1
|
Tran MN, Kim NS, Lee S. Biological network comparison identifies a novel synergistic mechanism of Ginseng Radix-Astragali Radix herb pair in cancer-related fatigue. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118447. [PMID: 38885914 DOI: 10.1016/j.jep.2024.118447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng Radix and Astragali Radix are commonly combined to tonify Qi and alleviate fatigue. Previous studies have employed biological networks to investigate the mechanisms of herb pairs in treating different diseases. However, these studies have only elucidated a single network for each herb pair, without emphasizing the superiority of the herb combination over individual herbs. AIM OF THE STUDY This study proposes an approach of comparing biological networks to highlight the synergistic effect of the pair in treating cancer-related fatigue (CRF). METHODS The compounds and targets of Ginseng Radix, Astragali Radix, and CRF diseases were collected and predicted using different databases. Subsequently, the overlapping targets between herbs and disease were imported into the STRING and DAVID tools to build protein-protein interaction (PPI) networks and analyze enriched KEGG pathways. The biological networks of Ginseng Radix and Astragali Radix were compared separately or together using the DyNet application. Molecular docking was used to verify the predicted results. Further, in vitro experiments were conducted to validate the synergistic pathways identified in in silico studies. RESULTS In the PPI network comparison, the combination created 89 new interactions and an increased average degree (11.260) when compared to single herbs (10.296 and 9.394). The new interactions concentrated on HRAS, STAT3, JUN, and IL6. The topological analysis identified 20 core targets of the combination, including three Ginseng Radix-specific targets, three Astragali Radix-specific targets, and 14 shared targets. In KEGG enrichment analysis, the combination regulated additional signaling pathways (152) more than Ginseng Radix (146) and Astragali Radix (134) alone. The targets of the herb pair synergistically regulated cancer pathways, specifically hypoxia-inducible factor 1 (HIF-1) signaling pathway. In vitro experiments including enzyme-linked immunosorbent assay and Western blot demonstrated that two herbs combination could up-regulate HIF-1α signaling pathway at different combined concentrations compared to either single herb alone. CONCLUSION The herb pair increased protein interactions and adjusted metabolic pathways more than single herbs. This study provides insights into the combination of Ginseng Radix and Astragali Radix in clinical practice.
Collapse
Affiliation(s)
- Minh Nhat Tran
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea; Korean Convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea; Faculty of Traditional Medicine, Hue University of Medicine and Pharmacy, Hue University, Thua Thien Hue, Viet Nam.
| | - No Soo Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea.
| | - Sanghun Lee
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea; Korean Convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Wang J, Li C, Ruan J, Yang C, Tian Y, Lu B, Wang Y. Cross-kingdom regulation of ginseng miRNA156 on immunity and metabolism. Int Immunopharmacol 2024; 138:112577. [PMID: 38955029 DOI: 10.1016/j.intimp.2024.112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
AIM OF THE STUDY To study the cross-border regulation of immunity and energy metabolism by ginseng miRNA156, and to provide a new perspective for further exploring the possibility of ginseng miRNA156 as a pharmacodynamic substance. MATERIALS AND METHODS Combined with the previous research results of our research group, miRNA156 with high expression in blood sequencing of intragastrically administered with ginseng decoction was selected. Bioinformatics analysis was performed on the selected differential miRNA156. The target genes of differential miRNA156 were mainly enriched in metabolic, immune and other signaling pathways. According to the analysis results, the experimental part will use qi deficiency fatigue model and RAW264.7 cells. The contents of lactic acid (LA), creatine kinase (CK), blood urea nitrogen (BUN), lactate dehydrogenase (LD), liver glycogen (LG), muscle glycogen (MG), interleukin 4 (IL-4), matrix metallo-proteinase 9 (MMP-9), superoxide dismutase (SOD), malondialdehyde, phosphor-enolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6pase), nitric oxide (NO) and tumor necrosis factor-α (TNF-α) were measured after administration of miRNA156. RESULTS Ginseng miRNA156 can accelerate the removal of metabolic waste during exercise. Increase the glycogen reserve in, provide energy for the body, regulate the activity of key gluconeogenesis enzyme phosphorus, improve the energy metabolism system of, and enhance the endurance of fatigue mice. The contents of matrix metalloproteinase 9, superoxide dismutase and malondialdehyde were affected, and the content of TNF-α in the supernatant of RAW264.7 cells was significantly increased, which had certain antioxidant capacity and potential immunomodulatory effects. CONCLUSION Ginseng miRNA156 has a certain regulatory effect on the energy metabolism and immune function of mice, which makes it possible to regulate the cross-species regulation of ginseng miRNA in theory, provides ideas for ginseng miRNA to become a new pharmacodynamic substance.
Collapse
Affiliation(s)
- Jinglei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chenyi Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingxiu Ruan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chang Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuexin Tian
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binxin Lu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingfang Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Lee JS, Lee HY. Ginseng-derived compounds as potential anticancer agents targeting cancer stem cells. J Ginseng Res 2024; 48:266-275. [PMID: 38707642 PMCID: PMC11068999 DOI: 10.1016/j.jgr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 05/07/2024] Open
Abstract
Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that exhibit stem cell-like characteristics, including self-renewal and differentiation in a multi-stage lineage state via symmetric or asymmetric division, causing tumor initiation, heterogeneity, progression, and recurrence and posing a major challenge to current anticancer therapy. Despite the importance of CSCs in carcinogenesis and cancer progression, currently available anticancer therapeutics have limitations for eradicating CSCs. Moreover, the efficacy and therapeutic windows of currently available anti-CSC agents are limited, suggesting the necessity to optimize and develop a novel anticancer agent targeting CSCs. Ginseng has been traditionally used for enhancing immunity and relieving fatigue. As ginseng's long history of use has demonstrated its safety, it has gained attention for its potential pharmacological properties, including anticancer effects. Several studies have identified the bioactive principles of ginseng, such as ginseng saponin (ginsenosides) and non-saponin compounds (e.g., polysaccharides, polyacetylenes, and phenolic compounds), and their pharmacological activities, including antioxidant, anticancer, antidiabetic, antifatigue, and neuroprotective effects. Notably, recent reports have shown the potential of ginseng-derived compounds as anti-CSC agents. This review investigates the biology of CSCs and efforts to utilize ginseng-derived components for cancer treatment targeting CSCs, highlighting their role in overcoming current therapeutic limitations.
Collapse
Affiliation(s)
- Ji-Sun Lee
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ho-Young Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Xu F, Yang YH, Yang H, Li W, Hao Y, Zhang S, Zhang YZ, Cao WX, Li XX, Du GH, Ji TF, Wang JH. Progress of studies on natural products for glioblastoma therapy. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:154-176. [PMID: 38321773 DOI: 10.1080/10286020.2023.2300367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024]
Abstract
Glioblastoma (GBM) is the most common, malignant, and lethal primary brain tumor in adults. Up to now, the chemotherapy approaches for GBM are limited. Therefore, more studies on identifying and exploring new chemotherapy drugs or strategies overcome the GBM are essential. Natural products are an important source of drugs against various human diseases including cancers. With the better understanding of the molecular etiology of GBM, the development of new anti-GBM drugs has been increasing. Here, we summarized recent researches of natural products for the GBM therapy and their potential mechanisms in details, which will provide new ideas for the research on natural products and promote developing drugs from nature products for GBM therapy.
Collapse
Affiliation(s)
- Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yi-Hui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yi-Zhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan-Xin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Xue Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guan-Hua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Teng-Fei Ji
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jin-Hua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Kim J, Zhu Y, Chen S, Wang D, Zhang S, Xia J, Li S, Qiu Q, Lee H, Wang J. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood-brain-barrier penetration and tumor microenvironment modulation. J Nanobiotechnology 2023; 21:253. [PMID: 37542285 PMCID: PMC10401762 DOI: 10.1186/s12951-023-02006-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023] Open
Abstract
Inhibition of tumor growth and normalization of immune responses in the tumor microenvironment (TME) are critical issues for improving cancer therapy. However, in the treatment of glioma, effective nanomedicine has limited access to the brain because of the blood-brain barrier (BBB). Previously, we demonstrated nano-sized ginseng-derived exosome-like nanoparticles (GENs) consisting of phospholipids including various bioactive components, and evaluated anti-tumor immune responses in T cells and Tregs to inhibit tumor progression. It was found that the enhanced targeting ability of GENs to the BBB and glioma induced a significant therapeutic effect and exhibited strong efficacy in recruiting M1 macrophage expression in the TME. GENs were demonstrated to be successful candidates in glioma therapeutics both in vitro and in vivo, suggesting excellent potential for inhibiting glioma progression and regulating tumor-associated macrophages (TAMs).
Collapse
Affiliation(s)
- Jisu Kim
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Ying Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Sunhui Chen
- Department of Pharmacy, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Dongdong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Shuya Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Shiyi Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Qiujun Qiu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China.
- Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
6
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Kacar AK, Aylar D, Kazdal F, Bahadori F. BuOH fraction of Salix Babylonica L. extract increases pancreatic beta-cell tumor death at lower doses without harming their function. Toxicol In Vitro 2023; 90:105609. [PMID: 37164183 DOI: 10.1016/j.tiv.2023.105609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Salix babylonica L. is a species of the willow tree. Insulinoma is a tumor originating from pancreatic beta cells. This study aims to research the effect of different fractions of Salix babylonica L. leaf extract on INS-1 cells for treating pancreatic tumors. Cell death occurred at lower doses in the EtOAc fraction. The cells are functional in the BuOH fraction but not in EtOAc and H2O fractions. The EtOAc fraction has a higher percentage of necrosis and ROS. INS1, INS2, and AKT gene expressions in the H2O fraction, GLUT2, IR, HSP70 gene expressions, and WNT4 protein levels increased in the BuOH fraction. HSP90 gene expression, Beta-actin, GAPDH, insulin, HSP70, HSP90, HSF1, Beta-Catenin, and WNT7A protein levels were decreased, while IR immunolabelling intensity increased in both fractions. Ca+2, K+, Na+, and CA-19-9 in the cell, Ca+2 and K+ in secretion increased. The secondary metabolites in the EtOAc fraction cause more damage in INS-1 cells. Since the water fraction also causes the cells to die in high doses, cell function is damaged. The secondary metabolites in the BuOH fraction kill INS-1 cells with less damage. This makes the BuOH fraction of Salix babylonica L. more valuable.
Collapse
Affiliation(s)
- Ayse Karatug Kacar
- Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey.
| | - Dilara Aylar
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Fatma Kazdal
- Bezmialem Vakif University, Institute of Health Sciences, Department of Medicinal Biochemistry, Istanbul, Turkey
| | - Fatemeh Bahadori
- Istanbul University-Cerrahpasa, Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul, Turkey
| |
Collapse
|
8
|
Zhu M, Sun Y, Bai H, Wang Y, Yang B, Wang Q, Kuang H. Effects of saponins from Chinese herbal medicines on signal transduction pathways in cancer: A review. Front Pharmacol 2023; 14:1159985. [PMID: 37063281 PMCID: PMC10090286 DOI: 10.3389/fphar.2023.1159985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer poses a serious threat to human health, and the search for safe and effective drugs for its treatment has aroused interest and become a long-term goal. Traditional Chinese herbal medicine (TCM), an ancient science with unique anti-cancer advantages, has achieved outstanding results in long-term clinical practice. Accumulating evidence shows that saponins are key bioactive components in TCM and have great research and development applications for their significant role in the treatment of cancer. Saponins are a class of glycosides comprising nonpolar triterpenes or sterols attached to hydrophilic oligosaccharide groups that exert antitumor effects by targeting the NF-κB, PI3Ks-Akt-mTOR, MAPK, Wnt-β-catenin, JAK-STAT3, APMK, p53, and EGFR signaling pathways. Presently, few advances have been made in physiological and pathological studies on the effect of saponins on signal transduction pathways involved in cancer treatment. This paper reviews the phytochemistry and extraction methods of saponins of TCM and their effects on signal transduction pathways in cancer. It aims to provide theoretical support for in-depth studies on the anticancer effects of saponins.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Haodong Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yimeng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| |
Collapse
|
9
|
Tang M, Deng H, Zheng K, He J, Yang J, Li Y. Ginsenoside 3β-O-Glc-DM (C3DM) suppressed glioma tumor growth by downregulating the EGFR/PI3K/AKT/mTOR signaling pathway and modulating the tumor microenvironment. Toxicol Appl Pharmacol 2023; 460:116378. [PMID: 36641037 DOI: 10.1016/j.taap.2023.116378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Ginsenosides are the main bioactive constituents of Panax ginseng, which have been broadly studied in cancer treatment. Our previous studies have demonstrated that 3β-O-Glc-DM (C3DM), a biosynthetic ginsenoside, exhibited antitumor effects in several cancer cell lines with anti-colon cancer activity superior to ginsenoside 20(R)-Rg3 in vivo. However, the efficacy of C3DM on glioma has not been proved yet. In this study, the antitumor activities and underlying mechanisms of C3DM on glioma were investigated in vitro and in vivo. Cell viability, apoptosis, migration, FCM, IHC, RT-qPCR, quantitative proteomics, and western blotting were conducted to evaluate the effect of C3DM on glioma cells. ADP-Glo™ kinase assay was used to validate the interaction between C3DM and EGFR. Co-cultured assays, lactic acid kit, and spatially resolved metabolomics were performed to study the function of C3DM in regulating glioma microenvironment. Both subcutaneously transplanted syngeneic models and orthotopic models of glioma were used to determine the effect of C3DM on tumor growth in vivo. We found that C3DM dose-dependently induced apoptosis, and inhibited the proliferation, migration and angiogenesis of glioma cells. C3DM significantly inhibited tumor growth in both subcutaneous and orthotopic mouse glioma models. Moreover, C3DM attenuated the acidified glioma microenvironment and enhanced T-cell function. Additionally, C3DM inhibited the kinase activity of EGFR and influenced the EGFR/PI3K/AKT/mTOR signaling pathway in glioma. Overall, C3DM might be a promising candidate for glioma prevention and treatment.
Collapse
Affiliation(s)
- Mei Tang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Material Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haidong Deng
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Material Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kailu Zheng
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Material Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Material Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinling Yang
- NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Material Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Material Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Lee EJ, Yang JH, Yang HJ, Cho CK, Choi JG, Chung HS. Antitumor Effect of Korean Red Ginseng through Blockade of PD-1/PD-L1 Interaction in a Humanized PD-L1 Knock-In MC38 Cancer Mouse Model. Int J Mol Sci 2023; 24:ijms24031894. [PMID: 36768213 PMCID: PMC9915403 DOI: 10.3390/ijms24031894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Blocking immune checkpoints, programmed death-1 (PD-1) and its ligand PD-L1, has proven a promising anticancer strategy for enhancing cytotoxic T cell activity. Although we previously demonstrated that ginsenoside Rg3, Rh2, and compound K block the interaction of PD-1 and PD-L1, the antitumor effect through blockade of this interaction by Korean Red Ginseng alone is unknown. Therefore, we determined the effects of Korean Red Ginseng extract (RGE) on the PD-1/PD-L1 interaction and its antitumor effects using a humanized PD-1/PD-L1-expressing colorectal cancer (CRC) mouse model. RGE significantly blocked the interaction between human PD-1 and PD-L1 in a competitive ELISA. The CD8+ T cell-mediated tumor cell killing effect of RGE was evaluated using murine hPD-L1-expressing MC38 cells and tumor-infiltrating hPD-1-expressing CD8+ T cells isolated from hPD-L1 MC38 tumor-bearing hPD-1 mice. RGE also reduced the survival of hPD-L1 MC38 cells in a cell co-culture system using tumor-infiltrating CD8+ T cells as effector cells combined with hPD-L1 MC38 target cells. RGE or Keytruda (positive control) treatment markedly suppressed the growth of hPD-L1 MC38 allograft tumors, increased CD8+ T cell infiltration into tumors, and enhanced the production of Granzyme B. RGE exhibits anticancer effects through the PD-1/PD-L1 blockade, which warrants its further development as an immunotherapy.
Collapse
Affiliation(s)
- Eun-Ji Lee
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Ju-Hye Yang
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hye Jin Yang
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Chong-Kwan Cho
- East-West Cancer Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon 35235, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
- Correspondence: ; Tel.: +82-53-940-3865
| |
Collapse
|
11
|
Chen Y, Chen M, Deng K. Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 2022; 62:24. [PMID: 36579676 PMCID: PMC9854240 DOI: 10.3892/ijo.2022.5472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumor types occurring in the digestive system. The incidence of CRC has exhibits yearly increases and the mortality rate among patients with CRC is high. The Wnt/β‑catenin signaling pathway, which is associated with carcinogenesis, is abnormally activated in CRC. Most patients with CRC have adenomatous polyposis coli mutations, while half of the remaining patients have β‑catenin gene mutations. Therefore, targeting the Wnt/β‑catenin signaling pathway for the treatment of CRC is of clinical value. In recent years, with in‑depth research on the Wnt/β‑catenin signaling pathway, inhibitors have been developed that are able to suppress or hinder the development and progression of CRC. In the present review, the role of the Wnt/β‑catenin signaling pathway in CRC is summarized, the research status on Wnt/β‑catenin pathway inhibitors is outlined and potential targets for inhibition of this pathway are presented.
Collapse
Affiliation(s)
- Yuxiang Chen
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mo Chen
- Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Department of Gerontology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, P.R. China,Professor Mo Chen, Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, 20 Ximianqiao Cross Street, Chengdu, Sichuan 610041, P.R. China, E-mail:
| | - Kai Deng
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Kai Deng, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
12
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
13
|
Park JS, Kim SH, Han KM, Kim YS, Kwon E, Paek SH, Seo YK, Yun JW, Kang BC. Efficacy and safety evaluation of black ginseng (Panax ginseng C.A. Mey.) extract (CJ EnerG): broad spectrum cytotoxic activity in human cancer cell lines and 28-day repeated oral toxicity study in Sprague-Dawley rats. BMC Complement Med Ther 2022; 22:44. [PMID: 35172794 PMCID: PMC8848956 DOI: 10.1186/s12906-022-03522-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Ginseng (Panax ginseng C.A. Mey.) has been used as a valuable ingredient in traditional medicine for thousands of years mostly in Asian countries due to its therapeutic effects in various diseases. Among the processed ginseng products, black ginseng is produced by a repeated steaming and drying process of ginseng roots and has been known for its superior efficacy based on high accumulation of minor ginsenosides as recently discovered. Despite its popularity and increasing use, the toxicity information on black ginseng still remained largely lacking, raising safety concerns. This study was therefore carried out to determine the repeated oral toxicity of black ginseng extract (BGE; CJ EnerG) with evaluation of cytotoxic activity as validation of its pharmacological activity for toxicity testing. METHODS Prior to the toxicity test, we examined the cytotoxicity of BGE in six cancer cell lines derived from distinct human tissues in comparison with red ginseng extract (RGE), ginsenosides Rg5 and 20(S)-Rg3, and then assessed 28-day repeated oral toxicity in Sprague-Dawley (SD) rats using daily administration of up to 2000 mg/kg BGE. RESULTS BGE showed higher cytotoxicity than RGE in all the cell lines used in this study. Interestingly, the efficacy of BGE closely resembled the cytotoxic pattern of Rg5, suggesting Rg5 as the main effector in the cytotoxic activity of BGE. During the toxicity study, BGE-treated groups showed no noticeable abnormality in clinical signs, body weight gain, food and water consumption and urinalysis. Furthermore, hematological, serum biochemical and histopathological analyses did not find any BGE-related toxicity. CONCLUSION Our findings demonstrated that BGE has broad-spectrum in vitro cytotoxic activity, and that NOAEL of BGE in SD rats is > 2000 mg/kg, providing the essential safety information for human consumption.
Collapse
Affiliation(s)
- Jin-Sung Park
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Hyun Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kang-Min Han
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Dongguk University Ilsan Hospital, Goyang, South Korea
| | - Yun-Soon Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Se-Hee Paek
- Food R&D Institute, CJ CheilJedang Corp., Suwon, Republic of Korea
| | - Yong-Ki Seo
- Food R&D Institute, CJ CheilJedang Corp., Suwon, Republic of Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| |
Collapse
|
14
|
Tan MM, Chen MH, Han F, Wang JW, Tu YX. Role of Bioactive Constituents of Panax notoginseng in the Modulation of Tumorigenesis: A Potential Review for the Treatment of Cancer. Front Pharmacol 2021; 12:738914. [PMID: 34776959 PMCID: PMC8578715 DOI: 10.3389/fphar.2021.738914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of death, affecting people in both developed and developing countries. It is a challenging disease due to its complicated pathophysiological mechanism. Many anti-cancer drugs are used to treat cancer and reduce mortality rates, but their toxicity limits their administration. Drugs made from natural products, which act as multi-targeted therapy, have the ability to target critical signaling proteins in different pathways. Natural compounds possess pharmacological activities such as anti-cancer activity, low toxicity, and minimum side effects. Panax notoginseng is a medicinal plant whose extracts and phytochemicals are used to treat cancer, cardiovascular disorders, blood stasis, easing inflammation, edema, and pain. P. notoginseng's secondary metabolites target cancer's dysregulated pathways, causing cancer cell death. In this review, we focused on several ginsenosides extracted from P. notoginseng that have been evaluated against various cancer cell lines, with the aim of cancer treatment. Furthermore, an in vivo investigation of these ginsenosides should be conducted to gain insight into the dysregulation of several pathways, followed by clinical trials for the potential and effective treatment of cancer.
Collapse
Affiliation(s)
- Ming-Ming Tan
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Min-Hua Chen
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Fang Han
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jun-Wei Wang
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Yue-Xing Tu
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
15
|
Hou W, Pei J. Proteomic Analysis of Red Ginseng on Prolonging the Life Span of Male Drosophila melanogaster. Front Pharmacol 2021; 12:618123. [PMID: 34177563 PMCID: PMC8232884 DOI: 10.3389/fphar.2021.618123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/14/2021] [Indexed: 11/24/2022] Open
Abstract
Ginseng (Panax ginseng C. A. Mey.) is a traditional medicine that has been utilized for over 2000 years in Asia and shows varied pharmacological effects. Red ginseng (RG) is steamed and dried ginseng root and is considered to be more effective. Heating inactivates its catabolic enzymes and increases the activities of RG, which can improve the immune system, alleviate fatigue, and has anti-inflammatory effects and antioxidant activity. In addition, RG has a good anti-aging effect, but its mechanism is unclear. Senescence, a side-effect of normal developmental and metabolic processes, is a gradual decline in physiological integrity and function of the body. Senescence is usually associated with a variety of diseases, including neurodegenerative diseases and diabetes. Research on anti-aging and the prolongation of life span has always been a focus topic. In this study, we investigated the molecular mechanism of RG that results in prolonged the life span for male Drosophila melanogaster. Isobaric tag for relative and absolute quantitation (iTRAQ) was used to identify protein changes in an old male D. melanogaster treated with RG. The differential proteins were verified by qRT-PCR and western blotting. The results showed that 12.5 mg/ml RG prolonged its life span significantly. iTRAQ results showed that, compared to the control group, 32 upregulated proteins and 62 downregulated proteins displayed significantly differential expression in the RG group. In this study, we explored the pathways that RG may participate in that extend the life span of D. melanogaster, and the results showed that the PI3K/AKT/FoxO pathway was involved. In addition, 4E-BP increased and participated in the regulation of life span.
Collapse
Affiliation(s)
- Wei Hou
- School of Pharmaceutical Sciences, Jilin University, Changchun, China.,Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jin Pei
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
16
|
Kim HI, Lee I, Jung YS, Chon SJ, Yun BH, Seo SK. Korean red ginseng induces extrinsic and intrinsic apoptotic pathways in MCF-7 breast cancer cells and MCF-10A non-malignant breast cells. J Obstet Gynaecol Res 2021; 47:2758-2766. [PMID: 33987910 DOI: 10.1111/jog.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Among non-hormonal treatments, herbal products are frequently used by women. Korean red ginseng (KRG) is one of the popular herbal medicines. KRG could be one option for relieving menopausal symptoms. However, there are still concerns about the safety for long-term use. In order to be used for alleviating menopausal symptoms, the safety of KRG on breast must be ensured. The purpose of this study was to investigate the effects of KRG on breast cells. METHODS MCF-7 and MCF-10A cells were treated with different concentrations of KRG extracts for 48 h. Cell viability was evaluated by MTT assay, and apoptosis by flow cytometry. The expression of apoptosis-related proteins was determined by western blot analysis and estrogen receptor (ER) affinity by ER binding assay. RESULTS KRG extract inhibited growth and induced apoptosis of both MCF-7 and MCF-10A cells in dose-dependent manner. KRG extract increased the expression of pro-apoptotic proteins BAX, BAK, and BAD and decreased the expression of anti-apoptotic proteins Bcl-2 and Bcl-XL in both cells. The expressions of Fas and FasL were increased in lower doses, but decreased in higher doses in both cells. Activities of caspase-3, -8 and -9 increased in MCF-10A, while caspase-8 and -9 showed increase in MCF-7. Competition of KRG to E2 was significant in MCF-7 as KRG dose increased, whereas ER binding was hardly shown in MCF-10. CONCLUSION KRG induced apoptosis via extrinsic and intrinsic pathway in MCF-7 breast cancer cells and MCF-10A non-malignant cells. KRG may be safely used with regard to breast cancer risk in postmenopausal women to reduce the vasomotor symptoms.
Collapse
Affiliation(s)
- Hye In Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Inha Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeon Soo Jung
- Department of Obstetrics and Gynecology, Wonju Severance Christian Hospital, Yonsei University College of Medicine, Wonju, Republic of Korea
| | - Seung Joo Chon
- Department of Obstetrics and Gynecology, Gil Hospital, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Bo Hyon Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Hong H, Baatar D, Hwang SG. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8858006. [PMID: 33623532 PMCID: PMC7875636 DOI: 10.1155/2021/8858006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Cancer incidence rate has been increasing drastically in recent years. One of the many cancer treatment methods is chemotherapy. Traditional medicine, in the form of complementary and alternative therapy, is actively used to treat cancer, and many herbs and active ingredients of such therapies are being intensely studied to integrate them into modern medicine. Ginseng is traditionally used as a nourishing tonic and for treating various diseases in Asian countries. The therapeutic potential of ginseng in modern medicine has been studied extensively; the main bioactive component of ginseng is ginsenosides, which have gathered attention, particularly for their prospects in the treatment of fatal diseases such as cancer. Ginsenosides displayed their anticancer and antimetastatic properties not only via restricting cancer cell proliferation, viability, invasion, and migration but also by promoting apoptosis, cell cycle arrest, and autophagy in several cancers, such as breast, brain, liver, gastric, and lung cancer. Additionally, ginsenosides can work synergistically with already existing cancer therapies. Thus, ginsenosides may be used alone or in combination with other pharmaceutical agents in new therapeutic strategies for cancer. To date however, there is little systematic summary available for the anticancer effects and therapeutic potential of ginsenosides. Therefore, we have reviewed and discussed all available literature in order to facilitate further research of ginsenosides in this manuscript.
Collapse
Affiliation(s)
- Heeok Hong
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Delgerzul Baatar
- Laboratory of Genetics, Institute of Biology, Mongolian Academy of Sciences, Peace Avenue 13330, Ulaanbaatar, Mongolia
| | - Seong Gu Hwang
- Department of Animal Life and Environmental Science, Hankyong National University, Anseong City 17579, Republic of Korea
| |
Collapse
|
18
|
Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 2020; 161:105263. [PMID: 33127555 DOI: 10.1016/j.phrs.2020.105263] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Panax ginseng (Meyer) and Panax notoginseng (Burkill), belonging to the family Araliaceae, are used worldwide as medicinal and functional herbs. Numerous publications over the past decades have revealed that both P. notoginseng and P. ginseng contain important bioactive ingredients such as ginsenosides and exert multiple pharmacological effects on nervous system and immune diseases. However, based on traditional Chinese medicine (TCM) theory, their applications clearly differ as ginseng reinforces vital energy and notoginseng promotes blood circulation. In this article, we review the similarities and differences between ginseng and notoginseng in terms of their chemical composition and pharmacological effects. Their chemical comparisons indicate that ginseng contains more polysaccharides and amino acids, while notoginseng has more saponins, volatile oil, and polyacetylenes. Regarding pharmacological effects, ginseng exhibits better protective effects on cardiovascular disease, nerve disease, cancer, and diabetes mellitus, whereas notoginseng displays a superior protective effect on cerebrovascular disease. The evidence presented in this review facilitates further research and clinical applications of these two herbs, and exploration of the relationship between the chemical components and disease efficacy may be the critical next step.
Collapse
Affiliation(s)
- Hanbing Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Inhibitory effect of ginsenoside Rg3 on cancer stemness and mesenchymal transition in breast cancer via regulation of myeloid-derived suppressor cells. PLoS One 2020; 15:e0240533. [PMID: 33091036 PMCID: PMC7580975 DOI: 10.1371/journal.pone.0240533] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 01/21/2023] Open
Abstract
Ginsenoside Rg3 (Rg3) has been studied in several cancer models and is suggested to act through various pharmacological effects. We investigated the anticancer properties of Rg3 through myeloid-derived suppressor cell (MDSC) modulation in FM3A mouse mammary carcinoma cells. The effects of Rg3 on MDSCs and consequent changes in cancer stem-like cells (CSCs) and epithelial-mesenchymal transition (EMT) were evaluated by diverse methods. MDSCs promoted cancer by enhancing breast cancer stemness and promoting EMT. Rg3 at a dose without obvious cytotoxicity downregulated MDSCs and repressed MDSC-induced cancer stemness and EMT. Mechanistic investigations suggested that these inhibitory effects of Rg3 on MDSCs and corresponding cancer progression depend upon suppression of the STAT3-dependent pathway, tumor-derived cytokines, and the NOTCH signaling pathway. In a mouse model, MDSCs accelerated tumor progression, and Rg3 delayed tumor growth, which is consistent with the results of in vitro experiments. These results indicated that Rg3 could effectively inhibit the progression of breast cancer. The anticancer effect of Rg3 might be partially due to its downregulation of MDSCs and consequent repression of cancer stemness and EMT in breast cancer. Hence, we suggest the regulation of MDSCs through Rg3 treatment as an effective therapeutic strategy for breast cancer patients.
Collapse
|
20
|
Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H, Chen N. Anticancer property of ginsenoside Rh2 from ginseng. Eur J Med Chem 2020; 203:112627. [PMID: 32702586 DOI: 10.1016/j.ejmech.2020.112627] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Ginseng has been used as a well-known traditional Chinese medicine since ancient times. Ginsenosides as its main active constituents possess a broad scope of pharmacological properties including stimulating immune function, enhancing cardiovascular health, increasing resistance to stress, improving memory and learning, developing social functioning and mental health in normal persons, and chemotherapy. Ginsenoside Rh2 (Rh2) is one of the major bioactive ginsenosides from Panax ginseng. When applied to cancer treatment, Rh2 not only exhibits the anti-proliferation, anti-invasion, anti-metastasis, induction of cell cycle arrest, promotion of differentiation, and reversal of multi-drug resistance activities against multiple tumor cells, but also alleviates the side effects after chemotherapy or radiotherapy. In the past decades, nearly 200 studies on Rh2 in the treatment of cancer have been published, however no specific reviews have been conducted by now. So the purpose of this review is to provide a systematic summary and analysis of the anticancer effects and the potential mechanisms of Rh2 extracted from Ginseng then give a future prospects about it. In the end of this paper the metabolism and derivatives of Rh2 also have been documented.
Collapse
Affiliation(s)
- Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Shifeng Chu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Meiyu Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yan Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yingjiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Xin Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yani Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yaomei Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Huiqin Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Naihong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| |
Collapse
|
21
|
Li C, Wang Z, Wang T, Wang G, Li G, Sun C, Lin J, Sun L, Sun X, Cho S, Wang H, Gao Y, Tian J. Repeated-dose 26-week oral toxicity study of ginsenoside compound K in Beagle dogs. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112323. [PMID: 31639487 DOI: 10.1016/j.jep.2019.112323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/06/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginsenoside compound K (CK), a product produced by the intestinal bacteria-mediated breakdown of ginsenoside, exhibits a wide array of pharmacological activities against diverse targets. However, few of preclinical safety evaluation of CK is reported. AIMS OF THE STUDY The present study therefore sought to assess the toxicity of oral CK in Beagle dogs over a 26-week period. MATERIAL AND METHODS All dogs received 4, 12, or 36 mg/kg oral CK doses for 26 weeks with regular monitoring, followed by a 4-week recovery period. Animals were monitored through measurements of temperature, weight, food intake, blood chemistry and hematological findings, electrocardiogram (ECG) measurements, urinalysis, gross necropsy and organ weight and tissue histopathology. RESULTS Animals in the 36 mg/kg group exhibited an apparent reduction in body weight over the study period, in addition to the presence of focal liver necrosis and increased plasma enzyme levels (alanine aminotransferase, ALT; alkaline phosphatase, ALP) consistent with hepatotoxicity, although there was some evidence suggesting this toxicity was reversible. Animals in the 4 and 12 mg/kg groups did not exhibit any apparent toxicity for any measured parameters. CONCLUSION These results thus indicate that the no observed adverse effect level (NOAEL) in dogs is 12 mg/kg.
Collapse
Affiliation(s)
- Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Zhezhe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Tong Wang
- School of Life Science, Yantai University, Yantai, 264005, PR China
| | - Guangfei Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Guisheng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Chengfeng Sun
- School of Life Science, Yantai University, Yantai, 264005, PR China
| | - Jian Lin
- School of Life Science, Yantai University, Yantai, 264005, PR China
| | - Liqin Sun
- School of Life Science, Yantai University, Yantai, 264005, PR China
| | - Xilin Sun
- Yantai Laishan Changen Hospital, Yantai, 264005, PR China
| | - Susan Cho
- NutraSource, Inc., Clarksville, MD, 21029, USA
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yonglin Gao
- School of Life Science, Yantai University, Yantai, 264005, PR China.
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|