1
|
Bader Eddin L, Nagoor Meeran MF, Kumar Jha N, Goyal SN, Ojha S. Isoproterenol mechanisms in inducing myocardial fibrosis and its application as an experimental model for the evaluation of therapeutic potential of phytochemicals and pharmaceuticals. Animal Model Exp Med 2024. [PMID: 39690876 DOI: 10.1002/ame2.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/14/2024] [Indexed: 12/19/2024] Open
Abstract
Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fibrosis, which appears to be a leading cause of cardiovascular diseases. Cardiac fibrosis is characterized by the accumulation of extracellular matrix proteins, mainly collagen in the cardiac interstitium. Many experimental studies have demonstrated that fibrotic injury in the heart is reversible; therefore, it is vital to understand different molecular mechanisms that are involved in the initiation, progression, and resolution of cardiac fibrosis to enable the development of antifibrotic agents. Of the many experimental models, one of the recent models that has gained renewed interest is isoproterenol (ISP)-induced cardiac fibrosis. ISP is a synthetic catecholamine, sympathomimetic, and nonselective β-adrenergic receptor agonist. The overstimulated and sustained activation of β-adrenergic receptors has been reported to induce biochemical and physiological alterations and ultimately result in cardiac remodeling. ISP has been used for decades to induce acute myocardial infarction. However, the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis; this practice has increased in recent years. Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy. The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is considered the initiating mechanism of myocardial fibrosis. ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals. In recent years, numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis. The present review exclusively provides a comprehensive summary of the pathological biochemical, histological, and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy. It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as synthetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Samer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Qiu H, Zhao SN, Han JL, Yu M, Wang RD, Fang JR, Luo YZ, Zhu LJ, Yao XS. Exploring the mechanism of Si-Miao-Yong-An decoction on heart failure based on molecular docking and network pharmacology. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1502-1529. [PMID: 38958647 DOI: 10.1080/10286020.2024.2370409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024]
Abstract
The SwissTargetPrediction was employed to predict the potential drug targets of the active component of Si-Miao-Yong-An decoction (SMYAD). The therapeutic targets for HF were searched in the Genecard database, and Cytoscape3.9.1 software was used to construct the "drug-component-target-disease network" diagram. In addition, the String platform was used to construct Protein-Protein Interaction (PPI) network, and the DAVID database was used for GO and KEGG analysis. AutoDockTools-1.5.6 software was used for molecular docking verification. Network pharmacology studies have shown that AKT 1, ALB, and CASP 3 are the key targets of action of SMYAD against heart failure. The active compounds are quercetin and kaempferol.
Collapse
Affiliation(s)
- Han Qiu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sheng-Nan Zhao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin-Ling Han
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Miao Yu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruo-Di Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing-Ru Fang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan-Zhu Luo
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ling-Juan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Sheng Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Xu Z, Li M, Lyu D, Xiao H, Li S, Li Z, Li M, Xiao J, Huang H. Cinnamaldehyde activates AMPK/PGC-1α pathway via targeting GRK2 to ameliorate heart failure. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155894. [PMID: 39089090 DOI: 10.1016/j.phymed.2024.155894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND According to recent research, treating heart failure (HF) by inhibiting G protein-coupled receptor kinase 2 (GRK2) to improve myocardial energy metabolism has been identified as a potential approach. Cinnamaldehyde (CIN), a phenylpropyl aldehyde compound, has been demonstrated to exhibit beneficial effects in cardiovascular diseases. However, whether CIN inhibits GRK2 to ameliorate myocardial energy metabolism in HF is still unclear. PURPOSE This study examines the effects of CIN on GRK2 and myocardial energy metabolism to elucidate its underlying mechanism to treat HF. METHODS The isoproterenol (ISO) induced HF model in vivo and in vitro were constructed using Sprague-Dawley (SD) rats and primary neonatal rat cardiomyocytes (NRCMs). Based on this, the effects of CIN on myocardial energy metabolism and GRK2 were investigated. Additionally, validation experiments were conducted after interfering and over-expressing GRK2 in ISO-induced NRCMs to verify the regulatory effect of CIN on GRK2. Furthermore, binding capacity between GRK2 and CIN was explored by Cellular Thermal Shift Assay (CETSA) and Microscale Thermophoresis (MST). RESULTS In vivo and in vitro, CIN significantly improved HF as demonstrated by reversing abnormal changes in myocardial injury markers, inhibiting myocardial hypertrophy and decreasing myocardial fibrosis. Additionally, CIN promoted myocardial fatty acid metabolism to ameliorate myocardial energy metabolism disorder by activating AMPK/PGC-1α signaling pathway. Moreover, CIN reversed the inhibition of myocardial fatty acid metabolism and AMPK/PGC-1α signaling pathway by GRK2 over-expression in ISO-induced NRCMs. Meanwhile, CIN had no better impact on the stimulation of cardiac fatty acid metabolism and the AMPK/PGC-1α signaling pathway in ISO-induced NRCMs when GRK2 was disrupted. Noticeably, CETSA and MST confirmed that CIN binds to GRK2 directly. The binding of CIN and GRK2 promoted the ubiquitination degradation of GRK2 mediated by murine double mimute 2. CONCLUSION This study demonstrates that CIN exerts a protective intervention in HF by targeting GRK2 and promoting its ubiquitination degradation to activate AMPK/PGC-1α signaling pathway, ultimately improving myocardial fatty acid metabolism.
Collapse
Affiliation(s)
- Zhanchi Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou 510801, China
| | - Minghui Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Lyu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanshan Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuoming Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junhui Xiao
- Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou 510801, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou 510801, China.
| |
Collapse
|
4
|
Liu L, Jin M, Han X, Dou D. Identifying biomarkers of ginseng medicines with different natures on heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118134. [PMID: 38574777 DOI: 10.1016/j.jep.2024.118134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The nature of Chinese medicine is a unique index to measure its efficacy. Generally, treating the hot syndrome with cold nature medicine and vice versa. Ginseng medicines, a renowned Chinese medicine known for its qi tonifying action, encompasses various herbal materials such as ginseng, red ginseng, and black ginseng (GS, RG, and BG, respectively), ginseng leaves (GL), and American ginseng (AG), which exhibited different natures, thought contained similar ginsenosides. This traditional effect of GS and RG "reinvigorate the pulse for relieving qi depletion". It is closely linked to anti-heart failure (HF), HF is a clinical manifestation of deficiency of "heart-qi". However, the elucidation of the mechanism underlying the anti-HF effects of ginseng medicines with different natures remains a significant challenge. AIM OF THE STUDY To elucidate pharmacological mechanisms underlying the effect of ginseng medicines on HF, and to identify biomarkers associated with their various natures. Furthermore, it provides the basis for the different applications of ginseng medicines with various natures. MATERIALS AND METHODS This study established a rat model of HF induced by isoproterenol (ISO) combined with a specific diet. Four representative hot/cold herbs were selected as compared references for the medicine natures. The divergent effects of these herbs on the HF model were investigated by analyzing RNA-seq data to identify genes expressed differentially. Additionally, pathways associated with medicine natures were obtained using KEGG. Furthermore, UPLC-QqQ-MS/MS, as well as ELISA, were used to measure indexes associated with the nervous system, energy metabolisms, and endocrinology systems, such as BNP, CK, IL-1, T3, T4, cAMP, cGMP, AD, adrenal hormones (DOC, CORT, and COR), progestogens (pregnenolone, P, 17-OH-PR, and 17-OH-P), androgens (DHEA, A4, and T), and estrogens hormones (E2). RESULTS All ginseng medicines demonstrated varying levels of efficacy in alleviating HF and GS exhibited a significant protective effect on HF. The ginseng medicines with qi tonifying primarily achieve their effect by enhancing the levels of adrenal hormones (DOC, CORT, and COR), T4, elevation of cAMP/cGMP, and activation of AchE. Warm nature qi tonifying ginseng medicines increased the levels of 17-OH-PR and P while decreasing 17-OH-P and the ratio of E2/T. On the other hand, cold nature qi tonifying ginseng medicines decreased the levels of A4 and T while increasing the ratio of E2/T. CONCLUSION Overall, the effects of warm nature ginseng medicines are stronger on HF compared to cold nature ginseng medicines. Our research firstly reported that the E2/T ratio, progestogens (17-OH-PR, 17-OH-P, and P), and androgens (A4 and T) have been identified as significant biomarkers for discerning the mechanism differences of ginseng medicines with differences natures in treatment of HF.
Collapse
Affiliation(s)
- Linlin Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Mozhu Jin
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xueying Han
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China.
| |
Collapse
|
5
|
Gao Q, Wu H, Chen M, Gu X, Wu Q, Xie T, Sui X. Active metabolites combination therapies: towards the next paradigm for more efficient and more scientific Chinese medicine. Front Pharmacol 2024; 15:1392196. [PMID: 38698817 PMCID: PMC11063311 DOI: 10.3389/fphar.2024.1392196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Traditional Chinese medicine (TCM) formulae have been studied extensively in various human diseases and have proven to be effective due to their multi-component, multi-target advantage. However, its active metabolites are not clear and the specific mechanisms are not well established, which limits its scientific application. Recently, combination therapies are attracting increasing attention from the scientific community in the past few years and are considered as the next paradigm in drug discovery. Here, we tried to define a new concept of "active metabolites combination therapies (AMCT)" rules to elucidate how the bioactive metabolites from TCMs to produce their synergistic effects in this review. The AMCT rules integrate multidisciplinary technologies like molecular biology, biochemistry, pharmacology, analytical chemistry and pharmacodynamics, etc. Meanwhile, emerging technologies such as multi-omics combined analysis, network analysis, artificial intelligence conduce to better elucidate the mechanisms of these combination therapies in disease treatment, which provides new insights for the development of novel active metabolites combination drugs. AMCT rules will hopefully further guide the development of novel combination drugs that will promote the modernization and international needs of TCM.
Collapse
Affiliation(s)
- Quan Gao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Hao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Min Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Xidong Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
6
|
Zhang J, Xue S, Chen H, Jiang H, Gao P, Lu L, Wang Q. Exploring the Mechanism of Si-miao-yong-an Decoction in the Treatment of Coronary Heart Disease based on Network Pharmacology and Experimental Verification. Comb Chem High Throughput Screen 2024; 27:57-68. [PMID: 37403397 DOI: 10.2174/1386207326666230703150803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND To investigate the active ingredients and the mechanisms of Si-miaoyong- an Decoction (SMYA) in the treatment of coronary heart disease (CHD) by using network pharmacology, molecular docking technology, and in vitro validation. METHODS Through the Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), Uniprot database, GeneCards database, and DAVID database, we explored the core compounds, core targets and signal pathways of the effective compounds of SMYA in the treatment of CHD. Molecular docking technology was applied to evaluate the interactions between active compounds and key targets. The hypoxia-reoxygenation H9C2 cell model was applied to carry out in vitro verification experiments. A total of 109 active ingredients and 242 potential targets were screened from SMYA. A total of 1491 CHD-related targets were retrieved through the Gene- Cards database and 155 overlapping CHD-related SMYA targets were obtained. PPI network topology analysis indicated that the core targets of SMYA in the treatment of CHD include interleukin- 6 (IL-6), tumor suppressor gene (TP53), tumor necrosis factor (TNF), vascular endothelial growth factor A (VEGFA), phosphorylated protein kinase (AKT1) and mitogen-activated protein kinase (MAPK). KEGG enrichment analysis demonstrated that SMYA could regulate Pathways in cancer, phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathway, hypoxiainducible factor-1(HIF-1) signaling pathway, VEGF signaling pathway, etc. Results: Molecular docking showed that quercetin had a significant binding activity with VEGFA and AKT1. In vitro studies verified that quercetin, the major effective component of SMYA, has a protective effect on the cell injury model of cardiomyocytes, partially by up-regulating expressions of phosphorylated AKT1 and VEGFA. CONCLUSION SMYA has multiple components and treats CHD by acting on multiple targets. Quercetin is one of its key ingredients and may protect against CHD by regulating AKT/VEGFA pathway.
Collapse
Affiliation(s)
- Jingmei Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siming Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huan Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haixu Jiang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pengrong Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, 100029, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, 100029, China
| |
Collapse
|
7
|
Bi T, Zhou Y, Mao L, Liang P, Liu J, Yang L, Ren G, Mazhar M, Shen H, Liu P, Spáčil R, Guo Q, Luo G, Yang S, Ren W. Zhilong Huoxue Tongyu capsule alleviates myocardial fibrosis by improving endothelial cell dysfunction. J Tradit Complement Med 2024; 14:40-54. [PMID: 38223805 PMCID: PMC10785151 DOI: 10.1016/j.jtcme.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 01/16/2024] Open
Abstract
Background and aim Zhilong Huoxue Tongyu (ZL) capsule is a classical traditional Chinese medicine (TCM) with satisfactory curative effects. Endothelial cell (EC) dysfunction plays an important role during myocardial fibrosis (MF). But the therapeutic effect of ZL capsule on EC dysfunction remains unknown in the development of MF. This study aims to investigate the effect of ZL capsule on EC dysfunction during MF in vivo. Experimental procedure The model of MF is established in vivo by injecting isoproterenol for 14 days, simultaneously, we examined the therapeutic effect of ZL capsule on MF in vivo. An integrative approach combining biomarker examination, echocardiography and myocardial fibrosis condition using Hematoxylin-eosin staining, Masson staining, and Sirius red staining were performed to assess the efficacy of ZL capsule against MF. Subsequently, comprehensive immunofluorescence staining was performed to evaluate the therapeutic effect of ZL capsule on EC dysfunction. Results and conclusion Prior to experiments, analysis of the published single-cell sequencing data was performed and it was discovered that EC dysfunction plays an important role. Further pharmacological results showed that ZL capsule could alleviate fibrosis injury and collagen fiber deposition. The mechanism investigation results showed that the endothelial-to-mesenchymal transition (EndMT) and MHC class-II (MHC-II) expression in EC were improved. In addition, ZL capsule can attenuate the inflammatory response during MF by intervening the activation of CD4+T cell mediated by EC. For the first time, we provided evidence that ZL capsule could improve MF by alleviating EC dysfunction via the regulation of EndMT and expression of MHC-II. Taxonomy classification by evise Myocardial fibrosis, Chinese Herbal Medicine, Traditional Medicine, Endothelium, dysfunction, Endothelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yanan Zhou
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Linshen Mao
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 853, China
| | - Jiali Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Guilin Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- The National T.C.M Service Export Base of the Affiliated T.C.M Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Ping Liu
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Roman Spáčil
- The Czech Center for Traditional Chinese Medicine, Jeremenkova 1211/40, Olomouc, 77900, Czech Republic
| | - Qing Guo
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Gang Luo
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- The National T.C.M Service Export Base of the Affiliated T.C.M Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 853, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- The National T.C.M Service Export Base of the Affiliated T.C.M Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
8
|
Refaie MMM, Fouli Gaber Ibrahim M, Fawzy MA, Abdel-Hakeem EA, Shaaban Mahmoud Abd El Rahman E, Zenhom NM, Shehata S. Molecular mechanisms mediate roflumilast protective effect against isoprenaline-induced myocardial injury. Immunopharmacol Immunotoxicol 2023; 45:650-662. [PMID: 37335038 DOI: 10.1080/08923973.2023.2222228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Myocardial necrosis is one of the most common cardiac and pathological diseases. Unfortunately, using the available medical treatment is not sufficient to rescue the myocardium. So that, we aimed in our model to study the possible cardioprotective effect of roflumilast (ROF) in an experimental model of induced myocardial injury using a toxic dose of isoprenaline (ISO) and detecting the role of vascular endothelial growth factor/endothelial nitric oxide synthase (VEGF/eNOS) and cyclic guanosine monophosphate/cyclic adenosine monophosphate/ sirtuin1 (cGMP/cAMP/SIRT1) signaling cascade. MATERIALS AND METHODS Animals were divided into five groups; control, ISO given group (150 mg/kg) i.p. on the 4th and 5th day, 3 ROF co-administered groups in different doses (0.25, 0.5, 1 mg/kg/day) for 5 days. RESULTS Our data revealed that ISO could induce cardiac toxicity as manifested by significant increases in troponin I, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and cleaved caspase-3 with toxic histopathological changes. Meanwhile, there were significant decreases in reduced glutathione (GSH), total antioxidant capacity (TAC), VEGF, eNOS, cGMP, cAMP and SIRT1. However, co-administration of ROF showed significant improvement and normalization of ISO induced cardiac damage. CONCLUSION We concluded that ROF successfully reduced ISO induced myocardial injury and this could be attributed to modulation of PDE4, VEGF/eNOS and cGMP/cAMP/SIRT1 signaling pathways with antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
| | | | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | | | | | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
9
|
Lai J, Li A, Yue L, Zhong H, Xu S, Liu X. Participation of ASK-1 in the cardiomyocyte-protective role of mechanical ventilation in a rat model of myocardial infarction. Exp Biol Med (Maywood) 2023; 248:1579-1587. [PMID: 37786374 PMCID: PMC10676125 DOI: 10.1177/15353702231191205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/24/2023] [Indexed: 10/04/2023] Open
Abstract
Non-invasive positive-pressure ventilation (NIPPV) has been demonstrated to exhibit a cardioprotective function in a rat model of myocardial infarction (MI). However, the mechanism underlying NIPPV-mediated MI progression requires further investigation. We aimed to investigate the effectiveness and corresponding mechanism of NIPPV in an acute MI-induced heart failure (HF) rat model. Thirty each of healthy wild type (WT) and apoptosis signal-regulating kinase 1 (ASK-1)-deficient rats were enrolled in this study. MI models were established via anterior descending branch ligation of the left coronary artery. The corresponding data indicated that NIPPV treatment reduced the heart infarct area, myocardial fibrosis degree, and cardiac function loss in MI rats, and ameliorated apoptosis and reactive oxygen species (ROS) levels in the heart tissue. Furthermore, the expression level of ASK-1 level, a key modulator of the ROS-induced extrinsic apoptosis pathway, was upregulated in the heart tissues of MI rats, but decreased after NIPPV treatment. Meanwhile, the downstream cleavage of caspase-3, caspase-9, and PARP, alongside p38 phosphorylation and FasL expression, exhibited a similar trend to that of ASK-1 expression. The involvement of ASK-1 in NIPPV-treated MI in ASK-1-deficient rats was examined. Although MI modeling indicated that cardiac function loss was alleviated in ASK-1-deficient rats, NIPPV treatment did not confer any clear efficiency in cardiac improvement in ASK-1-knockdown rats with MI modeling. Nonetheless, NIPPV inhibited ROS-induced extrinsic apoptosis in the heart tissues of rats with MI by regulating ASK-1 expression, and subsequently ameliorated cardiac function loss and MI-dependent pathogenic changes in the heart tissue.
Collapse
Affiliation(s)
- Jiying Lai
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ailin Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Linlin Yue
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Huifeng Zhong
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Shuo Xu
- Department of Respiratory and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Xin Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
10
|
Cai Z, He J, Jiang J, Zhao Z, Shu Y. Systematic investigation of the material basis, multiple mechanisms and quality control of Simiao Yong'an decoction combined with antibiotic in the treatment of sepsis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154910. [PMID: 37267690 DOI: 10.1016/j.phymed.2023.154910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Sepsis is one of the major threats to human health with high mortality. Simiao Yong'an decoction (SMYAD) has the efficacy of anti-inflammation, improving coagulation and microcirculation, which is applicable for the clinical assistance treatment of sepsis. Yet, its material basis and relevant mechanisms are still vague. PURPOSE Explore the quality markers (Q-markers), biomarkers and potential mechanisms of SMYAD combined with imipenem/cilastatin sodium for anti-sepsis. METHODS Linear-Trap-LC/MSn was employed to profile the compounds in the extract and medicated serum of SMYAD. Then, the components and targets obtained from databases were applied to network pharmacology. Q-markers' range was narrowed via the affinity of three times docking and determined as per its screening criteria. Also, the content of them was detected by HPLC. Next, cecal ligation and puncture (CLP) model was reproduced to observe the effect of SMYAD united antibiotic by survival rate, histopathology score, ELISA, western blot and qPCR. Finally, metabolomics based upon GC-MS was exerted to discover the differential endogenous metabolites, metabolic pathway and joint pathway of SMYAD combined with antibiotic for sepsis. RESULTS The 25 serum migrant ingredients derived from 113 chemical compounds of SMYAD were identified for the first time, and 6 components were determined as the Q-markers of SMYAD. The enrichment analysis indicated that the potential mechanism was mainly associated with the IL-17 signaling pathway, complement-coagulation cascades signaling pathway and VEGF signaling pathway. Then, SMYAD united antibiotic declined the mortality of septic rats, restored cytokine levels, ameliorated histopathological lesions and decreased the mRNA and protein expression of target proteins in a dose-dependent way. Furthermore, 8 differential metabolites were regarded as latent biomarkers related to the antiseptic effect of SMYAD united antibiotic, which were mainly involved in the Citrate cycle (TCA cycle) metabolic pathway. CONCLUSIONS Different skeletons of compounds, including iridoids, phenylpropanoids, organic acids, triterpenes and others, were the main compositions of SMYAD. Among them, 6 components were determined as the Q-markers, which provided a basis for the construction of quality standards for this ancient classic formula. The combination therapy of SMYAD and antibiotic obviously ameliorated inflammatory reaction, coagulation dysfunction and microcirculation abnormalities for sepsis by inhibiting IL-17 signaling pathway, complement-coagulation cascades signaling pathway and VEGF signaling pathway.
Collapse
Affiliation(s)
- Zhihui Cai
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jinjin He
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jun Jiang
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Zihan Zhao
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ye Shu
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
11
|
Xiong P, Zhang F, Liu F, Zhao J, Huang X, Luo D, Guo J. Metaflammation in glucolipid metabolic disorders: Pathogenesis and treatment. Biomed Pharmacother 2023; 161:114545. [PMID: 36948135 DOI: 10.1016/j.biopha.2023.114545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
The public health issue of glucolipid metabolic disorders (GLMD) has grown significantly, posing a grave threat to human wellness. Its prevalence is rising yearly and tends to affect younger people. Metaflammation is an important mechanism regulating body metabolism. Through a complicated multi-organ crosstalk network involving numerous signaling pathways such as NLRP3/caspase-1/IL-1, NF-B, p38 MAPK, IL-6/STAT3, and PI3K/AKT, it influences systemic metabolic regulation. Numerous inflammatory mediators are essential for preserving metabolic balance, but more research is needed to determine how they contribute to the co-morbidities of numerous metabolic diseases. Whether controlling the inflammatory response can influence the progression of GLMD determines the therapeutic strategy for such diseases. This review thoroughly examines the role of metaflammation in GLMD and combs the research progress of related therapeutic approaches, including inflammatory factor-targeting drugs, traditional Chinese medicine (TCM), and exercise therapy. Multiple metabolic diseases, including diabetes, non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, and others, respond therapeutically to anti-inflammatory therapy on the whole. Moreover, we emphasize the value and open question of anti-inflammatory-based means for treating GLMD.
Collapse
Affiliation(s)
- Pingjie Xiong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Fan Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Fang Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Jiayu Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Xiaoqiang Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| |
Collapse
|
12
|
Chen X, Zhang Z, Zhang X, Jia Z, Liu J, Chen X, Xu A, Liang X, Li G. Paeonol attenuates heart failure induced by transverse aortic constriction via ERK1/2 signalling. PHARMACEUTICAL BIOLOGY 2022; 60:562-569. [PMID: 35249458 PMCID: PMC8903794 DOI: 10.1080/13880209.2022.2040543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CONTEXT Paeonol (PAE) is the main phytochemical from Cortex Moutan. Its main pharmacological effects are anti-inflammatory and antioxidant, but its cardioprotective effect is unclear. OBJECTIVE The study investigates the effects and underlying mechanisms of PAE on transverse aortic constriction (TAC)-induced heart failure (HF) in mice. MATERIALS AND METHODS C57BL/6 mice were randomly divided into five groups: sham, TAC, PAE10 (TAC + PAE 10 mg/kg), PAE20 (TAC + PAE 20 mg/kg) and PAE 50 (TAC + PAE 50 mg/kg). Paeonol was intragastrically administered to mice for 4 weeks. Mice were anaesthetized with pentobarbital sodium and underwent cardiac echocardiography using echocardiography system. Serum levels of atrial natriuretic peptide (ANP), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). Myocardial apoptosis was detected with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. Haematoxylin-eosin (H&E) and Masson's staining were used for histopathological evaluation. Western and quantitative real-time PCR (qRT-PCR) were performed to detect levels of apoptosis and fibrosis-related proteins. RESULTS Echocardiography showed PAE improved cardiac function (LVEF: TAC, 52.3±6.8%; PAE20, 65.8±3.6%; PAE50, 71.4±2.5%) and H&E staining showed PAE alleviated myocardial injury (TAC: 1170.3 ± 134.6 μm2; PAE50: 576.0 ± 53.5 μm2). Western and qRT-PCR results showed that PAE down-regulated the levels of ANP, BNP and α-MHC. In addition, TUNEL and western results showed PAE significantly inhibited apoptosis. Masson and western results showed PAE inhibited cardiac hypertrophy. Western results showed the ERK1/2/JNK pathway could be inhibited by PAE. DISCUSSION AND CONCLUSIONS Paeonol regulates ERK1/2/JNK to improve cardiac function, which provides theoretical support for the extensive clinical treatment of HF.
Collapse
Affiliation(s)
- Xu Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Cardiology, Tianjin Beichen Hospital, Tianjin, China
| | - Zhiyu Zhang
- Tianjin Beichen Center for Disease Control and Prevention, Tianjin, China
| | - Xiaowei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhi Jia
- Department of Cardiology, Tianjin Beichen Hospital, Tianjin, China
| | - Jun Liu
- Department of Cardiology, Tianjin Beichen Hospital, Tianjin, China
| | - Xinpei Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Aiqing Xu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
- CONTACT Guangping Li #23 Pingjiang Road, Hexi District, Tianjin300211, China
| |
Collapse
|
13
|
Wang X, He K, Ma L, Wu L, Yang Y, Li Y. Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway. Mol Med Rep 2022; 26:306. [PMID: 35946454 PMCID: PMC9437969 DOI: 10.3892/mmr.2022.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022] Open
Abstract
Myocardial hypertrophy (MH) is an independent risk factor for cardiovascular disease, which in turn lead to arrhythmia or heart failure. Therefore, attention must be paid to formulation of therapeutic strategies for MH. Puerarin is a key bioactive ingredient isolated from Pueraria genera of plants that is beneficial for the treatment of MH. However, its molecular mechanism of action has not been fully determined. In the present study, 40 µM puerarin was demonstrated to be a safe dose for human AC16 cells using Cell Counting Kit‑8 assay. The protective effects of puerarin against MH were demonstrated in AC16 cells stimulated with isoproterenol (ISO). These effects were characterized by a significant decrease in surface area of cells (assessed using fluorescence staining) and mRNA and protein expression levels of MH‑associated biomarkers, including atrial and brain natriuretic peptide, assessed using reverse transcription‑quantitative PCR and western blotting, as well as β‑myosin heavy chain mRNA expression levels. Mechanistically, western blotting demonstrated that puerarin inhibited activation of the Wnt signaling pathway. Puerarin also significantly decreased phosphorylation of p65; this was mediated via crosstalk between the Wnt and NF‑κB signaling pathways. An inhibitor (Dickkopf‑1) and activator (IM‑12) of the Wnt signaling pathway were used to demonstrate that puerarin‑mediated effects alleviated ISO‑induced MH via the Wnt signaling pathway. The results of the present study demonstrated that puerarin pre‑treatment may be a potential therapeutic strategy for preventing ISO‑induced MH and managing MH in the future.
Collapse
Affiliation(s)
- Xiaoying Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Kai He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Linlin Ma
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Lan Wu
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
| | - Yanfei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
14
|
Zhen D, Na RS, Wang Y, Bai X, Fu DN, Wei CX, Liu MJ, Yu LJ. Cardioprotective effect of ethanol extracts of Sugemule-3 decoction on isoproterenol-induced heart failure in Wistar rats through regulation of mitochondrial dynamics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:114669. [PMID: 34600079 DOI: 10.1016/j.jep.2021.114669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sugemule-3 decoction (SD-3) is a commonly used prescription in Mongolian medicine which composed of the herbs Baidoukou (the fruit of Amomum compactum Sol. ex Maton), Baijusheng (the fruit of Lactuca sativa L.) and Biba (Piper longum L.). SD-3 has remarkable effect on the cardiovascular diseases, but its pharmacological mechanism has not been elucidated. AIM OF THIS STUDY To evaluate the cardioprotective effects and the potential mechanisms of the ethanol extracts of SD-3 against isoproterenol (ISO)-induced heart failure (HF) in rats. MATERIAL AND METHODS The ethanol extracts of SD-3 were prepared and analyzed by LC-ESI-MS/MS. One hundred male Wistar rats were randomly divided into five groups: control, ISO (HF) and different doses of SD-3 (0.4, 0.2, 0.1 g/kg/d) groups. HF model rats were established by intraperitoneal injecting of ISO. The left ventricular function was evaluated by echocardiography. Myocardial injury and fibrosis were examined by hematoxylin-eosin (HE) and Masson staining. Western-blot analysis was performed to determine the protein expression of apoptosis and mitochondrial dynamics in all the groups. Moreover, the structural changes in the mitochondria of cardiomyocytes were also observed by transmission electron microscopy. RESULTS Fifteen compounds were detected in the ethanol extracts of SD-3, include piperine, piperanine, etc. Rats administered with ISO showed a significant decline in the left ventricular function. The cardiac histopathological changes such as local necrosis, interstitial edema, and cardiac fibrosis were also observed in the ISO group. The treatment with SD-3 significantly inhibited these effects of ISO. ISO was found to increase the protein expression of Bax, cleaved-PARP and cleaved-caspase-3, -7 -9, destroy the balance between mitochondrial fusion and fission, and alter the mitochondrial morphology. The ethanol extracts of SD-3 could rebalance mitochondrial fusion and fission, and ameliorates the morphological abnormalities induced by ISO in mitochondria. CONCLUSION The current study demonstrated that ethanol extracts of SD-3 improved isoprenaline-induced cardiac hypertrophy and fibrosis through inhibiting cardiomyocyte apoptosis and regulating the mitochondrial dynamics.
Collapse
Affiliation(s)
- Dong Zhen
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Ri-Song Na
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Yu Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Xue Bai
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Dan-Ni Fu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Cheng-Xi Wei
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Ming-Jie Liu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Li-Jun Yu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
15
|
Exploring the Effect and Mechanism of Si-Miao-Yong-An Decoction on Abdominal Aortic Aneurysm Based on Mice Experiment and Bioinformatics Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4766987. [PMID: 35685724 PMCID: PMC9173986 DOI: 10.1155/2022/4766987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022]
Abstract
Background Abdominal aortic aneurysm (AAA) is a fatal disease characterized by high morbidity and mortality in old population. Globally, effective drugs for AAA are still limited. Si-Miao-Yong-An decoction (SMYAD), a traditional Chinese medicine (TCM) formula with a high medical value, was reported to be successfully used in an old AAA patient. Thus, we reason that SMYAD may serve as a potential anti-AAA regime. Objective The exact effects and detailed mechanisms of SMYAD on AAA were explored by using the experimental study and bioinformatics analysis. Methods Firstly, C57BL/6N mice induced by Bap and Ang II were utilized to reproduce the AAA model, and the effects of SMYAD were systematically assessed according to histology, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA). Then, network pharmacology was applied to identify the biological processes, pathways, and hub targets of SMYAD against AAA; moreover, molecular docking was utilized to identify the binding ability and action targets. Results In an animal experiment, SMYAD was found to effectively alleviate the degree of pathological expansion of abdominal aorta and reduce the incidence of Bap/Ang II-induced AAA, along with reducing the damage to elastic lamella, attenuating infiltration of macrophage, and lowering the circulating IL-6 level corresponding to the animal study, and network pharmacology revealed the detailed mechanisms of SMYAD on AAA that were related to pathways of inflammatory response, defense response, apoptotic, cell migration and adhesion, and reactive oxygen species metabolic process. Then, seven targets, IL-6, TNF, HSP90AA1, RELA, PTGS2, ESR1, and MMP9, were identified as hub targets of SMYAD against AAA. Furthermore, molecular docking verification revealed that the active compounds of SMYAD had good binding ability and clear binding site with core targets related to AAA formation. Conclusion SMYAD can suppress AAA development through multicompound, multitarget, and multipathway, which provides a research direction for further study.
Collapse
|
16
|
Ren C, Liu K, Zhao X, Guo H, Luo Y, Chang J, Gao X, Lv X, Zhi X, Wu X, Jiang H, Chen Q, Li Y. Research Progress of Traditional Chinese Medicine in Treatment of Myocardial fibrosis. Front Pharmacol 2022; 13:853289. [PMID: 35754495 PMCID: PMC9213783 DOI: 10.3389/fphar.2022.853289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Effective drugs for the treatment of myocardial fibrosis (MF) are lacking. Traditional Chinese medicine (TCM) has garnered increasing attention in recent years for the prevention and treatment of myocardial fibrosis. This Article describes the pathogenesis of myocardial fibrosis from the modern medicine, along with the research progress. Reports suggest that Chinese medicine may play a role in ameliorating myocardial fibrosis through different regulatory mechanisms such as reduction of inflammatory reaction and oxidative stress, inhibition of cardiac fibroblast activation, reduction in extracellular matrix, renin-angiotensin-aldosterone system regulation, transforming growth Factor-β1 (TGF-β1) expression downregulation, TGF-β1/Smad signalling pathway regulation, and microRNA expression regulation. Therefore, traditional Chinese medicine serves as a valuable source of candidate drugs for exploration of the mechanism of occurrence and development, along with clinical prevention and treatment of MF.
Collapse
Affiliation(s)
- Chunzhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Huan Guo
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yali Luo
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Juan Chang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial People’s Hospital, Lanzhou, China
| | - Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinfang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaodong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xue Wu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hugang Jiang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qilin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
17
|
Li HY, Sun H, Zhang AH, He LW, Qiu S, Xue JR, Wu F, Wang XJ. Therapeutic Effect and Mechanism of Si-Miao-Yong-An-Tang on Thromboangiitis Obliterans Based on the Urine Metabolomics Approach. Front Pharmacol 2022; 13:827733. [PMID: 35273504 PMCID: PMC8902467 DOI: 10.3389/fphar.2022.827733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Si-Miao-Yong-An-Tang (SMYAT) is a classic prescription for the treatment of thromboangiitis obliterans (TAO). However, the effect and mechanism are still unclear. This experiment aims to evaluate the therapeutic effect and mechanism of SMYAT on sodium laurate solution induced thromboangiitis obliterans model rats using urine metabolomics. The therapeutic effect of SMYAT was evaluated by histopathology, hemorheology and other indexes. The urine metabolomic method, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used for clustering group and discriminant analysis to screen urine differential metabolic biomarkers, and explore new insight into pathophysiological mechanisms of SMYAT in the treatment of TAO. SMYAT has significant antithrombotic and anti-inflammatory effects, according to the results of urine metabolomic analysis, and regulate the metabolic profile of TAO rats, and its return profile is close to the state of control group. Through metabolomics technology, a total of 35 urine biomarkers of TAO model were characterized. Among them, SMYAT treatment can regulate 22 core biomarkers, such as normetanephrine and 4-pyridoxic acid. It is found that the therapeutic effect of SMYAT is closely related to the tyrosine metabolism, vitamin B6 metabolism and cysteine and methionine metabolism. It preliminarily explored the therapeutic mechanism of SMYAT, and provided a scientific basis for the application of SMYAT.
Collapse
Affiliation(s)
- Hui-Yu Li
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu-Wen He
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shi Qiu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun-Ru Xue
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Xi-Jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
18
|
Liao M, Xie Q, Zhao Y, Yang C, Lin C, Wang G, Liu B, Zhu L. Main active components of Si-Miao-Yong-An decoction (SMYAD) attenuate autophagy and apoptosis via the PDE5A-AKT and TLR4-NOX4 pathways in isoproterenol (ISO)-induced heart failure models. Pharmacol Res 2022; 176:106077. [PMID: 35026404 DOI: 10.1016/j.phrs.2022.106077] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/24/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
Heart failure (HF), the main cause of death in patients with many cardiovascular diseases, has been reported to be closely related to the complicated pathogenesis of autophagy, apoptosis, and inflammation. Notably, Si-Miao-Yong-An decoction (SMYAD) is a traditional Chinese medicine (TCM) used to treat cardiovascular disease; however, the main active components and their relevant mechanisms remain to be discovered. Based on our previous ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) results, we identified angoriside C (AC) and 3,5-dicaffeoylquinic acid (3,5-DiCQA) as the main active components of SMYAD. In vivo results showed that AC and 3,5-DiCQA effectively improved cardiac function, reduced the fibrotic area, and alleviated isoproterenol (ISO)-induced myocarditis in rats. Moreover, AC and 3,5-DiCQA inhibited ISO-induced autophagic cell death by inhibiting the PDE5A/AKT/mTOR/ULK1 pathway and inhibited ISO-induced apoptosis by inhibiting the TLR4/NOX4/BAX pathway. In addition, the autophagy inhibitor 3-MA was shown to reduce ISO-induced apoptosis, indicating that ISO-induced autophagic cell death leads to excess apoptosis. Taken together, the main active components AC and 3,5-DiCQA of SMYAD inhibit the excessive autophagic cell death and apoptosis induced by ISO by inhibiting the PDE5A-AKT and TLR4-NOX4 pathways, thereby reducing myocardial inflammation and improving heart function to alleviate and treat a rat ISO-induced heart failure model and cell heart failure models. More importantly, the main active components of SMYAD will provide new insights into a promising strategy that will promote the discovery of more main active components of SMYAD for therapeutic purposes in the future.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Congcong Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
19
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
20
|
Si-Miao-Yong-An Decoction Maintains the Cardiac Function and Protects Cardiomyocytes from Myocardial Ischemia and Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8968464. [PMID: 34367308 PMCID: PMC8337144 DOI: 10.1155/2021/8968464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/03/2021] [Indexed: 11/23/2022]
Abstract
Objective The aim of this study was to determine whether Si-Miao-Yong-An decoction (SMYAD) could protect cardiomyocytes from ischemia/reperfusion (I/R) injury and its underlying mechanisms. Methods C57BL/6 mice were used to establish a model of myocardial infarction by I/R injury and treated by SMYAD for 4 weeks. Then, the cardiac functions of mice were evaluated by cardiac magnetic resonance (CMR). Histopathological analysis for the heart remodeling was detected by H&E and Masson staining. The protein expression of collagen I, MMP9, and TNFα was detected by western blot in the heart tissues. H9C2 cells were used to establish the hypoxia/reoxygenation (H/R) model and SMYAD intervention. MTT assays detected the cell viability of myocardial cells. The expression level of IL-1β was evaluated by ELISA. The expression levels of LC3B-II/LC3B-I, p-mTOR, mTOR, NLRP3, procaspase 1, and cleaved-caspase 1 in H9C2 cells were evaluated by Western blot. Results SMYAD improved cardiac functions such as ventricular volume and ejection fraction of the rats with ischemia/reperfusion injury. Morphological assay indicated that SMYAD reduced the scar size and inhibited fibrosis formation. It was found that SMYAD could regulate collagen I, MMP9, and TNFα protein expression levels in the heart tissues. SMYAD improved the survival rate of H9C2 cardiomyocytes in the H/R injury model. SMYAD elevated the rate of LC3B-II/LC3B-I protein expression, decreased the rate of p-mTOR/mTOR protein expression, and reduced expressions of caspase 1, NLRP3, and IL-1β in H/R cardiomyocytes. Conclusion SMYAD exerted protective effects on ischemia/reperfusion injury in myocardial cells by activating autophagy and inhibiting pyroptosis. This might be the reason why SMYAD protected myocardial tissue and improved cardiac function in mice with ischemia/reperfusion.
Collapse
|
21
|
Lou T, Ma J, Xie Y, Yao G, Fan Y, Ma S, Zou X. Nuanxin capsule enhances cardiac function by inhibiting oxidative stress-induced mitochondrial dependent apoptosis through AMPK/JNK signaling pathway. Biomed Pharmacother 2021; 135:111188. [PMID: 33418304 DOI: 10.1016/j.biopha.2020.111188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Oxidative stress and apoptosis play critical roles in the pathogenesis of heart failure (HF).Nuanxin capsule (NX) is a Chinese medicine that has outstanding protective effects on HF. The present study aimed to elucidate whether NX could protect HF against oxidative stress-induced apoptosis through intrinsic mitochondrial pathway. METHODS In vivo, HF was induced by transverse aortic constriction. NX and Compound C (Comp C) were administered to C57BL/6 J mice for over a 4-week period. Cardiac function was assessed with echocardiography. In vitro, H9c2 cells were exposed to H2O2 in the presence or absence of NX and Compound C. Cell viability, cytotoxicity, reactive oxygen species (ROS) production, apoptosis, mitochondrial membrane potential (ΔΨm) and mitochondrial function by oxygen consumption rate (OCR) were detected. The expressions of cytochrome c, BAX, Bcl-2, cleaved caspase-3, AMPK and JNK were evaluated by western blotting. RESULTS The results indicated that NX significantly improved cardiac function and enhanced the cell viability, ΔΨm and mitochondrial respiration. Also NX treatment reduced cell cytotoxicity and ROS production. Moreover, NX inhibited mitochondrial-mediated apoptosis by upregulating AMPK and downregulating JNK both in vivo and in vitro. The protective effects of NX on cardiac function by reducing oxidative stress-induced mitochondrial dependent apoptosis were reversed by Compound C treatment. CONCLUSIONS These findings demonstrated that NX effectively improved cardiac function in TAC mice by reducing oxidative stress-induced mitochondrial dependent apoptosis by activating AMPK/JNK signaling pathway.
Collapse
Affiliation(s)
- Tiantian Lou
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Jin Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Yanzheng Xie
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Gengzhen Yao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Ye Fan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Shiyu Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China.
| | - Xu Zou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China; Dongguan Kanghua Hospital, Dongguan, 523080, China.
| |
Collapse
|
22
|
Sun Z, Zhang L, Li L, Shao C, Liu J, Zhou M, Wang Z. Galectin-3 mediates cardiac remodeling caused by impaired glucose and lipid metabolism through inhibiting two pathways of activating Akt. Am J Physiol Heart Circ Physiol 2021; 320:H364-H380. [PMID: 33275526 DOI: 10.1152/ajpheart.00523.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Pathological cardiac remodeling is a leading cause of mortality in patients with diabetes. Given the glucose and lipid metabolism disorders (GLDs) in patients with diabetes, it is urgent to conduct a comprehensive study of the myocardial damage under GLDs and find key mechanisms. Apolipoprotein E knockout (ApoE-/-) mice, low-density lipoprotein receptor heterozygote (Ldlr+/-) Syrian golden hamsters, or H9C2 cells were used to construct GLDs models. GLDs significantly promoted cardiomyocyte fibrosis, apoptosis, and hypertrophy in vivo and in vitro, but inhibition of galectin-3 (Gal-3) could significantly reverse this process. Then, the signal transmission pathways were determined. It was found that GLDs considerably inhibited the phosphorylation of Akt at Thr308/Ser473, whereas the silencing of Gal-3 could reverse the inhibition of Akt activity through phosphoinositide 3-kinase-AktThr308 (PI3K-AktThr308) and AMP-activated protein kinase-mammalian target of rapamycin complex 2-AktSer473 (AMPK-mTOR2-AktSer473) pathways. Finally, the PI3K, mTOR, AMPK inhibitor, and Akt activator were used to investigate the role of pathways in regulating cardiac remodeling. Phospho-AktThr308 could mediate myocardial fibrosis, whereas myocardial apoptosis and hypertrophy were regulated by both phospho-AktThr308 and phospho-AktSer473. In conclusion, Gal-3 was an important regulatory factor in GLDs-induced cardiac remodeling, and Gal-3 could suppress the phosphorylation of Akt at different sites in mediating cardiomyocyte fibrosis, apoptosis, and hypertrophy.NEW & NOTEWORTHY Studies on the pathogenesis of diabetic cardiac remodeling are highly desired. Glucose and lipid metabolism are both disordered in diabetes. Glucose and lipid metabolism disturbances promote myocardial fibrosis, apoptosis, and hypertrophy through galectin-3. Galectin-3 promotes cardiac remodeling by inhibiting phosphorylation of AktThr308 or AktSer473. The present study finds that glucose and lipid metabolism disorders are important causes for myocardial damage and provides novel ideas for the prevention and treatment of diabetic cardiac remodeling.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengxue Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Li L, Chen X, Su C, Wang Q, Li R, Jiao W, Luo H, Tian Y, Tang J, Li X, Liu B, Wang W, Zhang D, Guo S. Si-Miao-Yong-An decoction preserves cardiac function and regulates GLC/AMPK/NF-κB and GLC/PPARα/PGC-1α pathways in diabetic mice. Biomed Pharmacother 2020; 132:110817. [DOI: 10.1016/j.biopha.2020.110817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
|
24
|
Liu H, Lv C, Lu J. Panax ginseng C. A. Meyer as a potential therapeutic agent for organ fibrosis disease. Chin Med 2020; 15:124. [PMID: 33292321 PMCID: PMC7683279 DOI: 10.1186/s13020-020-00400-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background Ginseng (Panax ginseng C. A. Meyer), a representative Chinese herbal medicine, can improve the body’s antioxidant and anti-inflammatory capacity. Recently, scientists have shifted emphasis towards the initial stages of different malignant diseases—corresponding organ fibrosis and explored the essential role of P. ginseng in the treatment of fibrotic diseases. Main body In the first instance, the review generalizes the molecular mechanisms and common therapeutic methods of fibrosis. Next, due to the convenience and safety of individual medication, the research progress of ginseng extract and formulas in treating liver fibrosis, pulmonary fibrosis, myocardial fibrosis, and renal fibrosis has been systematically summarized. Finally, we describe active ingredients isolated from P. ginseng for their outstanding anti-fibrotic properties and further reveal the potential therapeutic prospect and limitations of P. ginseng in fibrotic diseases. Conclusions P. ginseng can be regarded as a valuable herbal medicine against fibrous tissue proliferation. Ginseng extract, derived formulas and monomers can inhibit the abundant deposition of extracellular matrix which caused by repeated damage and provide protection for fibrotic organs. Although the molecular mechanisms such as transforming growth factor β signal transduction have been confirmed, future studies should still focus on exploring the underlying mechanisms of P. ginseng in treating fibrotic disease including the therapeutic targets of synergistic action of multiple components in P. ginseng. Moreover, it is also necessary to carry out clinical trial to evaluate the feasibility of P. ginseng in combination with common fibrosis drugs.
Collapse
Affiliation(s)
- Hao Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.,Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China. .,Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| |
Collapse
|
25
|
Yu X, Jiao Q, Jiang Y, Guo S, Zhang W, Liu B. Study on the Plasma Protein Binding Rate and Compatibility Regularity of the Constituents Migrating to Blood of Simiao Yong'an Decoction. Curr Drug Metab 2020; 21:979-993. [PMID: 32735517 DOI: 10.2174/1567201817666200731170731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/09/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To study the compatibility regularity of Simiao Yong'an decoction by determining the plasma protein binding rate with the constituents in Simiao Yong'an decoction and to preliminarily clarify the effects of the compatibility on the plasma protein binding rate of different components. METHODS Based on the equilibrium dialysis method, high-performance liquid chromatography was used to determine the contents of six constituents, which were divided into a single group and combination groups, in Simiao Yong'an decoction in the internal and external dialysis solutions. The obtained plasma protein binding rate through calculations was an index to evaluate the binding of the above components to plasma protein in different conditions. RESULTS Harpagide, harpagoside, sweroside and loganin showed low plasma protein binding rates, ferulic acid exhibited a moderate plasma protein binding rate, and glycyrrhizic acid showed a high plasma protein binding rate. The compatibility study showed that glycyrrhizic acid promoted the binding of ferulic acid to plasma protein. Glycyrrhizic acid and ferulic acid were the key compounds to promote the binding of harpagide to plasma protein. Glycyrrhizic acid, harpagide, harpagoside and loganin had a significant inhibitory effects on the binding of sweroside to plasma protein. The plasma protein binding capacities of harpagoside and loganin were reduced by the other five constituents. Glycyrrhizic acid had the strongest plasma protein binding effect, and the binding effect was not affected by other components. CONCLUSION This study explores the effects of compound compatibility on effective components from the perspective of plasma protein binding by high-performance liquid chromatography combined with the equilibrium dialysis method, and lays a foundation for clarifying the compatibility rule of Simiao Yong'an decoction and also provides a new idea for the study of the compatibility of traditional Chinese medicine formulas.
Collapse
Affiliation(s)
- Xiao Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qishu Jiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Zhao Y, Sun D, Chen Y, Zhan K, Meng Q, Zhang X, Zhu L, Yao X. Si-Miao-Yong-An Decoction attenuates isoprenaline-induced myocardial fibrosis in AMPK-driven Akt/mTOR and TGF-β/SMAD3 pathways. Biomed Pharmacother 2020; 130:110522. [PMID: 32736236 DOI: 10.1016/j.biopha.2020.110522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022] Open
Abstract
Myocardial fibrosis is well-known to be the aberrant deposition of extracellular matrix (ECM), which may cause cardiac dysfunction, morbidity, and death. Traditional Chinese medicine formula Si-Miao-Yong-An Decoction (SMYAD), which is used clinically in cardiovascular diseases has been recently reported to able to resist myocardial fibrosis. The anti-fibrosis effects of SMYAD have been evaluated; however, its intricate mechanisms remain to be clarified. Here, we found that SMYAD treatment reduced the fibrosis injury and collagen fiber deposition that could improve cardiac function in isoprenaline (ISO)-induced fibrosis rat models. Combined with our systematic RNA-seq data of SMYAD treatment, we demonstrated that the remarkable up-regulation or down-regulation of several genes were closely related to the functional enrichment of TGF-β and AMPK pathways that were involved in myocardial fibrosis. Accordingly, we further explored the molecular mechanisms of SMYAD were mainly caused by AMPK activation and thereby suppressing its downstream Akt/mTOR and TGF-β/SMAD3 pathways. Moreover, we showed that the ECM deposition and secretion process were attenuated, suggesting that the fibrosis pathological features are changed. Interestingly, we found the similar AMPK-driven pathways in NIH-3T3 mouse fibroblasts treated with ISO. Taken together, these results demonstrate that SMYAD may be a new candidate agent by regulating AMPK-driven Akt/mTOR and TGF-β/SMAD3 pathways for potential therapeutic implications of myocardial fibrosis.
Collapse
Affiliation(s)
- Yuqian Zhao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Dejuan Sun
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yanmei Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Kaixuan Zhan
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Qu Meng
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xue Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Xinsheng Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
27
|
Cross-Talk between Gut Microbiota and the Heart: A New Target for the Herbal Medicine Treatment of Heart Failure? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9097821. [PMID: 32328141 PMCID: PMC7165350 DOI: 10.1155/2020/9097821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is the severe and terminal stage of various heart diseases. A growing number of studies have suggested the potential clinical significance of gut microbiota in the pathophysiology of HF. Herbal medicine (HM) plays a role in rebalancing the composition of gut microbiota and is widely used in the prevention and treatment of HF. There are many similarities between intestinal microecology and the traditional Chinese medicine (TCM) theory, such as the holistic concept and the theory of the “heart's connection with the small intestine.” These similarities provide a theoretical basis for HM to prevent and treat diseases by regulating the intestinal flora and its metabolites. In this work, the cross-talk between gut microbiota and the heart is reviewed, and the relationship between TCM and gut microbiota is discussed. Based on the current literature and research, we hypothesize that the cross-talk between gut microbiota and the heart may offer a new therapeutic target for HF intervention.
Collapse
|