer management.
Collapse
Affiliation(s)
- Sajidur Rahman Akash
- Department of Pharmacy, Bangladesh University, Dhaka 1207, Bangladesh; ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Afrida Tabassum
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka 1100, Bangladesh
| | - Lamisa Manha Aditee
- Department of Mathematics and Natural Sciences (MNS), BRAC University, Dhaka 1212, Bangladesh
| | - Abidur Rahman
- Sir Salimullah Medical College Mitford Hospital, Dhaka 1100, Bangladesh
| | - Md Imran Hossain
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Md Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2200, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh.
| |
Collapse
|
2
|
Yadav S, Pandey A, Mali SN. From lab to nature: Recent advancements in the journey of gastroprotective agents from medicinal chemistry to phytotherapy. Eur J Med Chem 2024; 272:116436. [PMID: 38704935 DOI: 10.1016/j.ejmech.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Peptic ulcer, affecting 10 % of the global population, results from imbalances in gastric juice pH and diminished mucosal defences. Key underlying factors are non-steroidal anti-inflammatory drugs (NSAIDs) and Helicobacter pylori infection, undermining mucosal resistance. Traditional treatments like proton pump inhibitors (PPIs) and histamine-2 (H2) receptor antagonists exhibit drawbacks such as adverse effects, relapses, and drug interactions. This review extensively explores the ethnomedicinal, synthetic and pharmacological facets of various potential peptic ulcer treatments. Rigorous methodologies involving electronic databases, and chemical structure verification via 'PubChem' and 'SciFinder' enhance the review's credibility. The provided information, spanning medicinal insights to intricate pharmacological mechanisms, establishes a robust groundwork for future research and the development of plant-derived or synthetic molecules for peptic ulcers, offering a promising alternative to conventional therapies.
Collapse
Affiliation(s)
- Susmita Yadav
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Anima Pandey
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Suraj N Mali
- School of Pharmacy, D.Y. Patil University (Deemed to be University), Sector 7, Nerul, Navi Mumbai, 400706, India.
| |
Collapse
|
3
|
Salem MB, Saleh AM, Seif El-Din SH, Samir S, Hammam OA, El-Lakkany NM. Molecular docking, characterization, ADME/toxicity prediction, and anti-ulcer activity of new quercetin derivatives on indomethacin-induced gastric ulcer in mice. Toxicol Appl Pharmacol 2024; 484:116880. [PMID: 38447874 DOI: 10.1016/j.taap.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Gastric ulcer (GU) is a serious upper gastrointestinal tract disorder that affects people worldwide. The drugs now available for GU treatment have a high rate of relapses and drug interactions, as well as mild to severe side effects. As a result, new natural therapeutic medications for treating GU with fewer negative side effects are desperately needed. Because of quercetin's (QCT) diverse pharmacological effects and unique structural features, we decided to semi-synthesize new QCT derivatives and test them for antiulcer activity. Docking assays were performed on the synthesized compounds to determine their affinity for TLR-4/MD-2, MyD88/TIR, and NF-κB domains, an important inflammatory pathway involved in GU development and progression. Mice were given oral famotidine (40 mg/kg/day), QCT, QCT pentamethyl (QPM), or QCT pentaacetyl (QPA) (50 mg/kg/day) for 5 days before GU induction by a single intraperitoneal injection of indomethacin (INDO; 18 mg/kg). QPM and QPA have a stronger binding affinity for TLR-4/MD-2, MyD88/TIR and NF-κB domains than QCT. In comparison, they demonstrated the greatest reduction in ulcer score and index, gastric MDA and nitric oxide (NO) contents, MyD88 and NF-κB expressions, and gastric TLR-4 immunostaining. They also enhanced the levels of GSH, CAT, COX-1, and COX-2 in the gastric mucosa, as well as HO-1 and Nrf2 expression, with histological regression in gastric mucosal lesions, with QPA-treated mice demonstrating the best GU healing. QPA is safe against all of the target organs and adverse pathways studied, with good ADME properties. However, further in vitro experiments are necessary to demonstrate the inhibitory effects of QPM and QPA on the protein targets of interest. In addition, preclinical research on its bioavailability and safety is essential before clinical management can be undertaken. Overall, the new QPA derivative could one day serve as the basis for a new class of potential antiulcer drugs.
Collapse
Affiliation(s)
- Maha B Salem
- Pharmacology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Abdulrahman M Saleh
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | | | - Safia Samir
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | |
Collapse
|
4
|
Liu M, Gao H, Miao J, Zhang Z, Zheng L, Li F, Zhou S, Zhang Z, Li S, Liu H, Sun J. Helicobacter pylori infection in humans and phytotherapy, probiotics, and emerging therapeutic interventions: a review. Front Microbiol 2024; 14:1330029. [PMID: 38268702 PMCID: PMC10806011 DOI: 10.3389/fmicb.2023.1330029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
The global prevalence of Helicobacter pylori (H. pylori) infection remains high, indicating a persistent presence of this pathogenic bacterium capable of infecting humans. This review summarizes the population demographics, transmission routes, as well as conventional and novel therapeutic approaches for H. pylori infection. The prevalence of H. pylori infection exceeds 30% in numerous countries worldwide and can be transmitted through interpersonal and zoonotic routes. Cytotoxin-related gene A (CagA) and vacuolar cytotoxin A (VacA) are the main virulence factors of H. pylori, contributing to its steep global infection rate. Preventative measures should be taken from people's living habits and dietary factors to reduce H. pylori infection. Phytotherapy, probiotics therapies and some emerging therapies have emerged as alternative treatments for H. pylori infection, addressing the issue of elevated antibiotic resistance rates. Plant extracts primarily target urease activity and adhesion activity to treat H. pylori, while probiotics prevent H. pylori infection through both immune and non-immune pathways. In the future, the primary research focus will be on combining multiple treatment methods to effectively eradicate H. pylori infection.
Collapse
Affiliation(s)
- Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Hui Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Jinlai Miao
- First Institute of Oceanography Ministry of Natural Resources, Qingdao, China
| | - Ziyan Zhang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Lili Zheng
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System (Qingdao), College of Mechanical and Electronic Engineering, Qingdao University, Qingdao, China
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - He Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Venturini CL, Damazo AS, Silva MJD, Muller JDAI, Oliveira DM, Figueiredo FDF, Serio BFD, Arunachalam K, Martins DTDO. Antiulcer activity and mechanism of action of the hydroethanolic extract of leaves of Terminalia argentea Mart. In different in vivo and in vitro experimental models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116972. [PMID: 37517568 DOI: 10.1016/j.jep.2023.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia argentea Mart. (Combretaceae) is a deciduous tree commonly found in Brazil, Bolivia, and Paraguay. It occurs in all regions of Brazil and is widespread in the Amazon, Cerrado, Pantanal, Atlantic Rain Forest, and Caatinga Biomes. In the traditional medicine of Brazil, people widely use tea or decoction of its leaf materials for treating gastritis, ulcers, wound healing, and inflammation. AIM OF THE STUDY The current study aims to evaluate the gastroprotective and ulcer-healing activities of the hydroethanolic extract of T. argentea leaves (HETa) and investigate the underlying mechanisms of action through in vivo and in vitro experiments. METHODS We extracted the leaves of T. argentea with a 70% hydroethanolic solution (HETa) and performed phytochemical analysis using high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MSn). We researched the antiulcer activity using in vivo and in vitro experiments, administering three doses (2, 10, and 50 mg/kg) and different concentrations of 1, 5, and 20 μg/mL, respectively. We verified the acute antiulcer activity using chemical models (acidified ethanol (EtOH/HCl) and indomethacin (IND)) and physiological models (water-immersion stress (WRS)). To induce chronic ulcers, used acetic acid and treated the animals for seven days. To investigate the mechanism of action, conducted assays of antioxidant activity, measured the dosage of inflammatory cytokines, quantified mucus, treated with inhibitors (IND, L-NAME, glibenclamide, and yohimbine), performed histopathological analysis, and measured gastric acid secretion. Furthermore, we performed in vitro experiments on murine macrophage cell lines (RAW 264-7 cells) to quantify nitrite/nitrate and cytokine production and on V79-4 cells to verify cell proliferation/migration. RESULTS We conducted HPLC and ESI-MSn analyses to obtain a fingerprint of the chemical composition of the HETa, revealing the presence of phenolics (caffeoyl ellagic acid), flavonoids (rutin, quercetin xyloside, quercetin rhamnoside, quercetin glucoside, quercetin galloyl xyloside, quercetin), and tannins (terminalin), respectively. The three doses of HETa reduced acute and chronic ulcers in different models. The mechanism of action involves increasing mucus production and angiogenesis, and it partially involves prostaglandins, nitric oxide, K+ATP channels, and α2-adrenergic receptors. HETa also exhibited antioxidant potential, reducing myeloperoxidase (MPO) activity, and increasing glutathione (GSH) levels. Moreover, it demonstrated anti-inflammatory action by reducing nitrite/nitrate levels and pro-inflammatory cytokine concentrations in vivo, and it increased in vitro proliferation/migration of fibroblasts. CONCLUSIONS The study shows that HETa presents a potent preventive and curative antiulcer effect in different ulcer models, supporting the popular use of homemade preparations of T. argentea leaves. The preventive and gastric healing ulcer activity of HETa involves multiple targets, including increasing the gastric mucus barrier, antioxidant defenses, and anti-inflammatory effects on gastric mucosa repair. Phytochemical analysis identified the presence of phenolic compounds, flavonoids, and tannins in HETa, and the antiulcer activity may be attributable to the combined effect of these constituents.
Collapse
Affiliation(s)
- Claudio Luis Venturini
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil; Pharmacology Laboratory, Department of Basic Sciences in Health, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Amilcar Sabino Damazo
- Histology Laboratory, Department of Basic Sciences in Health, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Marcelo José Dias Silva
- Laboratory of Medicinal Plants and Herbal Medicines, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, Minas Gerais, Brazil.
| | - Jessica de Araujo Isaias Muller
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Darley Maria Oliveira
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Sinop Campus, Mato Grosso, Brazil.
| | - Fabiana de Freitas Figueiredo
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Bruna Fioravante Di Serio
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Karuppusamy Arunachalam
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics (CeTroGen), Faculty of Medicine, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil; Post-Graduate Program in Health and Development of the Midwest Region, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | - Domingos Tabajara de Oliveira Martins
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil; Pharmacology Laboratory, Department of Basic Sciences in Health, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| |
Collapse
|
6
|
Figueiredo FDF, Damazo AS, Arunachalam K, Silva MJD, Pavan E, Lima JCDS, Martins DTDO. Evaluation of the gastroprotective and ulcer healing properties by Fridericia chica (Bonpl.) L.G. Lohmann hydroethanolic extract of leaves. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116338. [PMID: 36870462 DOI: 10.1016/j.jep.2023.116338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fridericia chica (Bonpl.) L.G. Lohmann (Bignoniaceae), is a climber native to Brazil, found in all Brazilian biomes. It is mostly known in Brazil as "carajiru," and home medicines made from the leaves have been used to cure disorders including stomach ulcers and other gastrointestinal disorders. AIM OF THE STUDY The objective of the study was to investigate the F. chica hydroethanolic extract of leaves (HEFc) preventative and curative antiulcer gastrointestinal efficacy as well as the mechanisms of action using in vivo rodent models. MATERIALS AND METHODS F. chica was collected in the municipality of Juína, Mato Grosso, and its leaves were used to prepare the extract by maceration technique (70% hydroethanol in the 1:10 ratio, w/v) to obtain the HEFc. The chromatographic analysis of HEFc was carried out by High Performance Liquid Chromatography-Photo Diode Array-Electrospray Ionization-Mass Spectrometry (HPLC-PDA-ESI-MS)- LCQ Fleet™ system. To determine the potential antiulcer potential of HEFc (1, 5 and 20 mg/kg, p.o.), the gastroprotective activity was assessed in various animal models of stomach ulcers caused by acidified ethanol, water constraint stress, indomethacin, (acute), and acid acetic (chronic). Additionally, the prokinetic properties of the HEFC were assessed in mice. The gastroprotective underlying mechanisms were evaluated by the histopathological analysis and determination of gastric secretion (volume, free and total acidity), gastric barrier mucus, activation of PGs, NO, K +ATP channels, α2-adrenoceptor, antioxidant activity (GSH, MPO and MDA), NO and mucosal cytokines (TNF-α, IL-1β, and IL-10) levels. RESULTS The chemical composition of HEFc was analyzed and apigenin, scutellarin, and carajurone were identified. HEFc (1, 5 and 20 mg/kg) showed effect against acute ulcers induced by HCl/EtOH with a reduction in the ulcerated area of 64.41% (p < 0.001), 54.23% (p < 0.01), 38.71% (p < 0.01), respectively. In the indomethacin experiment, there was no change in the doses tested, whereas in the water immersion restraint stress ulcer there was a reduction of lesions at doses of 1, 5, and 20 mg/kg by 80.34% (p < 0.001), 68.46% (p < 0.01) and 52.04% (p < 0.01). HEFc increased the mucus production at doses of 1 and 20 mg/kg in 28.14% (p < 0.05) and 38.36% (p < 0.01), respectively. In the pyloric ligation-induced model of gastric ulceration, the HEFc decreased the total acidity in all doses by 54.23%, 65.08%, and 44.40% (p < 0.05) and gastric secretory volume in 38.47% at dose of 1 mg/kg (p < 0,05) and increased the free acidity at the dose of 5 mg/kg by 11.86% (p < 0.05). The administration of EHFc (1 mg/kg) showed a gastroprotective effect possibly by stimulating the release of prostaglandins and activating K+ATP channels and α2-adrenoreceptors. Also, the gastroprotective effect of HEFc involved an increase in CAT and GSH activities, and a reduction in MPO activity and MDA levels. In the chronic gastric ulcer model, the HEFc (1, 5 and 20 mg/kg) decreased the ulcerated area significantly (p < 0.001) at all doses by 71.37%, 91.00%, and 93.46%, respectively. In the histological analysis, HEFc promoted the healing of gastric lesions by stimulating the formation of granulation tissue and consequently epithelialization. On the other hand, regarding the effect of HEFc on gastric emptying and intestinal transit, it was observed that the extract did not alter gastric emptying, but there was an increase in intestinal transit at the dose of 1 mg/kg (p < 0.01). CONCLUSION These outcomes confirmed the advantages of Fridericia chica leaves for the treatment of stomach ulcers, which are well-known. HEFc was discovered to have antiulcer characteristics through multitarget pathways, which might be related to an increase in stomach defense mechanisms and a decrease in defensive factor. HEFc can be regarded as a potential new antiulcer herbal remedy because of its antiulcer properties, which may be attributed to the mixture of flavonoids, apigenin, scutellarin and carajurone.
Collapse
Affiliation(s)
- Fabiana de Freitas Figueiredo
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Amilcar Sabino Damazo
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil; Área de Histologia e Biologia Celular, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Karuppusamy Arunachalam
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil; Programa de Pós-graduação em Saúde e Desenvolvimento da Região Centro-Oeste, Faculdade de Medicina Dr. Hélio Mandetta (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | - Marcelo José Dias Silva
- Universidade Federal de Alfenas (UNIFAL-MG), Laboratório de Plantas Medicinais e Fitoterápicos, Rua Gabriel Monteiro da Silva, 700. Centro Alfenas, MG, Brazil.
| | - Eduarda Pavan
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Joaquim Corsino da Silva Lima
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Domingos Tabajara de Oliveira Martins
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil; Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| |
Collapse
|
7
|
Jia X, He Y, Li L, Xu D. Pharmacological targeting of gastric mucosal barrier with traditional Chinese medications for repairing gastric mucosal injury. Front Pharmacol 2023; 14:1091530. [PMID: 37361204 PMCID: PMC10285076 DOI: 10.3389/fphar.2023.1091530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: The gastric mucosa (GM) is the first barrier and vital interface in the stomach that protects the host from hydrochloric acid in gastric juice and defends against exogenous insults to gastric tissues. The use of traditional Chinese medications (TCMs) for the treatment of gastric mucosal injury (GMI) has long-standing history and a good curative effect. Whereas there are poor overall reports on the intrinsic mechanisms of these TCM preparations that pharmacology uses to protect body from GMI, which is crucial to treating this disease. These existing reviews have deficiencies that limit the clinical application and development of both customary prescriptions and new drugs. Methods: Further basic and translational studies must be done to elucidate the intrinsic mechanisms of influence of these TCM preparations. Moreover, well-designed and well-conducted experiences and clinical trials are necessary to ascertain the efficacy and mechanisms of these agents. Therefore, this paper presents a focused overview of currently published literature to assess how TCMs action that facilitates the cures for GMI. It offers a whole train of current state of pharmacological evidence, identifies the pharmacological mechanisms of TCMs on GM, and highlights that remarkable capacity of TCMs to restore GM after damage. Results: These TCMs preparations promote the repair of multicomponent targets such as the gastric mucus, epithelial layer, blood flow (GMBF) and lamina propria barrier. Summary: Overall, this study has summarized the essential regulatory mechanisms and pharmacological efficacy of TCMs on new and productive therapeutic targets. Discussion: This review provides an avenue for studying various drugs with potentially promising effects on mucosal integrity, as well as subsequent pharmacological studies, clinical applications, and new drug development.
Collapse
Affiliation(s)
- Xueyan Jia
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
| | - Yihuai He
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Wu Z, Chen L, Wang Q, Govindasamy C, Subramaniyan Sivakumar A, Chen X. Betanin Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Inhibition of Inflammatory Response and Oxidative Stress. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
9
|
Protective Effect of Foxtail Millet Protein Hydrolysate on Ethanol and Pyloric Ligation-Induced Gastric Ulcers in Mice. Antioxidants (Basel) 2022; 11:antiox11122459. [PMID: 36552666 PMCID: PMC9774519 DOI: 10.3390/antiox11122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Foxtail millet has been traditionally considered to possess gastroprotective effects, but studies evaluating its use as a treatment for gastric ulcers are lacking. Here, we assessed the antiulcer effects of foxtail millet protein hydrolysate (FPH) and explored its mechanism by using blocking agents. In a mouse model of ethanol-induced gastric ulcers, pretreatment with FPH reduced the ulcerative lesion index, downregulated the expression of inflammatory cytokines in the gastric tissue, increased the activity of antioxidant enzymes, and improved the oxidative status. FPH increased constitutive the activity of nitric oxide synthase (cNOS), NO levels, and mucin expression in gastric mucosa, and inhibited the activation of the ET-1/PI3K/Akt pathway. In a mouse model of pyloric ligation-induced gastric ulcers, FPH inhibited gastric acid secretion and decreased the activity of gastric protease. Pretreatment of mice with the sulfhydryl blocker NEM and the NO synthesis inhibitor L-NAME abolished the gastroprotective effect of FPH, but not the KATP channel blocker glibenclamide and the PGE2 synthesis blocker indomethacin. Among the peptides identified in FPH, 10 peptides were predicted to have regulatory effects on the gastric mucosa, and the key sequences were GP and PG. The results confirmed the gastroprotective effect of FPH and revealed that its mechanism was through the regulation of gastric mucosal mucus and NO synthesis. This study supports the health effects of a millet-enriched diet and provides a basis for millet protein as a functional food to improve gastric ulcers and its related oxidative stress.
Collapse
|
10
|
Olaitan Balogun S, Sabino Damazo A, Pavan E, de Freitas Figueiredo F, Arunachalam K, de Souza Mesquita LM, Vilegas W, Tabajara de Oliveira Martins D. Evidence for the Involvement of Cytokines Modulation and Prokinetic Properties in Gastric Ulcer Healing Effects of Helicteres sacarolha A. St.-Hil. A. Juss. Chem Biodivers 2022; 19:e202200322. [PMID: 36269048 DOI: 10.1002/cbdv.202200322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022]
Abstract
Preparations of Helicteres sacarolha (Malvaceae) leaves and roots are used in the form of decoction, infusion or maceration, to treat gastrointestinal disturbances, among others. Studies supporting some of its ethnomedicinal uses are still incipient. The present study aimed to investigate it potential effect on chronic ulcer, ulcerative colitis and possible prokinetic activities as part of its mechanism of action. The powdered leaves of Helicteres sacarolha (HEHs) was prepared by maceration in 70 % hydroethanolic solution. Its qualitative phytochemical constituents were investigated by direct flow injection analysis coupled to atmospheric pressure chemical ionization ion trap tandem mass spectrometry (FIA-APCI-IT-MSn ). The gastric ulcer healing effect was evaluated in acetic acid induced chronic ulcer in mice and the lesions were evaluated, including analysis of blood plasma cytokine levels. The prokinetic properties (gastric emptying and intestinal transit) were carried out in mice. Potential anti-ulcerative colitis activity was evaluated in rats using 2,4,6-trinitrobenzenesulfonic acid (5 % TNBS) -induced colitis. All animal experiments were carried out at the doses of 20, 50 and 250 mg/kg (p.o.). Eight compounds were putatively identified, specifically lariciresinol, and its derivatives, kaempferol derivatives and Tricin-O-Glc. The extract promoted increased gastric ulcer healing at all doses tested. Modulation of the cytokines involved inhibition of some key pro-inflammatory cytokines with maximum effect on IL-1β (70 %, 50 mg/kg, p<0.05), TNF-α (79 %, 20 mg/kg, p<0.01), and in the anti-inflammatory cytokines, namely IL-10 (57 %, 50 mg/kg, p<0.05) and IL-17 (79 %, only at 50 mg/kg, p<0.05). Histological findings demonstrated a mitigated inflammatory activity, and tissues undergoing regeneration. HEHs treatment caused delayed gastric emptying, and increased intestinal transit, but had no effect in the experimentally induced ulcerative colitis. We report for the first time putatively the presence of Lariciresinol and tricin derivatives from the hydroethanolic leaves extract of H. sacarolha. Its possible mechanism of actions of gastric ulcer healing involves cytokines modulation, mitigation of inflammatory response and tissue regeneration and provoked opposing effect in the gastrointestinal system. The present study demonstrates the therapeutic potential of H. sacarolha leaves used in Brazilian ethnomedicine in the treatment of chronic gastric ulcer.
Collapse
Affiliation(s)
- Sikiru Olaitan Balogun
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), 79804-970, Mato Grosso do Sul, Brazil.,Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Amilcar Sabino Damazo
- Area of Histology, Department of Basic Health Sciences, Faculty of Medicine, Universidade Federal de Mato Grosso (UFMT), 78060-900, MT, Cuiabá, Brazil
| | - Eduarda Pavan
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Fabiana de Freitas Figueiredo
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Karuppusamy Arunachalam
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.,Programa de Pós-graduação em Saúde e Desenvolvimento da Região Centro-Oeste, Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina Dr. Hélio Mandetta (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil.,Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | | | - Wagner Vilegas
- UNESP - São Paulo State University, c, coastal campus of S. Vicente, São Vicente, SP, 11.330-900, Brazil
| | - Domingos Tabajara de Oliveira Martins
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| |
Collapse
|
11
|
Lien HM, Wang YY, Huang MZ, Wu HY, Huang CL, Chen CC, Hung SW, Chen CC, Chiu CH, Lai CH. Gastroprotective Effect of Anisomeles indica on Aspirin-Induced Gastric Ulcer in Mice. Antioxidants (Basel) 2022; 11:antiox11122327. [PMID: 36552535 PMCID: PMC9774812 DOI: 10.3390/antiox11122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Gastric ulcers are commonly seen in the upper gastrointestinal tract and may be related to the Helicobacter pylori infection and the use of aspirin, a nonsteroidal anti-inflammatory drug (NSAID). Typically, proton-pump inhibitors (PPIs) are used to treat gastric ulcers; however, adverse effects have emerged following long-term treatment. Natural medicines are used as alternative therapeutic agents in the treatment of gastric ulcers, with few side effects. Despite various reports on the anti-H. pylori and anti-gastric cancer activities of Anisomeles indica, its gastroprotective effect on ulcers remains undetermined. This study investigated the protective effect of A. indica on aspirin-induced gastric ulcers in murine models. Our results show that three fractions of ethanol-extracted A. indica inhibited aspirin-induced gastric injury. Among these, A. indica Fraction 1 was observed to enrich ovatodiolide, which effectively diminished gastric acidity and alleviated aspirin-induced inflammation in the stomach. Our results provide evidence that A. indica could be developed as an effective therapeutic agent for gastroprotective purposes.
Collapse
Affiliation(s)
- Hsiu-Man Lien
- Research Institute of Biotechnology, Hungkuang University, Taichung 433304, Taiwan
- Correspondence: (H.-M.L.); (C.-H.L.)
| | - Yu-Yen Wang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Mei-Zi Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hui-Yu Wu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chao-Lu Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chia-Chi Chen
- Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 300110, Taiwan
| | - Shao-Wen Hung
- Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 300110, Taiwan
| | - Chia-Chang Chen
- School of Management, Feng Chia University, Taichung 407102, Taiwan
| | - Cheng-Hsun Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Department of Nursing, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 404333, Taiwan
- Correspondence: (H.-M.L.); (C.-H.L.)
| |
Collapse
|
12
|
The Pretreatment of Xiaoqinglong Decoction Alleviates Inflammation and Oxidative Damage and Up-Regulates Angiotensin-Converting Enzyme 2 in Lipopolysaccharide-Induced Septic Acute Lung Injury Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2421198. [PMID: 36193122 PMCID: PMC9526646 DOI: 10.1155/2022/2421198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Xiaoqinglong decoction (XQLD), a classic prescription of Traditional Chinese Medicine, has already been used clinically to cure acute lung injury (ALI), but its mechanism remains unclear. This subject aimed to explore the preventive role of XQLD in septic ALI rats besides its effects on angiotensin-converting enzyme (ACE)2 and its downstream factors. After, respectively, administrated with different concentrations of XQLD (6.25 g/kg/d, 12.5 g/kg/d, 25 g/kg/d) for 5 days and dexamethasone (DEX, 1 mg/kg) for 0.5 h, the rat models of ALI were established by intraperitoneal injection of lipopolysaccharide (LPS, 5 mg/kg) for 24 h. All rats were evaluated by lung function test, arterial blood gas analysis, morphological observation, lung wet/dry (W/D) ratio, and the lung injury score. The levels of malonaldehyde (MDA), superoxide dismutase (SOD), interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and angiotensin (Ang) (1–7) in the lung were measured through biochemical and ELISA kits. The expressions of angiotensin-converting enzyme (ACE)2, mitochondrial assembly receptor (MasR), and nuclear factor (NF)-κB in lung tissue were detected by qRT-PCR and western blotting. Positive reaction cells of MasR were observed by immunohistochemistry. The results show that XQLD significantly ameliorated septic lung injury including edema and hemorrhage, as well as improved pulmonary function and arterial blood gas. Furthermore, XQLD markedly decreased the levels of IL-1β, TNF-α, MDA, and NF-κB while increased the levels of SOD, Ang (1–7), ACE2, and MasR in septic ALI rats. Pearson correlation showed that the expressions of ACE2 were inversely related to IL-1β, TNF-α, MDA, and NF-κB and positively correlated with SOD contents. Our data indicated that XQLD pretreatment alleviated inflammation and oxidative damage in septic ALI rats, which might be related to the up-regulation of ACE2-Ang (1–7)-MasR axis and inhibition of the NF-κB pathway.
Collapse
|
13
|
Ivyna de Araújo Rêgo R, Guedes Silvestre GF, Ferreira de Melo D, Albino SL, Pimentel MM, Silva Costa Cruz SB, Silva Wurzba SD, Rodrigues WF, Goulart de Lima Damasceno BP, Cançado Castellano LR. Flavonoids-Rich Plant Extracts Against Helicobacter pylori Infection as Prevention to Gastric Cancer. Front Pharmacol 2022; 13:951125. [PMID: 36120379 PMCID: PMC9470917 DOI: 10.3389/fphar.2022.951125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Gastric cancer is the fifth most common and fourth type to cause the highest mortality rates worldwide. The leading cause is related to Helicobacter pylori (H. pylori) infection. Unfortunately, current treatments have low success rates, highlighting the need for alternative treatments against carcinogenic agents, specifically H. pylori. Noteworthy, natural origin products contain pharmacologically active metabolites such as flavonoids, with potential antimicrobial applications. Objective: This article overviews flavonoid-rich extracts’ biological and pharmacological activities. It focuses on using these substances against Helicobacter pylori infection to prevent gastric cancer. For this, PubMed and Science Direct databases were searched for studies that reported the activity of flavonoids against H. pylori, published within a 10-year time frame (2010 to August 2020). It resulted in 1,773 publications, of which 44 were selected according to the search criteria. The plant family primarily found in publications was Fabaceae (9.61%). Among the flavonoids identified after extraction, the most prevalent were quercetin (19.61%), catechin (13.72), epicatechin (11.76), and rutin (11.76). The potential mechanisms associated with anti-H. pylori activity to the extracts were: inhibition of urease, damage to genetic material, inhibition of protein synthesis, and adhesion of the microorganism to host cells. Conclusion: Plant extracts rich in flavonoids with anti-H. pylori potential proved to be a promising alternative therapy source, reinforcing the relevance of studies with natural products.
Collapse
Affiliation(s)
- Renaly Ivyna de Araújo Rêgo
- Human Immunology Research and Education Group-GEPIH, Federal University of Paraiba, João Pessoa, Brazil
- Postgraduate Program of Pharmaceutical Sciences, State University of Paraíba, Campina Grande, Brazil
- Postgraduate Program of Science and Technology in Health, State University of Paraíba, Campina Grande, Brazil
| | | | - Demis Ferreira de Melo
- Postgraduate Program of Pharmaceutical Sciences, State University of Paraíba, Campina Grande, Brazil
| | - Sonaly Lima Albino
- Postgraduate Program of Therapeutic Innovation, Federal University of Pernambuco, Recife, Brazil
| | - Marcela Monteiro Pimentel
- Postgraduate Program of Science and Technology in Health, State University of Paraíba, Campina Grande, Brazil
| | - Sara Brito Silva Costa Cruz
- Postgraduate Program in Dentistry, Federal University of Paraíba, João Pessoa, Brazil
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Sabrina Daniela Silva Wurzba
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | | | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group-GEPIH, Federal University of Paraiba, João Pessoa, Brazil
- Postgraduate Program of Pharmaceutical Sciences, State University of Paraíba, Campina Grande, Brazil
- Postgraduate Program in Dentistry, Federal University of Paraíba, João Pessoa, Brazil
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: Lúcio Roberto Cançado Castellano,
| |
Collapse
|
14
|
Dantas SBS, Moraes GKA, Araujo AR, Chapla VM. Phenolic compounds and bioactive extract produced by endophytic fungus Coriolopsis rigida. Nat Prod Res 2022; 37:2037-2042. [PMID: 35997245 DOI: 10.1080/14786419.2022.2115492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Coriolopsis rigida was isolated as an endophytic fungus from the medicinal plant Cochlospermum regium, and their production of secondary metabolites has not yet been investigated. Thus, the endophyte was cultivated on rice solid media to evaluate its ability to produce bioactive compounds and then the chloroform extract was obtained. Two phenolic compounds, tyrosol (1) and a new natural product p-hydroxyphenylacetamide (2), were isolated from the extract. The structures of the compounds were elucidated mainly by NMR. The extract showed potent antioxidant activity with an efficient concentration (EC50) value of 0.33 mg mL-1. Additionally, demonstrated allelopathic activity inhibited the seedling growth of Lactuca sativa L. and Raphanus sativus L. by 63% and 55%, respectively.
Collapse
Affiliation(s)
- Sara Bruna Souza Dantas
- Programa de Pós-gaduação em Química, Universidade Federal do Tocantins, UFT, Gurupi, TO, Brazil
| | | | - Angela Regina Araujo
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de São Paulo, UNESP, Araraquara, SP, Brazil
| | - Vanessa Mara Chapla
- Programa de Pós-gaduação em Química, Universidade Federal do Tocantins, UFT, Gurupi, TO, Brazil
| |
Collapse
|
15
|
Azmatullah S, Khan AU, Qazi NG, Nadeem H, Irshad N. Pharmacological evaluation of newly synthesized organotin IV complex for antiulcer potential. BMC Pharmacol Toxicol 2022; 23:58. [PMID: 35906691 PMCID: PMC9335977 DOI: 10.1186/s40360-022-00596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
The present study aims to investigate the newly synthesized organotin (IV) complex (2E, 2′E) dibutylstannanediyl bis (4-(4-nitrophenyl) amino)-4-oxobut-2-enoate (DTN) for its anti-ulcer potential. Characterization performed by carbon nuclear magnetic resonance spectroscopy proved that all values are in the expected ranges of the new compound. Gastroprotective activity of DTN was evaluated through in-silico, anti-H. pylori, in-vitro, in-vivo, and ex-vivo proteomic analysis. In-silico analysis shows that DTN possess stable binding with protein targets involved in gastric ulcer pathophysiology. DTN exhibited an inhibitory effect against 2,2-diphenyl-1-picrylhydrazyl, H. pylori and hydrogen potassium ATPase (H+/K+-ATPase). The antiulcer activity was performed using an ethanol-induced gastric ulcer model in rats. Anti-oxidant profile of DTN showed a significant increase in glutathione-S-transferase, glutathione and catalase levels whereas lipid peroxidation levels were reduced. Histopathological findings confirmed that DTN protected the gastric mucosa of rats. Inflammatory markers tumor necrosis factor-alpha, nuclear factor kappa B, cyclooxygenase-2, interleukin 6 and interleukin-1β were reduced and prostaglandin-E2 restored expression of these cytokines in DTN pretreated animals when analyzed by using immunohistochemistry, enzyme-linked immunosorbent assay and western blot techniques. In real-time polymerase chain reaction technique, the expression of H+/K+-ATPase was downregulated in DTN pretreated group. DTN did not cause any mortality up to 400 mg/Kg. This study indicates that the newly synthesized compound DTN, possess stable binding against selected targets. DTN exhibits a gastro-protective effect, mediated via anti-H. pylori, H+/K+-ATPase inhibition, anti-oxidant and anti-inflammatory pathways, exploring its therapeutic potential in gastric ulcer management.
Collapse
Affiliation(s)
- Syed Azmatullah
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-Ullah Khan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Neelam Gul Qazi
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Nadeem Irshad
- Department of Pharmacy, Quaid i Azam University, Islamabad, Pakistan
| |
Collapse
|
16
|
Shipa SJ, Khandokar L, Bari MS, Qais N, Rashid MA, Haque MA, Mohamed IN. An insight into the anti-ulcerogenic potentials of medicinal herbs and their bioactive metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115245. [PMID: 35367330 DOI: 10.1016/j.jep.2022.115245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/12/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peptic ulcer disease (PUD) ranks top among the most prominent gastrointestinal problems prevalent around the world. Long-term use of non-steroidal anti-inflammatory drugs, pathogenic infection by Helicobacter pylori, imbalances between gastrointestinal regulatory factors and pathological hyperacidity are major contributors towards the development of peptic ulcers. Although synthetic drugs of multiple pharmacological classes are abundantly available, inadequacy of such agents in ensuring complete recovery in not uncommon. Therefore, pharmacological explorations of herbal products including plant extracts and their respective isolated phytoconstituents, for potential gastroprotective and antiulcer properties, are regular practice among the scientific community. Moreover, the historical preferences of a significant share of world population towards herbal-based medication over modern synthetic drugs also contribute significantly to such endeavors. AIM OF THE REVIEW This review has endeavored to present ethnomedicinal and pharmacological prospects of a significant number of authenticated plant species in terms of their capacity to exert gastroprotection and antiulcer activities both in vitro and in vivo. The information delineated along the way was further subjected to critical analysis to ascertain the possible future prospects of such findings into designing plant-derived products in future for the treatment of peptic ulcer. MATERIALS AND METHODS Electronic version of prominent bibliographic databases, including Google Scholar, PubMed, Scopus, ScienceDirect, Wiley Online Library, SpringerLink, Web of Science, and MEDLINE were explored extensively for the identification and compilation of relevant information. The plant names and respective family names were verified through the Plant List (version 1.1) and World Flora Online 2021. All relevant chemical structures were verified through PubChem and SciFinder databases and illustrated with ChemDraw Ultra 12.0. RESULTS A colossal number of 97 plant species categorized under 58 diverse plant families have been discussed in the review for their gastroprotective and antiulcer properties. In vivo illustrations of the pharmacological properties were achieved for almost all the species under consideration. 29 individual phytoconstituents from these sources were also characterized with similar pharmacological potentials. Majority of the plant extracts as well as their constituents were found to exert their gastroprotective effects through antioxidative pathway featuring both enzymatic and nonenzymatic mechanism. Moreover, active inhibition of acid secretion, upregulation of gastroprotective mediators and downregulation of pro-inflammatory cytokines, were also associated with a prominent number of plants or products thereof. CONCLUSIONS Comparative evaluations of the plant sources for their antiulcer activities, both as individual and as combination formulations, are necessary to be conducted in human subjects under properly regulated clinical conditions. Moreover, the efficacy and safety of such products should also be evaluated against those of the currently available treatment options. This will further facilitate in ascertaining their suitability and superiority, if any, in the treatment of peptic ulcer diseases. Implementation of these endeavors may eventually lead to development of more efficient treatment options in the future.
Collapse
Affiliation(s)
- Sowkat Jahan Shipa
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Labony Khandokar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Sazzadul Bari
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Nazmul Qais
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mohammad Abdur Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| |
Collapse
|
17
|
Boeing T, de Souza P, da Silva LM, Gasparotto Junior A. Herbal Medicines in the Treatment of Dyspepsia: An Overview. PLANTA MEDICA 2022; 88:664-677. [PMID: 34474492 DOI: 10.1055/a-1580-7782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This review focuses on the efficacy of herbal medicines for managing dyspepsia in humans and animals. Searches were conducted on the PubMed, Science Direct, and Medline databases, for publications in the last 3 years. In each database, the search terms used consisted of the 2 key terms describing the disorder and subtypes plus each of the terms relating to the therapy. The key terms used were "natural product" and "medicinal plant" in a cross-over with "dyspepsia" and "functional dyspepsia" (i.e., gastroprotection, Helicobacter pylori infection, prokinetic). We included all human and animal studies on the effects of herbal medicines reporting the key outcome of dyspepsia symptoms. Preclinical studies using critically validated models showed that most medicinal plants with gastroprotective action had antioxidant, anti-inflammatory, anti-apoptotic, and antisecretory effects. Moreover, several species displayed anti Helicobacter pylori and prokinetic efficacy. The data availability of controlled clinical studies is currently minimal. The use of different methodologies and the minimal number of patients raise doubts about the effects of these preparations. Only adequate clinical trials with scientifically validated methods can determine whether different herbal medicines can be used as viable alternatives to the conventional pharmacological treatments used to control dyspepsia symptoms.
Collapse
Affiliation(s)
- Thaise Boeing
- Pharmaceutical Sciences Graduate Program, University of Vale do Itajaí, Itajaí, Brazil
| | - Priscila de Souza
- Pharmaceutical Sciences Graduate Program, University of Vale do Itajaí, Itajaí, Brazil
| | - Luisa Mota da Silva
- Pharmaceutical Sciences Graduate Program, University of Vale do Itajaí, Itajaí, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFac), Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| |
Collapse
|
18
|
Gong M, Li Q, Guo H, Cui B, Liu Y, Wang P, Zhu H, Liu X, Dai L, Wang Z. Protective effect of active components of Eucommia ulmoides leaves on gastric ulcers in rats: Involvement of the PI3K/Akt/NF-κB pathway. J Food Sci 2022; 87:3207-3222. [PMID: 35733355 DOI: 10.1111/1750-3841.16214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/01/2022] [Accepted: 05/12/2022] [Indexed: 12/01/2022]
Abstract
Eucommia ulmoides leaves are widely developed as food and medicines in China and Japan. Its main components have anti-inflammatory properties against gastric ulcers. The purpose of this study was to assess the protective role of an extract derived from the active components of Eucommia ulmoides leaves (EUL 50) against a gastric ulcer and analyze the underlying antiulcer mechanism. The main components of EUL 50 were identified using an ultra-performance liquid chromatography (UPLC) method. Network pharmacology and molecular docking were performed to predict the possible mechanism of action of EUL 50 in the treatment of gastric ulcers. The rats received EUL 50 intragastric administration twice a day for 3 days. Hydrochloric acid/ethanol (HCl/EtOH) was utilized to induce gastric ulcers, followed by histopathological and histochemical evaluation of the ulcer tissues and determination of the main oxidative stress parameters and inflammatory cytokines. The expression of PI3K/Akt/NF-κB pathway-related proteins was measured. Neochlorogenic acid, chlorogenic acid, rutin, and so on were identified as the major components of EUL 50 by UPLC. The prediction results identified the PI3K/Akt/NF-κB signaling pathway as the main possible protective mechanism against gastric ulcers. Furthermore, in a dose-dependent manner, EUL 50 reduced gastric tissue damage. In addition, the high dose of EUL 50 administration resulted in remarkable reductions in the levels of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and interleukin-1β (IL-1β) by 22.64%, 42.61%, 57.78%, and 56.51%, respectively, and suppression of the phosphorylation of Akt, p65, IKKα, and IκBα by 60.87%, 67.65, 74.58%, and 59.57%, respectively, and increased the antioxidant enzyme activity. EUL 50 is rich in flavonoids and organic acids that can act on the PI3K/Akt/NF-κB signaling pathway; as a result, oxidative stress and inflammation are considerably reduced, and gastric ulcers caused by HCl/EtOH are reduced. PRACTICAL APPLICATION: As a medicinal and food substance, Eucommia ulmoides leaves are widely used in the development of health products. EUL 50, a moderately polar part of E. ulmoides leaves, was obtained by extraction and enrichment and was found to have a better protective effect against HCl/EtOH-induced gastric ulcers. This finding can enrich the traditional application of E. ulmoides leaves and provide a basis for their health product development.
Collapse
Affiliation(s)
- Man Gong
- Henan University of Chinese Medicine, Zhengzhou, China.,Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Zhengzhou, China
| | - Qiufang Li
- Henan University of Chinese Medicine, Zhengzhou, China.,Reproductive Medicine Center, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Guo
- Henan University of Chinese Medicine, Zhengzhou, China.,Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Zhengzhou, China
| | - Bingdi Cui
- Henan University of Chinese Medicine, Zhengzhou, China.,Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Zhengzhou, China
| | - Yalin Liu
- Henan University of Chinese Medicine, Zhengzhou, China.,Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Zhengzhou, China
| | - Ping Wang
- Henan University of Chinese Medicine, Zhengzhou, China.,Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Zhengzhou, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huiyu Zhu
- Henan University of Chinese Medicine, Zhengzhou, China.,Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Zhengzhou, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Dai
- Henan University of Chinese Medicine, Zhengzhou, China.,Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Zhengzhou, China
| | - Zhimin Wang
- Henan University of Chinese Medicine, Zhengzhou, China.,Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Zhengzhou, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Toxic Potential of Cerrado Plants on Different Organisms. Int J Mol Sci 2022; 23:ijms23073413. [PMID: 35408775 PMCID: PMC8998518 DOI: 10.3390/ijms23073413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
Cerrado has many compounds that have been used as biopesticides, herbicides, medicines, and others due to their highly toxic potential. Thus, this review aims to present information about the toxicity of Cerrado plants. For this purpose, a review was performed using PubMed, Science Direct, and Web Of Science databases. After applying exclusion criteria, 187 articles published in the last 20 years were selected and analyzed. Detailed information about the extract preparation, part of the plant used, dose/concentration tested, model system, and employed assay was provided for different toxic activities described in the literature, namely cytotoxic, genotoxic, mutagenic, antibacterial, antifungal, antiviral, insecticidal, antiparasitic, and molluscicidal activities. In addition, the steps to execute research on plant toxicity and the more common methods employed were discussed. This review synthesized and organized the available research on the toxic effects of Cerrado plants, which could contribute to the future design of new environmentally safe products.
Collapse
|
20
|
Rajabian A, Rajabian F, Babaei F, Mirzababaei M, Nassiri-Asl M, Hosseinzadeh H. Interaction of Medicinal Plants and Their Active Constituents With Potassium Ion Channels: A Systematic Review. Front Pharmacol 2022; 13:831963. [PMID: 35273505 PMCID: PMC8902679 DOI: 10.3389/fphar.2022.831963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Potassium ion (K+) channels are pore-forming transmembrane proteins that control the transport of K+ ions. Medicinal plants are widely used as complementary therapies for several disorders. Studies have shown that the modulation of K+ channels is most likely involved in various pharmacological effects of medicinal plants. This review aimed to evaluate the modulatory effects of medicinal plants and their active constituents on K+ channels under pathological conditions. This systematic review was prepared according to the Preferred Reporting Items for the Systematic Reviews and Meta-analyses (PRISMA) 2020 guideline. Four databases, including PubMed, Web of Science, embase, and Scopus, were searched. We identified 687 studies from these databases, from which we selected 13 in vivo studies for the review by using the Population, Intervention, Comparison, Outcomes, Study (PICOS) tool. The results of the 13 selected studies showed a modulatory effect of medicinal plants or their active constituents on ATP-sensitive potassium channels (KATP), and small (SKCa) and large (BKCa) conductance calcium-activated K+ channels in several pathological conditions such as nociception, brain ischemia, seizure, diabetes, gastric ulcer, myocardial ischemia-reperfusion, and hypertension via possible involvement of the nitric oxide/cyclic GMP pathway and protein kinase. K+ channels should be considered as significant therapeutic milestones in the treatment of several diseases. We believe that understanding the mechanism behind the interaction of medicinal plants with K+ channels can facilitate drug development for the treatment of various K+ channel-related disorders.
Collapse
Affiliation(s)
- Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Malvidin Protects against and Repairs Peptic Ulcers in Mice by Alleviating Oxidative Stress and Inflammation. Nutrients 2021; 13:nu13103312. [PMID: 34684313 PMCID: PMC8537945 DOI: 10.3390/nu13103312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Peptic ulcer episodes cause damage to the stomach and intestine, with inflammatory cell infiltration and oxidative stress as the main players. In this study, we investigated the potential of anthocyanidin malvidin for preventive and curative peptic ulcer treatment. The anthocyanidin effects were examined in gastric ulcer mouse models induced by ethanol, non-steroidal anti-inflammatory drugs (NSAIDs), ischemia-reperfusion (IR), acetic acid and duodenal ulcer induced by polypharmacy. Expression levels of oxidative and inflammatory genes were measured to investigate the mechanism of anthocyanin activity. At a dose of 5 mg·kg−1, Malvidin prevented gastric ulcer induction by ethanol, NSAID and repaired the tissue after 6 days of IR. Moreover, the anthocyanidin accelerated the healing of acetic acid-induced ulcer, increased the gene expression of EGF and COX-1, and downregulated MMP-9. Anthocyanin treatment mitigated the effect of polypharmacy on inflammation and oxidative stress observed in the intestine. Additionally, the compound downregulated cytokine expression and TLR4 and upregulated HMOX-1 and IL-10, exhibiting protective activity in the mouse gut. Malvidin thus prevented gastric and duodenal ulcers due to prominent anti-inflammatory and antioxidative effects on the gastrointestinal tract that were related to gene expression modulation and an increase in endogenous defense mechanisms.
Collapse
|
22
|
Serafim CADL, Araruna MEC, Alves Júnior EB, Silva LMO, Silva AO, da Silva MS, Alves AF, Araújo AA, Batista LM. (-)-Carveol Prevents Gastric Ulcers via Cytoprotective, Antioxidant, Antisecretory and Immunoregulatory Mechanisms in Animal Models. Front Pharmacol 2021; 12:736829. [PMID: 34497525 PMCID: PMC8419343 DOI: 10.3389/fphar.2021.736829] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background: (-)-Carveol (p-Mentha-6,8-dien-2-ol) is a monocyclic monoterpenic alcohol, present in essential oils of plant species such as Cymbopogon giganteus, Illicium pachyphyllum and in spices such as Carum carvi (cumin). Pharmacological studies report its antitumor, antimicrobial, neuroprotective, vasorelaxant, antioxidant and anti-inflammatory activity. Hypothesis/Purpose: The objective of this study was to evaluate the acute non-clinical oral toxicity, gastroprotective activity of monoterpene (-)-Carveol in animal models and the related mechanisms of action. Methods: Acute toxicity was assessed according to OECD guide 423 in mice. Ethanol, stress, NSAIDs and pylorus ligation-induced gastric ulcer models were used to investigate antiulcer properties. The related mechanisms of action were using the ethanol-gastric lesions protocol. Results: (-)-Carveol has low toxicity, with a lethal dose 50% (LD50) equal to or greater than 2,500 mg/kg according to OECD guide nº 423. In all gastric ulcer induction methods evaluated, (-)-Carveol (25, 50, 100 and 200 mg/kg, p.o.) significantly reduced the ulcerative lesion in comparison with the respective control groups. To investigate the mechanisms involved in the gastroprotective activity, the antisecretory or neutralizing of gastric secretion, cytoprotective, antioxidant and immunoregulatory effects were evaluated. In the experimental protocol of pylorus ligation-induced gastric ulcer, (-)-Carveol (100 mg/kg) reduced (p < 0.001) the volume of gastric secretion in both routes (oral and intraduodenal). The previous administration of blockers NEM (sulfhydryl groups blocker), L-NAME (nitric oxide synthesis inhibitor), glibenclamide (KATP channel blocker) and indomethacin (cyclo-oxygenase inhibitor), significantly reduced the gastroprotection exercised by (-)-Carveol, suggesting the participation of these pathways in its gastroprotective activity. In addition, treatment with (-)-Carveol (100 mg/kg) increased (p < 0.001) mucus adhered to the gastric wall. Treatment also increased (p < 0.001) levels of reduced glutathione (GSH), superoxide dismutase (SOD) and interleukin-10 (IL-10). It also reduced (p < 0.001) malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels. Conclusion: Thus, it is possible to infer that (-)-Carveol presents gastroprotective activity related to antisecretory, cytoprotective, antioxidant and immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Catarina Alves de Lima Serafim
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Maria Elaine Cristina Araruna
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Edvaldo Balbino Alves Júnior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Leiliane Macena Oliveira Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Alessa Oliveira Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Adriano Francisco Alves
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Aurigena Antunes Araújo
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| |
Collapse
|
23
|
Sudi IY, Ahmed MU, Adzu B. Sphaeranthus senegalensis DC: Evaluation of chemical constituents, oral safety, gastroprotective activity, and mechanism of action of its hydroethanolic extract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113597. [PMID: 33221497 DOI: 10.1016/j.jep.2020.113597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sphaeranthus senegalensis DC is a seasonal herb with a spicy smell that grows wild in wet grounds of tropical Africa and Asia. The plant is used in folk medicine for the treatment of various diseases; that includes its use to treat gastric ulcers. AIM OF THE STUDY This study aimed to investigate the chemical constituents of the hydroethanolic extract of Sphaeranthus senegalensis DC and evaluate its oral safety, gastroprotective activity, and mechanisms of action using laboratory models in rats and mice. MATERIALS AND METHODS Hydroethanolic extract (70%) of the powdered whole dried material was prepared, and chemical constituents of the resultant extract (denoted HESs) standardized using the high-performance liquid chromatography (HPLC) method. The safety profile of HESs was assessed using 2000 mg/kg, oral (p.o.) for Hippocratic screening in mice, and 800 mg/kg, p.o. for 28 days subchronic toxicity assay in rats. The gastroprotective effect of HESs (25, 100, and 400 mg/kg, p.o.) was investigated using acidified ethanol, piroxicam, water immobilization stress, and acetic acid-induced ulcer models. The gastroprotective mechanisms of HESs were evaluated using its effect on gastric mucus protection, nitric oxide modulation, gastric juice secretory parameters, catalase and myeloperoxidase activities. Histological analysis of the stomach tissues was also carried out. RESULTS The HPLC analysis indicated the presence of 25.94% phenolics (gallic acid, caffeic acid, and ferulic acid) and 14.53% flavonoids (rutin, morin, luteolin, quercetin, and apigenin). Hippocratic screening and the 28 days subchronic study indicated that HESs is generally safe. Result shows that oral administration of HESs (25, 100 and 400 mg/kg) alleviated the severity of the gastric ulcers induced by acidified ethanol by 35.65% (p < 0.05), 48.70% (p < 0.05) and 78.02% (p < 0.001) respectively; exhibited gastroprotective effect against the gastric lesions induced by piroxicam by 37.97% (p < 0.05), 53.27% (p < 0.05) and 76.23% (p < 0.001) respectively; and decreased the severity of the water immobilization stress-induced gastric ulcers by 32.43% (p < 0.05), 55.26% (p < 0.01) and 74.05% (p < 0.001) respectively, when compared to the vehicle control group. The mechanisms of action assays indicated that the gastroprotective activity was mediated mainly through gastroprotection, antisecretory, and antioxidant activities. Histological analysis showed it inhibited epithelial cell loss, vascular damage, and leucocyte infiltration. CONCLUSION HESs contains useful phytochemicals, is safe, and exhibited significant gastroprotective action. The results provided justification for its claim in the treatment of gastric ulcers and its evaluation for potential application as a gastroprotective agent.
Collapse
Affiliation(s)
- Ismaila Yada Sudi
- Department of Biochemistry, Faculty of Science, Adamawa State University (ADSU), Mubi, Adamawa State, Nigeria.
| | - Maryam Usman Ahmed
- Department of Biochemistry, Faculty of Science, Adamawa State University (ADSU), Mubi, Adamawa State, Nigeria
| | - Bulus Adzu
- Department of Pure and Applied Chemistry, Faculty of Science, Adamawa State University (ADSU), Mubi, Adamawa State, Nigeria; Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria.
| |
Collapse
|
24
|
Ren S, Wei Y, Wang R, Wei S, Wen J, Yang T, Chen X, Wu S, Jing M, Li H, Wang M, Zhao Y. Rutaecarpine Ameliorates Ethanol-Induced Gastric Mucosal Injury in Mice by Modulating Genes Related to Inflammation, Oxidative Stress and Apoptosis. Front Pharmacol 2020; 11:600295. [PMID: 33324227 PMCID: PMC7726440 DOI: 10.3389/fphar.2020.600295] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Rutaecarpine (RUT), a major quinazolino carboline alkaloid compound from the dry unripe fruit Tetradium ruticarpum (A. Juss.) T. G. Hartley, has various pharmacological effects. The aim of this present study was to investigate the potential gastroprotective effect of rutaecarpine on ethanol-induced acute gastric mucosal injury in mice and associated molecular mechanisms, such as activating Nrf2 and Bcl-2 via PI3K/AKT signaling pathway and inhibiting NF-κB. Methods: Gastric ulcer index and histopathology was carried out to determine the efficacy of RUT in gastric ulceration, and the content of SOD, GSH in serum and CAT, MDA, MPO, TNF-α, IL-6, IL-1β in tissue were measured by kits. Besides, in order to illustrate the potential inflammatory, oxidative, and apoptotic perturbations, the mRNA levels of NF-κB p65, PI3K, AKT, Nrf2, Nqo1, HO-1, Bcl-2 and Bax were analyzed. In addition, the protein expression of NF-κB p65 and Nrf2 in cytoplasm and nucleus, AKT, p-AKT, Bcl-2 Bax and Caspase 3 were analyzed for further verification. Finally, immunofluorescence analysis was performed to further verify nuclear translocation of NF-κB p65. Results: Current data strongly demonstrated that RUT alleviated the gross gastric damage, ulcer index and the histopathology damage caused by ethanol. RUT inhibited the expression and nuclear translocation of NF-κB p65 and the expression of its downstream signals, such as TNF-α, IL-6, IL-1β and MPO. Immunofluorescence analysis also verifies the result. In the context of oxidative stress, RUT improved the antioxidant milieu by remarkably upregulating the expression Nqo1 and HO-1 with activating Nrf2, and could remarkably upregulate antioxidant SOD, GSH, CAT and downregulate levels of MDA. Additionally, RUT activate the expression of Bcl-2 and inhibited the expression of downstream signals Bax and Caspase 3 to promote gastric cellular survival. These were confirmed by RUT activation of the PI3K/AKT pathway manifested by enhanced expression of PI3K and promotion of AKT phosphorylation. Conclusion: Taken together, these results strongly demonstrated that RUT exerted a gastroprotective effect against gastric mucosal injury induced by ethanol. The underlying mechanism might be associated with the improvement of anti-inflammatory, anti-oxidation and anti-apoptosis system.
Collapse
Affiliation(s)
- Sichen Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tao Yang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shihua Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Wang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Effect of Cuttlebone on Healing of Indomethacin-Induced Acute Gastric Mucosal Lesions in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9592608. [PMID: 33082835 PMCID: PMC7563050 DOI: 10.1155/2020/9592608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
The continuing use of nonsteroidal anti-inflammatory drugs (NSAIDs) usually increases the side effects such as peptic ulcer and acute gastric lesions in the gastrointestinal tract. Cuttlebone (CB), isolated from Sepiella maindroni de Rochebrune, was reported to have antioxidant activities, but its role in the treatment of indomethacin-induced gastric lesions has not yet been confirmed. In this research, we investigate the protective effect of cuttlebone on indomethacin-related ulcers in rats and possible mechanisms. Here, gastric ulcers were induced by oral administration of indomethacin, and then the rats were treated with omeprazole (4 mg/kg) or different doses (750, 1500, and 3000 mg/kg of body weight) of cuttlebone. We evaluated lesion index, inflammation score, and a series of oxidant/antioxidant parameters. The data demonstrated that cuttlebone could protect against gastric ulcers induced by indomethacin in a dose-dependent manner (positive correlation). Also, these effects were associated with attenuating the expression of malonaldehyde (MDA) and increasing the levels of some protective ingredients like epidermal growth factor (EGF), prostaglandin E2 (PGE2), and superoxide dismutase (SOD). Thus, considering its ability to protect indomethacin-induced acute gastric mucosal lesions and the underlying mechanisms, CB might be a potential candidate for treating gastric damage caused by NSAIDs.
Collapse
|
26
|
Mousavi T, Hadizadeh N, Nikfar S, Abdollahi M. Drug discovery strategies for modulating oxidative stress in gastrointestinal disorders. Expert Opin Drug Discov 2020; 15:1309-1341. [PMID: 32749894 DOI: 10.1080/17460441.2020.1791077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Taraneh Mousavi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Hadizadeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Bai L, Li A, Gong C, Ning X, Wang Z. Protective effect of rutin against bleomycin induced lung fibrosis: Involvement of TGF-β1/α-SMA/Col I and III pathway. Biofactors 2020; 46:637-644. [PMID: 32233122 DOI: 10.1002/biof.1629] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/12/2022]
Abstract
Lung fibrosis is a progressive fatal lung disorder with significantly high mortality rates. Bleomycin (BLM) is one of the most commonly used chemotherapeutic agents for the treatment of several carcinomas. The most severe adverse effect of BLM is lung toxicity; therefore, BLM has been repeatedly reported to be considered amongst the most widely used agents for the induction of experimental lung fibrosis. In the current study, rutin has been investigated for its ability to ameliorate BLM-induced pulmonary fibrosis. BLM was instilled intratracheally and rutin was administered orally (50 and 100 mg/kg) for 3 weeks. Rutin significantly decreased lung/body weight index, bronchoalveolar lavage fluid lactate dehydrogenase activity, total cell count, macrophages, and lymphocyte counts. Rutin significantly decreased lung malondialdehyde content, increased lung glutathione content, superoxide dismutase activity, serum total antioxidant capacity, and decreased lung nitric oxide content. Moreover, rutin reduced expressions of transforming growth factor beta 1 and other fibrosis-related biomarkers (Col I, Col III, and α-SMA). In addition, rutin significantly ameliorated histological changes and prevented collagen deposition with the paralleled decrease in lung hydroxyproline content. In conclusion, rutin can be proposed to be a potential therapeutic agent for the management of lung fibrosis.
Collapse
Affiliation(s)
- Linlin Bai
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Aimin Li
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Cuike Gong
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Xuecong Ning
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Zhihua Wang
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| |
Collapse
|
28
|
Rodriguez S, Pertino MW, Arcos C, Reichert L, Echeverria J, Simirgiotis M, Borquez J, Cornejo A, Areche C, Sepulveda B. Isolation, Gastroprotective Effects and Untargeted Metabolomics Analysis of Lycium Minutifolium J. Remy (Solanaceae). Foods 2020; 9:foods9050565. [PMID: 32375270 PMCID: PMC7278853 DOI: 10.3390/foods9050565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
Lycium minutifolium J. Remy (Solanaceae) is commonly used as an infusion in traditional medicine to treat stomach pain, meteorism, intestinal disorders, stomach ailments, and other severe problems including prostate cancer and stomach cancer. From the EtOAc extract of L. minutifolium bark five known metabolites were isolated using chromatographic techniques. The gastroprotective effects of the EtOAc fraction and edible infusion extract of the bark were assayed on the hydrochloric acid (HCl)/EtOH induced gastric ulcer model in mice to support the traditional use of the plant. The EtOAc extract and the edible infusion showed gastroprotective effect at dose of 100 mg/kg reducing lesions by 31% and 64%, respectively. The gastroprotective action mechanisms of the edible infusion at a single oral dose of 100 mg/kg were evaluated suggesting that prostaglandins, sulfhydryl groups, and nitric oxide are involved in the mode of gastroprotective action. The UHPLC analysis coupled to high-resolution mass spectrometry of the edible infusion showed the presence of twenty-three compounds. Our results can support the gastroprotective properties of the edible infusion extract, and at least can validate in part, the ethnopharmacological uses of the plant.
Collapse
Affiliation(s)
- Stephanie Rodriguez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, 8320000 Santiago, Chile; (S.R.); (C.A.)
| | - Mariano Walter Pertino
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, 3460000 Talca, Chile;
| | - Chantal Arcos
- Departamento de Ciencias Químicas, Universidad Andres Bello, Campus Viña del Mar, Quillota 980, Viña del Mar, 2531098 Valparaiso, Chile; (C.A.); (L.R.)
| | - Luana Reichert
- Departamento de Ciencias Químicas, Universidad Andres Bello, Campus Viña del Mar, Quillota 980, Viña del Mar, 2531098 Valparaiso, Chile; (C.A.); (L.R.)
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170022 Santiago, Chile;
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile;
| | - Jorge Borquez
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av Coloso S-N, 1240000 Antofagasta, Chile;
| | - Alberto Cornejo
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad Andres Bello, Sazié 2315, 8370092 Santiago, Chile;
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, 8320000 Santiago, Chile; (S.R.); (C.A.)
| | - Beatriz Sepulveda
- Departamento de Ciencias Químicas, Universidad Andres Bello, Campus Viña del Mar, Quillota 980, Viña del Mar, 2531098 Valparaiso, Chile; (C.A.); (L.R.)
- Correspondence: ; Tel.: +56-063-2244369
| |
Collapse
|
29
|
Fahmy NM, Al-Sayed E, Michel HE, El-Shazly M, Singab ANB. Gastroprotective effects of Erythrina speciosa (Fabaceae) leaves cultivated in Egypt against ethanol-induced gastric ulcer in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112297. [PMID: 31606535 DOI: 10.1016/j.jep.2019.112297] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Members of the genus Erythrina have been traditionally used in the treatment of various ailments such as inflammation and gastrointestinal disorders. Erythrina speciosa (Fabaceae) is a spiny, deciduous shrub or small tree native to Southern America in Brazil. It is cultivated in Africa and Asia. The traditional usage of E. speciosa indicated its antibacterial, analgesic, and anti-inflammatory activities. AIM OF THE STUDY Evaluation of the phytochemical constituents, gastroprotective effects and possible mechanism of action of the ethyl acetate fraction obtained from the methanol extract of E. speciosa leaves (ESLE). MATERIALS AND METHODS Chemical characterization of ESLE was done using high performance liquid chromatography coupled to mass spectrometry (HPLC-MS). The gastroprotective activity of ESLE was evaluated using ethanol-induced gastric-ulcer model in rats. Rats were pre-treated with ESLE 25, 50 and 100 mg/kg 1 h before the administration of absolute ethanol. Histological analysis, mucin content, and total acidity were evaluated. The possible mechanism of action of ESLE was studied through the examination of oxidative stress and inflammatory markers, PGE2, and NF-κB, iNOS, COX-2, and HSP-70 immunoexpression. In vitro, anti-Helicobacter pylori activity of ESLE was also studied using micro-well dilution method. RESULTS Fourteen compounds were tentatively identified including alkaloids, flavonoids, and saponins. ESLE exerted a powerful gastroprotective effect. The pre-treatment with ESLE at different doses resulted in a significant reduction in gastric lesions and significant elevation in the mucin production. These effects could be partially mediated by the potent anti-inflammatory activity of ESLE as evidenced by the significant reduction in the immunoexpression of NF-κB, COX-2, iNOS and the reduction in the pro-inflammatory marker, TNF-α. ESLE counteracted the ethanol-induced oxidative stress by increasing the levels of depleted GSH and catalase as well as significantly attenuating the ethanol-induced lipid peroxidation tissue levels. In addition, ESLE exhibited in vitro antibacterial activity against H. pylori. CONCLUSIONS The chemical constituents of ESLE strongly support its potent gastroprotective effect suggesting its future potential application in the management of gastric ulcer by eliminating its symptoms and causes including H. pylori.
Collapse
Affiliation(s)
- Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Centre for Drug Discovery and Development Research, Ain Shams University, Cairo, Egypt.
| |
Collapse
|