1
|
Fu J, Cheng L, Zhang J, Sun R, Yu M, Wu M, Li S, Cui X. Isoliquiritin targeting m5C RNA methylation improves mitophagy in doxorubicin-induced myocardial cardiotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156293. [PMID: 39657405 DOI: 10.1016/j.phymed.2024.156293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/03/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Doxorubicin (DOX)-induced myocardial cardiotoxicity (DIC) severely limits its clinical application, and there is no optimal therapeutic agent available. Recent studies revealed that activation of BNIP3-mediated mitophagy and the inhibition of m5C RNA methylation played a crucial role in DIC. Isoliquiritin (ISL) has remarkable cardiac protective effect. But its potential mechanisms against DIC still remains unknown. PURPOSE To investigate the therapeutic effect and potential mechanism of Isoliquiritin(ISL) on doxorubicin(DOX)-induced myocardial cardiotoxicity(DIC). METHODS Bioinformatics analyses and network pharmacology were carried out to identify effective target of ISL against DIC. Molecular docking and surface-plasmon resonance (SPR) were used to confirm the predict. The mechanism of ISL regulating mitophagy through M5C methylation to improve DIC was demonstrated in vitro and in vivo experiments. The methylation modification was verified by MeRIP-qPCR. Cell model of DIC was constructed to evaluate mitochondrial function by measuring cell viability, myocardial enzyme level, mitochondrial quality, mCherry-EGFP analysis and TEM morphometry with the application of mitophagy inhibitor (Baf A1) and inducer (CCCP). Myocardial injury in mice with DIC was assessed by survival rate, myocardial enzyme level, HE staining, echocardiography and detection of mitophagy markers. RESULTS The decreased level of m5C writer TRDMT1 and mitochondrial marker (BNIP3) were chosen for the research. After the docking and SPR verification between ISL and TRDMT1, the improvement of ISL on TRDMT1 and TRDMT1-associated m5C level of BNIP3 was identified. In vitro and in vivo experiments showed that the cardiac markers, heart function, and mitochondrial function were recovered after ISL application. Meanwhile, the results manifested that there was blocked autophagy flow indicated by mCherry-EGFP analysis, then the suppressed mitophagy caused the mitochondria damage associated cell death. ISL could alleviate the autophagy block, and Baf A1 couldn't influnce the ISL effect. Compared to CCCP group, Mitochondrial maker TOMM20 significantly elevated treated with both CCCP and DOX, indicating that DOX impaired mitophagy for clearing damaged mitochondrial proteins. After ISL treated, a higher level of co-localization between mitochondrial and BNIP3 was observed, inducing restoration of mitochondrial function. CONCLUSION This study showed that ISL may exert cardioprotective role restoring BNIP3-mediated mitophagy by targeting TRDMT1 to alleviate DOX-induced macro-autophagy-dependent protein homeostasis and acquired blocking of mitophagy, providing a new idea for the clinical treatment of DIC.
Collapse
Affiliation(s)
- Jiaqi Fu
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Li Cheng
- Department of nursing, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Zhang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Runjie Sun
- Center of Oncology and Hematology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine/Shandong Hospital of Integrated Traditional Chinese and Western Medicine, Jinan, China.
| | - Manya Yu
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Muyun Wu
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Suzhen Li
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xing Cui
- Center of Oncology and Hematology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine/Shandong Hospital of Integrated Traditional Chinese and Western Medicine, Jinan, China.
| |
Collapse
|
2
|
Pan J, Wang J, Lei Z, Wang H, Zeng N, Zou J, Zhang X, Sun J, Guo D, Luan F, Shi Y. Therapeutic Potential of Chinese Herbal Medicine and Underlying Mechanism for the Treatment of Myocardial Infarction. Phytother Res 2024. [PMID: 39523856 DOI: 10.1002/ptr.8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024]
Abstract
Myocardial infarction (MI) is a prevalent disease with high mortality rates worldwide. The course of MI is intricate and variable, necessitating personalized treatment strategies based on different mechanisms. However, variety of postoperative complications and rejections, such as heart failure, arrhythmias, cardiac rupture, and left ventricular thrombus, contribute to a poor prognosis. Despite the inclusion of antiplatelet agents and statins in the conventional treatment regimen, their clinical applicability is constrained by potential adverse effects and limited efficacy. Additionally, the mechanisms leading to MI are complex and diverse. Therefore, the development of novel compounds for MI treatment. The use of traditional Chinese medicine (TCM) in the prevention and treatment of cardiovascular diseases, including MI, is grounded in its profound historical background, comprehensive theoretical system, and accumulated knowledge. An increasing number of contemporary evidence-based medical studies have demonstrated that TCM plays a significant role in alleviating symptoms and improving the quality of life for MI patients. Chinese herbal formulations and active ingredients can intervene in the pathological process of MI through key factors such as inflammation, oxidative stress, apoptosis, ferroptosis, pyroptosis, myocardial fibrosis, angiogenesis, and autophagy. This article critically reviews existing herbal formulations from an evidence-based medicine perspective, evaluating their research status and potential clinical applications. Additionally, it explores recent advancements in the use of herbal medicines and their components for the prevention and treatment of MI, offering detailed insights into their mechanisms of action.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jinhui Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Ziwen Lei
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - He Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
3
|
Liu R, Chen Y, Zhang X, Cai Y, Xu S, Xu Q, Li X, Li W, Liu P, Liu W. Pharmacological efficacy study of the cardio-cerebral stasis transforming medicines on cerebral ischemia and myocardial infarction in rats. Heliyon 2024; 10:e39162. [PMID: 39640627 PMCID: PMC11620065 DOI: 10.1016/j.heliyon.2024.e39162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
The purpose of this study was to investigate the efficacy and mechanisms of cardio-cerebral stasis transforming medicines (CCSTM) against cerebral infarction (CI) and myocardial infarction (MI). CI modeling was conducted using the refined Longa suture-occluded technique, while MI modeling was accomplished through the occlusion of the anterior descending branch of the left coronary artery. We found that compared with the model groups, CCSTM decreased the infarct size in models of CI and MI in a dose-dependent manner. After brain ischemia, CCSTM decreased the level of myeloperoxidase (MPO) and malondialdehyde (MDA), and increased the level of superoxide dismutase (SOD). Besides, CCSTM reduced the concentrations of lactate dehydrogenase (LDH), malondialdehyde MDA, and endothelin (ET) in the plasma of rats injured with MI. Histological examination of brain sections revealed that CCSTM alleviated cerebral damage after ischemia compared with the model group. CCSTM can reduce myocardial and cerebral infarction injury, and the oxidation level after myocardial and cerebral infarction in rats.
Collapse
Affiliation(s)
- Ruilian Liu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- The Hospital Affiliated to Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Yangchu Chen
- Beijing Jianhua Research Institute of Medicine, Beijing, 100000, PR China
| | - Xili Zhang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Yuhan Cai
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Shuang Xu
- The Hospital Affiliated to Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan Province, PR China
| | - Qian Xu
- The Hospital Affiliated to Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan Province, PR China
| | - Xin Li
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Wenjiao Li
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Pingan Liu
- Hunan Academy of Chinese Medicine, Changsha, 410017, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Wenlong Liu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| |
Collapse
|
4
|
Wang A, Song Q, Li Y, Fang H, Ma X, Li Y, Wei B, Pan C. Effect of traditional Chinese medicine on metabolism disturbance in ischemic heart diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118143. [PMID: 38583735 DOI: 10.1016/j.jep.2024.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic heart diseases (IHD), characterized by metabolic dysregulation, contributes majorly to the global morbidity and mortality. Glucose, lipid and amino acid metabolism are critical energy production for cardiomyocytes, and disturbances of these metabolism lead to the cardiac injury. Traditional Chinese medicine (TCM), widely used for treating IHD, have been demonstrated to effectively and safely regulate the cardiac metabolism reprogramming. AIM OF THE REVIEW This study discussed and analyzed the disturbed cardiac metabolism induced by IHD and development of formulas, extracts, single herb, bioactive compounds of TCM ameliorating IHD injury via metabolism regulation, with the aim of providing a basis for the development of clinical application of therapeutic strategies for TCM in IHD. MATERIALS AND METHODS With "ischemic heart disease", "myocardial infarction", "myocardial ischemia", "metabolomics", "Chinese medicine", "herb", "extracts" "medicinal plants", "glucose", "lipid metabolism", "amino acid" as the main keywords, PubMed, Web of Science, and other online search engines were used for literature retrieval. RESULTS IHD exhibits a close association with metabolism disorders, including but not limited to glycolysis, the TCA cycle, oxidative phosphorylation, branched-chain amino acids, fatty acid β-oxidation, ketone body metabolism, sphingolipid and glycerol-phospholipid metabolism. The therapeutic potential of TCM lies in its ability to regulate these disturbed cardiac metabolisms. Additionally, the active ingredients of TCM have depicted wonderful effects in cardiac metabolism reprogramming in IHD. CONCLUSION Drawing from the principles of TCM, we have pinpointed specific herbal remedies for the treatment of IHD, and leveraged advanced metabolomics technologies to uncover the effect of these TCMs on metabolomics alteration. In the future, further clinical experimental studies should be included to explore whether more TCM medicines can play a therapeutic role in IHD by reversing cardiac metabolism disorders; multi-omics would be conducted to explore more pathways and genes targeting such metabolism reprogramming by TCMs, and to seek more TCM therapies for IHD.
Collapse
Affiliation(s)
- Anpei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Qiubin Song
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yi Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Hai Fang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaoji Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yunxia Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Chengxue Pan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
5
|
Chang M, Lei Y, Zhang J, Xu J, Wu H, Tang S, Yang H. Effect of Naoxintong Capsule on Microglia and Proteomics of Cortex After Myocardial Infarction in Rats. Mol Neurobiol 2024; 61:2904-2920. [PMID: 37948003 DOI: 10.1007/s12035-023-03724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Neuroinflammation caused by microglia in the central nervous system (CNS) is observed after myocardial infarction (MI). However, the inflammatory response mechanism remains unclear. BuChang Naoxintong capsule (NXT) is a Chinese medicine for treating ischemic cardio-cerebrovascular diseases, requiring more studies to understand the pharmacodynamic mechanism. Permanent ligation of the left anterior descending coronary artery (LAD) was performed in rats. Additionally, histopathological staining in the left ventricular (LV) and immunofluorescence within the brain cortex after 1 d and 7 d of MI were performed to determine the NXT pharmacodynamic action and best administration dosage. Proteomics helped obtain the essential proteins related to neuroinflammation and MI in the heart and brain tissue after 7 d of MI. Based on TTC, HE, Masson, and immunofluorescence staining results of CD206 and IBA-1, NXT demonstrated a better pharmacodynamic action towards myocardial injury and neuroinflammation after 7 d of MI. Moreover, the human equivalent dosage of NXT (220 mg/kg) became the best administration dose. The proteome bioinformatics analysis in the LV and brain cortex was performed. Thus, the elongation of very long-chain fatty acids protein 5 (ELOVL5) and ATP-binding cassette subfamily G member 4 (ABCG4) became critical proteins related to MI and neuroinflammation. The western blotting results indicated that ABCG4 expression possessed the same trend as the proteomics results. The auto-dock results revealed that ABCG4 had a good binding ability with Ferulic acid, Paeoniflorin, and Tanshinone II A, the key ingredients of NXT. The cellular thermal shift assay results demonstrated that ABCG4 showed better thermal stability post-NXT treatment. NXT can improve myocardial injury, such as heart infarct size, pathological injury, myocardial fibrosis, and inflammatory cell infiltration. Additionally, brain neuroinflammation induced by microglia after MI affects the expression and structure of ABCG4. Thus, ABCG4 could be the key protein associated with MI and neuroinflammation.
Collapse
Affiliation(s)
- Mengli Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
6
|
Hu M, Li H, Ni S, Wang S. The protective effects of Zhi-Gan-Cao-Tang against diabetic myocardial infarction injury and identification of its effective constituents. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116320. [PMID: 36828197 DOI: 10.1016/j.jep.2023.116320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular complications are highly prevalent in patients with diabetes. Zhi-Gan-Cao-Tang (ZGCT), a famous traditional Chinese medicine (TCM) prescription, can be used for the treatment of diabetes with cardiovascular disease complications. ZGCT is composed of nine Chinese herbs: the radix and rhizoma of Glycyrrhiza uralensis Fisch. (Gancao in Chinese, 12 g), the radix of Rehmannia glutinosa Libosch. (Dihuang in Chinese, 50 g), the radix and rhizoma of Panax ginseng C. A. Mey. (Renshen in Chinese, 6 g), the radix of Ophiopogon japonicus (L. f.) Ker-Gawl. (Maidong in Chinese, 10 g), the fructus of Ziziphus jujuba Mill. (Dazao in Chinese, 18 g), the fructus of Cannabis sativa L. (Maren in Chinese, 10 g), Donkey-hide gelatine (Ejiao in Chinese, 6 g), the ramulus of Cinnamomum cassia Presl (Guizhi in Chinese, 9 g), and the fresh rhizoma of Zingiber officinale Rosc. (Shengjiang in Chinese, 9 g). Many of these Chinese herbs are also used in other systems of medicine (Japan, India, European, etc.). However, the effects and effective constituents of ZGCT against diabetic cardiovascular disease remain unclear. AIM OF THE STUDY This study aimed to investigate the protective effect of ZGCT against diabetic myocardial infarction (DMI) injury in vivo and in vitro and to identify the effective constituents of ZGCT. MATERIALS AND METHODS The in vivo effect on DMI injury was evaluated in a DMI mouse model. The in vitro effect and effective constituent screening experiments were conducted in an H9c2 cardiomyocyte injury model induced by high glucose and hypoxia. RESULTS It was found that ZGCT significantly reduced myocardial infarction size and serum lactate dehydrogenase (LDH) levels in DMI mice. Myocardial histopathological experiments showed that ZGCT alleviated the disordered arrangement and fracture of muscle fibers and cell disappearance and reduced inflammatory cell infiltration. Cellular experiments showed that ZGCT inhibited cardiomyocyte apoptosis by decreasing the expression of the proapoptotic factor Bax. In addition, it inhibited inflammatory reactions by suppressing the activation of the IκBα/NF-κB pathway and the expression of iNOS. Eight constituents from six Chinese herbs in the recipe of ZGCT were found to enhance the viability of injured cardiomyocytes, and six effective constituents played protective roles through anti-apoptotic and/or anti-inflammatory activities. In addition, one of the effective constituents, glycyrrhizic acid, was verified in vivo to have cardioprotective effect on DMI mice. CONCLUSIONS The TCM prescription ZGCT protects against DMI by inhibiting cardiomyocyte apoptosis and reducing inflammatory reactions. Eight effective constituents of ZGCT were identified. This study provides a scientific basis for the clinical application of ZGCT and is valuable for quality marker research on this prescription.
Collapse
Affiliation(s)
- Mengting Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoran Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengkun Ni
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shufang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321000, China.
| |
Collapse
|
7
|
Kumar S, Shih CM, Tsai LW, Dubey R, Gupta D, Chakraborty T, Sharma N, Singh AV, Swarup V, Singh HN. Transcriptomic Profiling Unravels Novel Deregulated Gene Signatures Associated with Acute Myocardial Infarction: A Bioinformatics Approach. Genes (Basel) 2022; 13:genes13122321. [PMID: 36553589 PMCID: PMC9777571 DOI: 10.3390/genes13122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction (AMI) is a severe disease with elevated morbidity and mortality rate worldwide. This is attributed to great losses of cardiomyocytes, which can trigger the alteration of gene expression patterns. Although several attempts have been made to assess the AMI biomarkers, to date their role in rescuing myocardial injury remains unclear. Therefore, the current study investigated three independent microarray-based gene expression datasets from AMI patients (n = 85) and their age-sex-matched healthy controls (n = 70), to identify novel gene signatures that might be involved in cardioprotection. The differentially expressed genes (DEGs) were analyzed using 'GEO2R', and weighted gene correlation network analysis (WGCNA) was performed to identify biomarkers/modules. We found 91 DEGs, of which the number of upregulated and downregulated genes were 22 and 5, respectively. Specifically, we found that the deregulated genes such as ADOR-A3, BMP6, VPS8, and GPx3, may be associated with AMI. WGCNA revealed four highly preserved modules among all datasets. The 'Enrichr' unveiled the presence of miR-660 and STAT1, which is known to affect AMI severity. Conclusively, these genes and miRNA might play a crucial role the rescue of cardiomyocytes from severe damage, which could be helpful in developing appropriate therapeutic strategies for the management of AMI.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park-III, Greater Noida 201310, India
| | - Chun-Ming Shih
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 111031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 111031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 111031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 111031, Taiwan
| | - Deepika Gupta
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tanmoy Chakraborty
- Department of Chemistry and Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park-III, Greater Noida 201310, India
| | - Naveen Sharma
- Biomedical Informatics Division, Indian Council of Medical Research, New Delhi 110029, India
| | | | - Vishnu Swarup
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
- Correspondence: (V.S.); or (H.N.S.)
| | - Himanshu Narayan Singh
- Department of System Biology, University of Columbia Irving Medical Center, New York, NY 10032, USA
- Correspondence: (V.S.); or (H.N.S.)
| |
Collapse
|
8
|
Zhang L, Wang LL, Zeng H, Li B, Yang H, Wang GJ, Li P. LC-MS-based metabolomics reveals metabolic changes in short- and long-term administration of Compound Danshen Dripping Pills against acute myocardial infarction in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154269. [PMID: 35717805 DOI: 10.1016/j.phymed.2022.154269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Mild and systematically improving multiple metabolic disorders was a focused view for Compound Danshen Dripping Pills playing synergistic effects through multiple components and multiple targets. The difference in overall therapeutic effects and endogenous metabolic regulation between short- and long-term administration was still unclear. PURPOSE This study aimed to explore the difference in endogenous metabolic regulation between short- and long-term Compound Danshen Dripping Pills (CDDP) administration against acute myocardial infarction (AMI). METHODS The model of AMI was induced by ligating the left anterior descending coronary artery. The cardiac protection effects of CDDP were investigated by echocardiography, 1- or 2-week were defined as short- and long-term based on desirable efficacy variability. The entire metabolic changes between short- and long-term administration of CDDP were profiled by UPLC-Q-TOF-MS. In addition, the metabolic regulatory network of CDDP administration against myocardial infarction rats was also compared with those of a typical chemical drug isosorbide 5-mononitrate (ISMN). RESULTS After 1- or 2-week continuous oral administration, CDDP could significantly alleviate AMI-induced cardiac dysfunction. By using LC-MS-based metabolomics analyses, we systematically investigated the metabolic profiles of plasma and heart tissue samples at fixed exposure time-points (2 h, 24 h) from AMI rats with CDDP treatment. Most interestingly, global endogenous metabolic changes were observed in cardiac samples collected at different stages post consecutive CDDP administration, fluctuating at 2 and 24 h after 1 week but stabilizing after 2 weeks. The disrupted metabolic pathways such as glycerophospholipid, amino acids, fatty acids, and arachidonic acid metabolism were reconstructed after both short- and long-term CDDP treatment, while taurine and hypotaurine metabolism and purine metabolism contributed to the whole efficacy after long-term CDDP administration. CONCLUSION Long-term CDDP treatment plays prolonged and stable efficacy against AMI compared with short-term treatment by specifically regulating purine and taurine and hypotaurine metabolism and systematically redressing metabolic disorders.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Ling Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zeng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guang-Ji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Wang LS, Yen PT, Weng SF, Hsu JH, Yeh JL. Clinical Patterns of Traditional Chinese Medicine for Ischemic Heart Disease Treatment: A Population-Based Cohort Study. Medicina (B Aires) 2022; 58:medicina58070879. [PMID: 35888597 PMCID: PMC9320598 DOI: 10.3390/medicina58070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background and objectives: Traditional Chinese medicines (TCMs) are widely prescribed to relieve ischemic heart disease (IHD); however, no cohort studies have been conducted on the use of TCMs for patients with IHD. The aim of the study was to analyze TCM prescription patterns for patients with IHD. Materials and Methods: The retrospective population-based study employed a randomly sampled cohort of 4317 subjects who visited TCM clinics. Data were obtained from the National Health Insurance Research Database (NHIRD) of Taiwan for the period covering 2000 to 2017. Data analysis focused on the top ten most commonly prescribed formulae and single TCMs. We also examined the most common two- and three-drug combinations of TCM in single prescriptions. Demographic characteristics included age and sex distributions. Analysis was performed on 22,441 prescriptions. Results: The majority of TCM patients were male (53.6%) and over 50 years of age (65.1%). Zhi-Gan-Cao-Tang (24.76%) was the most frequently prescribed formulae, and Danshen (28.89%) was the most frequently prescribed single TCM for the treatment of IHD. The most common two- and three-drug TCM combinations were Xue-Fu-Zhu-Yu-Tang and Danshen” (7.51%) and “Zhi-Gan-Cao-Tang, Yang-Xin-Tang, and Gua-Lou-Xie-Bai-Ban-Xia-Tang” (2.79%). Conclusions: Our results suggest that most of the frequently prescribed TCMs for IHD were Qi toning agents that deal with cardiovascular disease through the promotion of blood circulation. The widespread use of these drugs warrants large-scale, randomized clinical trials to investigate their effectiveness and safety.
Collapse
Affiliation(s)
- Lung-Shuo Wang
- Department of Chinese Medicine, Sin-Lau Hospital, Tainan 70142, Taiwan; (L.-S.W.); (P.-T.Y.)
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Pei-Tzu Yen
- Department of Chinese Medicine, Sin-Lau Hospital, Tainan 70142, Taiwan; (L.-S.W.); (P.-T.Y.)
| | - Shih-Feng Weng
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jong-Hau Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.H.); (J.-L.Y.)
| | - Jwu-Lai Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.H.); (J.-L.Y.)
| |
Collapse
|
10
|
Yang Y, Yang J, Fu W, Zhou P, He Y, Fang M, Wan H, Zhou H. Pharmacokinetic Comparison of Nine Bioactive Compounds of Guanxinshutong Capsule in Normal and Acute Myocardial Infarction Rats. Eur J Drug Metab Pharmacokinet 2022; 47:653-665. [PMID: 35751765 DOI: 10.1007/s13318-022-00777-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Guanxinshutong capsules (GXST) are usually used to treat acute myocardial infarction (AMI), and the clinical effect of GXST is significant. However, there have been only a few studies on the pharmacokinetics of GXST against AMI injury. The objective of this study was to investigate the pharmacokinetics of nine bioactive compounds of GXST in normal and AMI rats. METHODS In this work, a rat model of AMI was established by ligating the left anterior descending coronary artery. The pharmacokinetic parameters of nine bioactive compounds (gallic acid, danshensu, protocatechuic aldehyde, rosmarinic acid, salvianolic acid B and salvianolic acid A, dihydrotanshinone I, cryptotanshinone, and tanshinone IIA) in the plasma of AMI and normal rats were compared under the same dose of GXST by a LC-MS/MS method. Then, we selected P-glycoprotein (P-gp) and some representative cytochrome P450 enzymes (CYPs) for molecular docking to further analyze the interaction between these compounds. RESULTS The pharmacokinetic studies showed that the area under the concentration-time curve (AUC) and maximum concentration (Cmax) of phenolic acids were relatively large, while the half-life (T½) of tanshinones was longer. Among the nine components, salvianolic acid B in AMI rats had the maximum area under the concentration-time curve (AUC0-∞ = 1961.8 ng·h/mL), which showed a significant difference compared with normal rats (P < 0.05). Tanshinone IIA in AMI rats had the longest half-life (T½ = 10.1 h), and it was markedly longer than that in normal rats (P < 0.01). In addition, compared with the normal group, the AUC, Cmax, T½ , and time to reach Cmax (Tmax) of gallic acid increased significantly in AMI rats (P < 0.05 or P < 0.01). For the molecular docking results, it was found that gallic acid may interact with CYP1A2, CYP2D6, and CYP2C9, while danshensu may interact with CYP2C9. Tanshinones may interact with CYP1A2, CYP2D6, CYP2C9, and P-gp. CONCLUSIONS The results suggest that the pathological injury caused by AMI has a significant impact on the pharmacokinetic characteristics of some active compounds in GXST, which are conducive to providing a reference and promoting rational clinical drug use.
Collapse
Affiliation(s)
- Yuting Yang
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Wei Fu
- Buchang Pharmaceutical Co., Ltd., Xi'an, 710075, People's Republic of China
| | - Peng Zhou
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yu He
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Mingsun Fang
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Haitong Wan
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
11
|
Liu J, Zhang M, Qin C, Wang Z, Chen J, Wang R, Hu J, Zou Q, Niu X. Resveratrol Attenuate Myocardial Injury by Inhibiting Ferroptosis Via Inducing KAT5/GPX4 in Myocardial Infarction. Front Pharmacol 2022; 13:906073. [PMID: 35685642 PMCID: PMC9171715 DOI: 10.3389/fphar.2022.906073] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Myocardial infarction (MI) is a coronary artery-related disease and ranks as the leading cause of sudden death globally. Resveratrol (Res) is a bioactive component and has presented antioxidant, anti-inflammatory and anti-microbial properties. However, the effect of Res on ferroptosis during MI progression remains elusive. Here, we aimed to explore the function of Res in the regulation of ferroptosis and myocardial injury in MI. We observed that the treatment of Res attenuated the MI-related myocardium injury and fibrosis in the rats. The expression of collagen 1 and α-SMA was induced in MI rats, in which the treatment of Res could decrease the expression. Treatment of Res suppressed the levels of IL-6 and IL-1β in MI rats. The GSH levels were inhibited and MDA, lipid ROS, and Fe2+ levels were induced in MI rats, in which the treatment of Res could reverse the phenotypes. Meanwhile, the expression of GPX4 and SLC7A11 was reduced in MI rats, while the treatment of Res could rescue the expression in the model. Meanwhile, Res relieved oxygen-glucose deprivation (OGD)-induced cardiomyocyte injury. Importantly, Res repressed OGD-induced cardiomyocyte ferroptosis in vitro. Mechanically, we identified that Res was able to enhance GPX4 expression by inducing KAT5 expression. We confirmed that KAT5 alleviated OGD-induced cardiomyocyte injury and ferroptosis. The depletion of KAT5 or GPX4 could reverse the effect of Res on OGD-induced cardiomyocyte injury. Thus, we concluded that Res attenuated myocardial injury by inhibiting ferroptosis via inducing KAT5/GPX4 in myocardial infarction. Our finding provides new evidence of the potential therapeutic effect of Res on MI by targeting ferroptosis.
Collapse
|
12
|
Guo S, Tan Y, Huang Z, Li Y, Liu W, Fan X, Zhang J, Stalin A, Fu C, Wu Z, Wang P, Zhou W, Liu X, Wu C, Jia S, Zhang J, Duan X, Wu J. Revealing Calcium Signaling Pathway as Novel Mechanism of Danhong Injection for Treating Acute Myocardial Infarction by Systems Pharmacology and Experiment Validation. Front Pharmacol 2022; 13:839936. [PMID: 35281886 PMCID: PMC8905633 DOI: 10.3389/fphar.2022.839936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction: Danhong injection (DHI) is a traditional Chinese medicine preparation commonly used in the clinical treatment of acute myocardial infarction (AMI). In this study, the active components of DHI and its mechanism in the treatment of AMI were investigated. Methods: The chemical components of DHI were detected by the ultra-high-performance liquid chromatography-linear trap quadrupole-orbitrap-tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS), and the targets and pathways of DHI in the treatment of AMI were analyzed by systems pharmacology, which was verified by molecular docking and animal experiments. Results: A total of 12 active components of DHI were obtained, and 158 common targets of component and disease were identified by systems pharmacology. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results showed that DHI is closely related to the calcium signaling pathway in the treatment of AMI. Molecular docking showed that the key target protein has good binding affinity to related compounds. The experimental results showed that compared with the model group, LVAWs, EF, and FS significantly (p < 0.05) increased in the DHI group. The percentage of myocardial infarction significantly (p < 0.01) decreased, both in the ventricular and total cardiac regions, and the pathological damage of myocardial tissue also decreased. In addition, the expression of the protein CaMK II decreased (p < 0.01) and the expression of SERCA significantly increased (p < 0.01). Conclusion: This study revealed that ferulic acid, caffeic acid and rosmarinic acid could inhibit AMI by regulating PLB, CaMK II, SERCA, etc. And mechanistically, calcium signaling pathway was critically involved. Combination of systems pharmacology prediction with experimental validation may provide a scientific basis for in-depth clinical investigation of the material basis of DHI.
Collapse
Affiliation(s)
- Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihong Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yikui Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiyu Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaotian Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Changgeng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhishan Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Penglong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,China-Japan Friendship Hospital, Beijing, China
| | - Xinkui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxia Duan
- Beijing Zest Bridge Medical Technology Inc., Beijing, China
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Liu T, Yan T, Jia X, Liu J, Ma R, Wang Y, Wang X, Liang Y, Xiao Y, Dong Y. Systematic exploration of the potential material basis and molecular mechanism of the Mongolian medicine Nutmeg-5 in improving cardiac remodeling after myocardial infarction. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114847. [PMID: 34800647 DOI: 10.1016/j.jep.2021.114847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nutmeg-5, which consists of Myristica fragrans Houtt., Aucklandia lappa Decne., Inula helenium L., Fructus Choerospondiatis and Piper longum L., is an ancient and classic formula in traditional Mongolian medicine that is widely used in the treatment of ischemic heart disease. However, its material basis and pharmacological mechanisms remain to be fully elucidated. AIM OF THE STUDY The aim of this study was to explore the potential material basis and molecular mechanism of Nutmeg-5 in improving cardiac remodeling after myocardial infarction (MI). MATERIALS AND METHODS The constituents of Nutmeg-5 absorbed into the blood were identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). A mouse MI model was induced in male Kunming mice by permanent ligation of the left anterior descending coronary artery (LDA) ligation. Echocardiography was performed to assess cardiac function. The protective effect of Nutmeg-5 and compound Danshen dripping pills as positive control medicine on post-MI cardiac remodeling was evaluated by tissue histology and determination of the serum protein levels of biomarkers of myocardial injury. RNA sequencing analysis of mouse left ventricle tissue was performed to explore the molecular mechanism of Nutmeg-5 in cardiac remodeling after MI. RESULTS A total of 27 constituents absorbed into blood were identified in rat plasma following gavage administration of Nutmeg-5 (0.54 g/kg) for 1 h. We found that ventricular remodeling after MI was significantly improved after Nutmeg-5 treatment in mice, which was demonstrated by decreased mortality, better cardiac function, decreased heart weight to body weight and heart weight to tibia length ratios, and attenuated cardiac fibrosis and myocardial injury. RNA sequencing revealed that the protective effect of Nutmeg-5 on cardiac remodeling after MI was associated with improved heart metabolism. Further study found that Nutmeg-5 treatment could preserve the ultrastructure of mitochondria and upregulate gene expression related to mitochondrial function and structure. HIF-1α (hypoxia inducible factor 1, alpha subunit) expression was significantly upregulated in the hearts of MI mice and significantly suppressed in the hearts of Nutmeg-5-treated mice. In addition, Nutmeg-5 treatment significantly activated the peroxisome proliferator-activated receptor alpha signaling pathway, which was inhibited in the hearts of MI mice. CONCLUSIONS Nutmeg-5 attenuates cardiac remodeling after MI by improving heart metabolism and preserving mitochondrial dysfunction by inhibiting HIF-1α expression in the mouse heart after MI.
Collapse
Affiliation(s)
- Tianlong Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, PR China
| | - Tingting Yan
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Xin Jia
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, PR China; Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Jing Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, PR China
| | - Ruilian Ma
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, PR China
| | - Yi Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, PR China
| | - Xianjue Wang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, 010050, Inner Mongolia, PR China
| | - Yabin Liang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, 010050, Inner Mongolia, PR China
| | - Yunfeng Xiao
- Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Inner Mongolia Medical University, Hohhot, 010110, PR China; Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China
| | - Yu Dong
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| |
Collapse
|
14
|
The Natural Cryoprotectant Honey for Fertility Cryopreservation. Bioengineering (Basel) 2022; 9:bioengineering9030088. [PMID: 35324777 PMCID: PMC8945096 DOI: 10.3390/bioengineering9030088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 01/22/2023] Open
Abstract
Honey is a mixture of 25 sugars with other bioactive substances (i.e., organic acids, enzymes, antioxidants, and vitamins) and has been known as a highly nutritious functional food. Traditionally, it has been widely used in medicinal applications to cure various diseases. The effectiveness of honey in different applications has been used for its antimicrobial activity, absorption of hydrops, cleansing, removing odor, assisting granulation, recovery of nutrition, and formation of tissue and epithelium, which proved that honey has dehydrating and preserving properties to make it ideal for the cryopreservation of cells and tissues. Cryopreservation is an advanced preservation technique for tissue, cells, organelles, or other biological specimen storage, performed by cooling the sample at a very low temperature. It is the most common approach to improved preserving fertility (sperm, embryos, and oocytes) in different species that may undergo various life-threatening illnesses and allows for the genetic screening of these cells to test the sample for diseases before use. However, with toxic cryoprotectant (CPA), cryopreservation of fertility has been challenging because of their particular structure and sensitivity to chilling. Honey’s unique composition, as well as its dehydrating and preserving properties, qualify it to be used as a natural cryoprotectant. The aim of this study is to emphasize the ability of honey as a natural cryoprotectant in cryopreservation. The articles for this review were searched from Google Scholar, PubMed, Science Direct, Web of Science, and Scopus, using the keywords, honey, cryopreservation, natural cryoprotectant/CPAs, extenders, and fertility. Honey, as a natural cryoprotectant in fertility cryopreservation, yielded satisfactory results, with respect to improved post-thaw quality and viability. It is now proved as a non-toxic and highly efficient natural cryoprotectant in fertility preservation because its increasing viscosity at low temperature can provide a protective barrier to cells by reducing ice formation. Furthermore, its antioxidant property plays a vital role in protecting the cells from thermal damage by reducing the reactive oxygen species (ROS). This review provides a road map for future studies to investigate the potential of honey in the cryopreservation of other cells and tissue and contribute to the scientific research, regarding this remarkable natural product.
Collapse
|
15
|
Zhang X, Wang M, Wang W, Li L, Sun X. Utilization of traditional Chinese medicine in the intensive care unit. Chin Med 2021; 16:84. [PMID: 34425877 PMCID: PMC8382104 DOI: 10.1186/s13020-021-00496-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Previous studies showed that traditional Chinese medicine (TCM) may be effective for patients with critical conditions. However, the extent to which TCM is used in intensive care units (ICUs) remains less investigated. This study aimed to investigate the utilization of TCM among ICU patients. Using a cross-sectional study design, we examined the use of TCMs among ICU patients. The data were from a well-established ICU registry from a large teaching hospital in west China. Our study found that TCM was widely used among ICU, in particular TCM injections and oral liquids. The use of TCM often differed by ICUs, and TCM injections and oral liquids were mostly used in neurological ICU, while Chinese herbal medicines (CHMs) were often used in general ICU. The use of TCM was also highly associated with patient characteristics. Patients with pancreatitis were administered with most TCM, patients with cerebrovascular disease with most TCM injections and those with chronic renal failure with most oral liquids. Future efforts should include generation of high-quality evidence guidelines about clinical effects of TCM interventions among ICU patients.
Collapse
Affiliation(s)
- Xia Zhang
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.,NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China.,Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Mingqi Wang
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.,NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China.,Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Wen Wang
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.,NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China.,Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Ling Li
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.,NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China.,Sichuan Center of Technology Innovation for Real World Data, Chengdu, China
| | - Xin Sun
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China. .,NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, China. .,Sichuan Center of Technology Innovation for Real World Data, Chengdu, China.
| |
Collapse
|
16
|
Wu Y, Qiu Z, Ren B, Sui F. Systematic investigation for the mechanisms and the substance basis of Yang-Xin-Ding-Ji capsule based on the metabolite profile and network pharmacology. Biomed Chromatogr 2021; 35:e5202. [PMID: 34145910 DOI: 10.1002/bmc.5202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/08/2022]
Abstract
Because traditional Chinese medicine (TCM) is a complex mixture of multiple components, the application of methodologies for evaluating single-component Western medicine in TCM studies may have certain limitations. Appropriate strategies that recognize the integrality of TCM and connect to TCM theories remain to be developed. Yang-Xin-Ding-Ji (YXDJ) capsule is originally from a classical TCM formula used for the treatment of arrhythmia. In this study, we used UPLC-Q-TOF-MS detection method, coupled with the metabolic research and network pharmacology analysis, to study the scientific connotation of the YXDJ capsule. A total of 33 absorbed constituents and 23 metabolites were identified or tentatively characterized in dosed plasma and urine, and the possible metabolic pathways were mainly methylation, oxidation, sulfation, glucuronidation, and deglucosylation. We optimized the conventional process ways of network pharmacology by collecting targets based on absorbed constituents into the blood. The constituents-target disease and Kyoto Encyclopedia of Genes pathway analysis revealed that 24 absorbed constituents, 32 target genes, and 10 key pathways were probably related to the efficacy of the YXDJ capsule against arrhythmia. The results provided a scientific basis for understanding the bioactive compounds and the pharmacological mechanism of the YXDJ capsule.
Collapse
Affiliation(s)
- Yin Wu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, People's Republic of China
| | - Zhihong Qiu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Bingnan Ren
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, People's Republic of China
| |
Collapse
|
17
|
Guo S, Wu J, Zhou W, Liu X, Liu Y, Zhang J, Jia S, Li J, Wang H. Identification and analysis of key genes associated with acute myocardial infarction by integrated bioinformatics methods. Medicine (Baltimore) 2021; 100:e25553. [PMID: 33847684 PMCID: PMC8052032 DOI: 10.1097/md.0000000000025553] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a common disease leading threat to human health around the world. Here we aimed to explore new biomarkers and potential therapeutic targets in AMI through adopting integrated bioinformatics tools. METHODS The gene expression Omnibus (GEO) database was used to obtain genes data of AMI and no-AMI whole blood. Furthermore, differentially expressed genes (DEGs) were screened using the "Limma" package in R 3.6.1 software. Functional and pathway enrichment analyses of DEGs were performed via "Bioconductor" and "GOplot" package in R 3.6.1 software. In order to screen hub DEGs, the STRING version 11.0 database, Cytoscape and molecular complex detection (MCODE) were applied. Correlation among the hub DEGs was evaluated using Pearson's correlation analysis. RESULTS By performing DEGs analysis, 289 upregulated and 62 downregulated DEGs were successfully identified from GSE66360, respectively. And they were mainly enriched in the terms of neutrophil activation, immune response, cytokine, nuclear factor kappa-B (NF-κB) signaling pathway, IL-17 signaling pathway, and tumor necrosis factor (TNF) signaling pathway. Based on the data of protein-protein interaction (PPI), the top 10 hub genes were ranked, including interleukin-8 (CXCL8), TNF, N-formyl peptide receptor 2 (FPR2), growth-regulated alpha protein (CXCL1), transcription factor AP-1 (JUN), interleukin-1 beta (IL1B), platelet basic protein (PPBP), matrix metalloproteinase-9 (MMP9), toll-like receptor 2 (TLR2), and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G). What's more, the results of correlation analysis demonstrated that there was positive correlation between the 10 hub DEGs. CONCLUSION Ten DEGs were identified as potential candidate diagnostic biomarkers for patients with AMI in present study. However, further experiments are needed to confirm the functional pathways and hub genes associated with AMI.
Collapse
|
18
|
A mixed herbal extract as an adjunctive therapy for attention deficit hyperactivity disorder: A randomized placebo-controlled trial. Integr Med Res 2021; 10:100714. [PMID: 33665099 PMCID: PMC7903061 DOI: 10.1016/j.imr.2021.100714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background Methylphenidate improves clinical symptoms and brain activity in attention deficit hyperactivity disorder (ADHD) patients through the attention-regulation network's dopamine system. Additionally, water-soluble extracts (HX106) of four plants (Gastrodia elata Blume, Liriope platyphylla Wang et Tang, Salvia miltiorrhiza Bunge, and Dimocarpus longan Lour) improve cognitive function. We hypothesized that the combination of HX106 and methylphenidate would improve ADHD symptoms and brain activity of the attention network more effectively than the combination of placebo and methylphenidate. Methods Twenty-seven patients with ADHD were administered a herbal mixture and methylphenidate (n=13), or placebo and methylphenidate (n=14) during a 4-week, randomized, double-blind, placebo-controlled clinical trial. Changes in ADHD symptoms (K-ARS scores), as well as brain activity and functional connectivity, were assessed at baseline and 4 weeks later. Results The HX106 group showed a greater improvement in total attention (16.8%) and inattention (17.2%) scores than the placebo group. The HX106 group showed increased brain activity within the left precuneus compared to the placebo group. The HX106 group also showed increased functional connectivity from the precuneus seed to the left middle temporal gyrus compared with the placebo group. In all participants, the changes in K-ARS scores were negatively correlated with changes in brain activity in the left middle temporal gyrus. Conclusions HX106 enhanced the effect of methylphenidate on ADHD symptoms and increased brain activity in the attention-regulation network. Therefore, HX106 may be an effective adjunctive therapy for patients with ADHD.
Collapse
|