1
|
Zhang X, Zhao S, Ma Y, Kang W, Zhou W, Zhang C, Abliz Z. Lipidomic profiling of the febrile rat hypothalamus by the intervention of Artemisia japonica extracts. J Pharm Biomed Anal 2024; 255:116588. [PMID: 39644683 DOI: 10.1016/j.jpba.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Artemisia species have been regarded as an important source of ethnic medicinal plants, such as A. annua and A. capillaris, both of which are widely used in clinical treatment. The clinical efficacy of A. japonica is similar to that of A. capillaris, but fewer pharmaceutical studies have been reported. Given that the extracts of A. japonica were observed to reduce the rectal temperature of febrile rats induced by LPS, this study was designed to demonstrate this regulatory effect of the extracts, with a particular focus on the lipidomic profiling of the febrile rat hypothalamus. A total of 72 differential metabolites were filtered out and the association between lipid profiling and potential mechanism was explored. Sphingolipid, glycerophospholipid, arachidonic acid and ether lipid metabolism pathways were significantly enriched. TNF-α, IL-6 and PGE2 cytokines in the hypothalamus were significantly downregulated by the intervention of the extracts of A. japonica. Enzymatic reaction enrichment analysis suggested that PEMT and COX-2 might be potential targets of the efficacy, and which were testified to be downregulated by the ELISA assay under the extracts intervention.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; College of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Suqing Zhao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; College of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yuxue Ma
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; College of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wen Kang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; College of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wenbin Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; College of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Chen Zhang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China; College of Pharmacy, Minzu University of China, Beijing 100081, China; Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
2
|
Su FZ, Bai CX, Zhang WS, Zhang YY, Liu M, Sun YP, Yang BY, Kuang HX, Wang QH. Polysaccharides from bile Arisaema exert an antipyretic effect on yeast-induced fever rats through regulating gut microbiota and metabolic profiling. Int J Biol Macromol 2024; 278:134823. [PMID: 39168226 DOI: 10.1016/j.ijbiomac.2024.134823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
In our previous study, bile Arisaema was elucidated to have a significant anti-febrile effect, but the pharmacodynamic material basis of this effect remains uncertain. Herein, we found that the soluble polysaccharide fraction from bile Arisaema presents a remarkable antipyretic effect through balancing the gut microbiota and regulating metabolic profiling. Bile Arisaema polysaccharide (BAP) was characterized for its monosaccharide composition with arabinose, galactose, glucose, mannose and xylose (0.028:0.072:0.821:0.05:0.029, molar ratios) and amino acid composition with arginine, threonine, alanine, glycine, serine, proline and tyrosine (109.33, 135.78, 7.22, 8.86, 21.07, 4.96, 12.31 μg/mg). A total of 50 peptides were identified from BAP using Ltq-Orbitrap MS/MS. The oral administration of 100 mg/kg BAP significantly increased the antipyretic effect in yeast-induced fever rats by comparing the rectal temperature. Mechanistically, the inflammation and disorders of neurotransmitters caused by fever were improved by treatment with BAP. The western blotting results suggested that BAP could suppress fever-induced inflammation by down-regulating the NF-κB/TLR4/MyD88 signaling pathway. We also demonstrated that BAP affects lipid metabolism, amino acid metabolism and carbohydrate metabolism and balances the gut microbiota. In summary, the present study provides a crucial foundation for determining polysaccharide activity in bile Arisaema and further investigating the underlying mechanism of action.
Collapse
Affiliation(s)
- Fa-Zhi Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Chen-Xi Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Wen-Sen Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yuan-Yuan Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Meng Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yan-Ping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Qiu-Hong Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Fu S, Bao X, Wang Z, Tang Y, Wu Q, Zhu B, Zhou F, Ding Z. Antipyretic effect of inhaled Tetrastigma hemsleyanum polysaccharide on substance and energy metabolism in yeast-induced pyrexia mice via TLR4/NF-κb signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117732. [PMID: 38218501 DOI: 10.1016/j.jep.2024.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrastigma hemsleyanum Diels et Gilg, is one of the perennial evergreen plants with grass vine, which has obvious curative effect on severe infectious diseases. Although Tetrastigma hemleyanum has long been recognized for its capacity of antipyretic and antitoxic, its specific mechanism is unknown. AIM OF THE STUDY To evaluate the antipyretic effect of Tetrastigma hemleyanum polysaccharide (THP) on mice with dry yeast-induced fever, and to explore its specific antipyretic mechanism. METHODS In this study, THP was administered by aerosol in febrile mice. The rectal temperatures of treated animals were monitored at different time points. Histopathological evaluation and various inflammatory indexes were used to assess inflammatory damage. The concentration variations of the central neurotransmitter, endocrine system, substance and energy metabolism indicators were measured to explore the physiological mechanism. Quantitative real-time PCR, Western bolt and Immunohistochemistry were performed to identify the correlation between antipyretic and TLR4/NF-κB signaling pathway. RESULTS THP reduced the body temperature of febrile mice induced by dry yeast, as well as the levels of thermogenic cytokines and downregulated the contents of thermoregulatory mediators. THP alleviated the pathological damage of liver and hypothalamus caused by fever. In addition, THP decreased the secretion of thyroid hormone, substance and energy metabolism related indicators. Furthermore, THP significantly suppressed TLR4/NF-κB signaling pathway-related indicators. CONCLUSIONS In conclusion, our results suggest that inhaled THP exerts antipyretic effect by mediating the thermoregulatory mediator, decreasing the content of pyrogenic factors to lower the body temperature, and eventually restoring the high metabolic level in the body to normal via inhibiting TLR4/NF-κB signaling pathway. The study provides a reasonable pharmacodynamic basis for the treatment of polysaccharide in febrile-related diseases.
Collapse
Affiliation(s)
- Siyu Fu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Xiaodan Bao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Zhejiong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, China.
| | - Youying Tang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Qian Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
4
|
He X, Cui J, Li H, Zhou Y, Wu X, Jiang C, Xu Z, Wang R, Xiong L. Antipyretic effects of Xiangqin Jiere granules on febrile young rats revealed by combining pharmacodynamics, metabolomics, network pharmacology, molecular biology experiments and molecular docking strategies. J Biomol Struct Dyn 2024:1-18. [PMID: 38197809 DOI: 10.1080/07391102.2024.2301761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Xiangqin Jiere granules (XQJRG) is a proprietary Chinese medicine treating children's colds and fevers, but its mechanism of action is unclear. The aim of this study was to explore the antipyretic mechanisms of XQJRG based on pharmacodynamics, non-targeted metabolomics, network pharmacology, molecular biology experiments, molecular docking, and molecular dynamics (MD) simulation. Firstly, the yeast-induced fever model was constructed in young rats to study antipyretic effect of XQJRG. Metabolomics and network pharmacology studies were performed to identify the key compounds, targets and pathways involved in the antipyretic of XQJRG. Subsequently, MetScape was used to jointly analyze targets from network pharmacology and metabolites from metabolomics. Finally, the key targets were validated by enzyme-linked immunosorbent assay (ELISA), and the affinity and stability of key ingredient and targets were evaluated by molecular docking and MD simulation. The animal experimental results showed that after XQJRG treatment, body temperature of febrile rats was significantly reduced, 13 metabolites were significantly modulated, and pathways of differential metabolite enrichment were mainly related to amino acid and lipid metabolism. Network pharmacology results indicated that quercetin and kaempferol were the key active components of XQJRG, TNF, AKT1, IL6, IL1B and PTGS2 were core targets. ELISA confirmed that XQJRG significantly reduced the plasma concentrations of IL-1β, IL-6, and TNF-α, and the hypothalamic concentrations of COX-2 and PGE2. Molecular docking demonstrated that the binding energies of kaempferol to the core targets were all below -5.0 kcal/mol. MD simulation results showed that the binding free energies of TNF-kaempferol, IL6-kaempferol, IL1B-kaempferol and PTGS2-kaempferol were -87.86 kcal/mol, -70.41 kcal/mol, -69.95 kcal/mol and -106.67 kcal/mol, respectively. In conclusion, XQJRG has antipyretic effects on yeast-induced fever in young rats, and its antipyretic mechanisms may be related to the inhibition of peripheral pyrogenic cytokines release by constituents such as kaempferol, the reduction of hypothalamic fever mediator production, and the amelioration of disturbances in amino acid and lipid metabolism.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiying He
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Jieqiong Cui
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huayan Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xinchen Wu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Chunrong Jiang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhichang Xu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Ruirui Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
5
|
Wang Z, Guo Z, Wang X, Liao H, Chen F, Liu Y, Wang Z. Reduning alleviates sepsis-induced acute lung injury by reducing apoptosis of pulmonary microvascular endothelial cells. Front Immunol 2023; 14:1196350. [PMID: 37465664 PMCID: PMC10350519 DOI: 10.3389/fimmu.2023.1196350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction Sepsis-induced acute lung injury (SALI) is a critical illness with high mortality, and pulmonary microvascular endothelial cells (PMECs) barrier dysfunction is a well-documented pathogenesis of SALI. The current study aimed to investigate the underlying mechanism of Reduning (RDN) in the treatment of SALI. Methods Network pharmacology and molecular dynamics simulation (MDS) were used to confirm the possibility of key active components of RDN combining with AKT1. Hematoxylin-eosin staining (HE) and immunohistochemistry (IHC) were used to investigate the effect of RDN in vivo. Immunofluorescence (IF) and co-immunoprecipitation (CoIP) were used to investigate the relationship between mammalian target of rapamycin (mTOR) and Bax in PMECs. ELISA was used to test the level of TNF-α. Flow cytometry was used to detect apoptosis. JC-1 and electron microscopy were used to evaluate mitochondrial damage. The results showed that RDN likely alleviated SALI via targeting AKT1. Results In vivo, RDN could evidently decrease the expression levels of apoptosis-related proteins, alleviate mitochondrial damage, reduce lung tissue edema, down-regulate the level of TNF-α in the serum, and improve the mortality of sepsis in mice. In vitro, RDN had a significant effect on reducing the level of apoptosis-related proteins and cell apoptosis rate, while also mitigated mitochondrial damage. Furthermore, RDN could effectively lower the level of Bax in PMECs and increase the level of mTOR both in vivo and in vitro. Notably, mTOR has the ability to directly bind to Bax, and RDN can enhance this binding capability. Discussion RDN could attenuate SALI through reducing apoptosis of PMECs, which is a promising therapeutic strategy for SALI prevention.
Collapse
Affiliation(s)
- Ziyi Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhe Guo
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xuesong Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Haiyan Liao
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Feng Chen
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yuxin Liu
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhong Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Xie F, Xie M, Yang Y, Ao W, Zhao T, Liu N, Chen B, Kang W, Xiao W, Gu J. Pathway network-based quantitative modeling of the time-dependent and dose-response anti-inflammatory effect of Reduning Injection. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116216. [PMID: 36736714 DOI: 10.1016/j.jep.2023.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/17/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has extensive healing effects on inflammatory diseases with few side effects. Reduning injection (RDNI), a TCM prescription composed of Lonicera japonica Thunb., Gardenia jasminoides Ellis. and Artemisia annua L., is wildly used for treating inflammatory diseases. However, the mechanism of action of RDNI, like most TCM prescriptions, is unclear due to the complexity of relationships between components and their curative effects. AIM OF THE STUDY To develop a universal systems pharmacology protocol for mechanism modeling of TCM and apply it to reveal the real-time anti-inflammatory effect of Reduning Injection. MATERIALS AND METHODS Combined with database mining and references, a regulatory mechanism network of inflammation was constructed. A quantitative model was established afterwards by integrating pharmacokinetic data and two network parameters, namely Network Efficiency and Network Flux. The time-dependent and dose-response relationship of RDNI on the regulation of inflammation was then quantitatively evaluated. ELISA tests were performed to verify the reliability of the model. RESULTS Three cytokines, namely IL-1β, IL-6 and TNF-α were screened out to be markers for evaluation of the anti-inflammatory effect of RDNI. An HPLC method for the simultaneous determination of 10 RDNI compounds in SD rat plasma was established and then applied to pharmacokinetic studies. Based on compound activity and pharmacokinetic data, the time-dependent effect of RDNI were quantitatively predicted by the pathway network-based modeling procedure. CONCLUSIONS The quantitative model established in this work was successfully applied to predict a TCM prescription's real-time dynamic healing effect after administration. It is qualified to provide novel insights into the time-dependent and dose-effect relationship of drugs in an intricate biological system and new strategies for investigating the detailed molecular mechanisms of TCM.
Collapse
Affiliation(s)
- Fuda Xie
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Mingxiang Xie
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yibing Yang
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Weizhen Ao
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; iHuman Institute, School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China.
| | - Tingxiu Zhao
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Na Liu
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, China.
| | - Jiangyong Gu
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Gao X, Wang J, Chen X, Wang S, Huang C, Zhang Q, Cao L, Wang Z, Xiao W. Reduning injection prevents carrageenan-induced inflammation in rats by serum and urine metabolomics analysis. CHINESE HERBAL MEDICINES 2022; 14:583-591. [DOI: 10.1016/j.chmed.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 10/14/2022] Open
|
8
|
Yang C, Song C, Wang Y, Zhou W, Zheng W, Zhou H, Deng G, Li H, Xiao W, Yang Z, Kong L, Ge H, Song Y, Sun Y. Re-Du-Ning injection ameliorates radiation-induced pneumonitis and fibrosis by inhibiting AIM2 inflammasome and epithelial-mesenchymal transition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154184. [PMID: 35665679 DOI: 10.1016/j.phymed.2022.154184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is a common side effect in chest radiotherapy patients, and there is no good medicine to treat it. Re-Du-Ning (RDN) injection is a traditional Chinese medicine that is clinically used to treat upper respiratory tract infections and acute bronchitis. RDN has the advantage of high safety and mild side effects. The mechanism of most traditional Chinese medicine preparations is unknown. PURPOSE To illustrate the mechanisms of RDN for the treatment of RILI. METHODS Female C57BL/6 mice were used to establish a RILI model via irradiation, and RDN injection was intraperitoneally administered at doses of 5, 10, and 20 ml/kg. The cytokines were measured by ELISA and qPCR. The data related to Absent in melanoma 2 (AIM2) inflammasome were analyzed via ELISA and a network pharmacological approach. In addition, the data related to epithelial-mesenchymal transition (EMT) were analyzed via immunofluorescence, Western blotting, and a network pharmacological approach. RESULTS RDN robustly alleviated RILI. Meanwhile, RDN downregulated inflammatory cells' infiltration and the expression of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α. Next, the potential molecular mechanisms of RDN were predicted through network pharmacology analysis. RDN may ameliorate radiation pneumonitis (RP) by inhibiting AIM2-mediated pyroptosis. Moreover, RDN treatment inhibited EMT and phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) pathway. The active compounds from Lonicera japonica Thunb. decreased the phosphorylation of Akt. CONCLUSION These findings demonstrate that RDN, as a traditional Chinese medicine preparation, will be a candidate drug for treating RILI.
Collapse
Affiliation(s)
- Chenxi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chenglin Song
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yi Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Daming Road, Nanjing, Jiangsu, 210012 China
| | - Wencheng Zhou
- Department of Pharmacy, First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310006, China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Han Zhou
- Department of Radiation Oncology, Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haibo Li
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Zhongqi Yang
- Department of Geriatrics, First Affiliated Hospital of Guangzhou University of Chinese Medicine, 16 Jichang Road, Guangzhou, Guangdong 510405, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Huiming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Yaohong Song
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Daming Road, Nanjing, Jiangsu, 210012 China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
9
|
Ramalingam V, Narendra Kumar N, Harshavardhan M, Sampath Kumar HM, Tiwari AK, Suresh Babu K, Mudiam MKR. Chemical profiling of marine seaweed Halimeda gracilis using UPLC-ESI-Q-TOF-MSE and evaluation of anticancer activity targeting PI3K/AKT and intrinsic apoptosis signaling pathway. Food Res Int 2022; 157:111394. [DOI: 10.1016/j.foodres.2022.111394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
|
10
|
Huang P, Li Y, Huang B, Zhao S, Chen L, Guan H, Chen Y, Feng Y, Huang X, Deng Y, Lei S, Wu Q, Zhang H, Zeng Z, Zeng L, Chen B. A Five-Dimensional Network Meta-Analysis of Chinese Herbal Injections for Treating Acute Tonsillitis Combined With Western Medicine. Front Pharmacol 2022; 13:888073. [PMID: 35784692 PMCID: PMC9247210 DOI: 10.3389/fphar.2022.888073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Acute tonsillitis has high morbidity. Chinese herbal injections (CHIs) were reported to be useful in treating acute tonsillitis and might reduce the probability of antibiotic resistance. Nevertheless, the optimal strategy for combining CHIs with western medicine (WM) to treat acute tonsillitis remains unclear. Methods: We retrieved data from the following databases with retrieval time from inception to 11 January 2022: PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Wanfang Database, Weipu Journal Database, and Chinese Biomedical Literature Database. Version 2 of the Cochrane risk-of-bias tool (ROB2) was used for evaluating the quality of the included studies. R 4.1.2, STATA 14.0, and Python 3.10.4 were employed for network meta-analysis, with 5-dimensional K-means cluster analysis, meta-regression analyses, sensitivity analyses, and subgroup analyses. Results: A total of 110 randomized controlled trials including 12,152 patients were included. All the studies were rated as “high risk” and “some concerns”. In terms of improving clinical effectiveness rate, Qingkailing injection + WM ranked ahead of other interventions (89.51%). Regarding reducing antipyretic time, Reduning injection + WM had the highest-ranking probability (68.48%). As for shortening sore throat relief time, Shuanghuanglian injection + WM ranked first (76.82%). Concerning shortening red and swollen tonsils relief time, Yanhuning injection + WM possessed the highest-ranking probability (89.17%). In terms of reducing tonsillar exudate relief time, Xuebijing injection + WM ranked ahead of the other interventions (94.82%). Additionally, the results of the cluster analysis suggested that Xuebijing injection + WM, Reduning injection + WM, and Yanhuning injection + WM were probably the best interventions. Furthermore, adverse drug reactions rate of Xuebijing injection + WM, Reduning injection + WM, Yanhuning injection + WM, Qingkailing injection + WM, and Shuanghuanglian injection + WM were individually 0.00%, 3.11%, 3.08%, 4.29%, and 4.62%. Conclusions: CHIs + WM have a better impact on patients with acute tonsillitis than WM alone. Xuebijing injection, Reduning injection, and Yanhuning injection might have potential advantages in treating the disease. Concerning adverse drug reactions, Xuebijing injection is presumably the optimal CHI. More high-quality studies are needed to further confirm our findings. Systematic Review Registration: CRD42022303243; URL= https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=303243
Collapse
Affiliation(s)
- Peiying Huang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Yin Li
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bixuan Huang
- Department of Nursing, Hubei University of Arts and Science, Xiangyang, China
| | - Shuai Zhao
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Li Chen
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Hansu Guan
- Emergency Department of the Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Chen
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yuchao Feng
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaoyan Huang
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yi Deng
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Sisi Lei
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Qihua Wu
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Haobo Zhang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Zhongyi Zeng
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Linsheng Zeng
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Bojun Chen
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
- *Correspondence: Bojun Chen,
| |
Collapse
|
11
|
Protective Effect of Pueraria lobate (Willd.) Ohwi root extract on Diabetic Nephropathy via metabolomics study and mitochondrial homeostasis-involved pathways. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Wang X, Gong P, Liu M, wang M, wang S, guo Y, chang X, yang W, Chen X, Chen F. Hypoglycemic effect of a novel polysaccharide from Lentinus edodes on STZ-induced diabetic mice via metabolomics study and Nrf2/HO-1 pathways. Food Funct 2022; 13:3036-3049. [DOI: 10.1039/d1fo03487a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the increased worldwide prevalence of diabetes, more and more attentions are focused on the natural drug candidate who could treat diabetes with high efficacy but without undesired side effect....
Collapse
|
13
|
Tu Y, Li L, Wang Z, Yang L. Advances in analytical techniques and quality control of traditional Chinese medicine injections. J Pharm Biomed Anal 2021; 206:114353. [PMID: 34562802 DOI: 10.1016/j.jpba.2021.114353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/27/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022]
Abstract
Traditional Chinese medicine injections (TCMIs) are a new pharmaceutical form in the modernization of traditional Chinese medicines (TCMs). Its efficacy is rapid, the curative effect is improved, and is widely used in critical and acute diseases, complicated and severe diseases, and other treatment. However, with the broad applications of TCMIs, clinical adverse reactions frequently occur, and safety problems become more prominent. Therefore, the quality control of TCMIs is essential. Chemical analysis methods and biological analysis methods are widely used in the quality control of TCMIs. This article describes the current status of TCMIs, the analytical techniques, and methods currently used, and the quality control of TCMIs. A summary of the advantages and disadvantages of the current analysis methods is presented. An overview of the quality control of TCMIs is introduced. In addition, emerging techniques of the quality control of TCMIs are introduced.
Collapse
Affiliation(s)
- Yujia Tu
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
14
|
Gong P, Cui D, Guo Y, Wang M, Wang Z, Huang Z, Yang W, Chen F, Chen X. A novel polysaccharide obtained from Siraitia grosvenorii alleviates inflammatory responses in a diabetic nephropathy mouse model via the TLR4-NF-κB pathway. Food Funct 2021; 12:9054-9065. [PMID: 34608922 DOI: 10.1039/d1fo01182k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The inflammatory and antioxidant effects of a novel Siraitia grosvenorii polysaccharide (SGP-1-1) were investigated in an inflammation-suppressed diabetic nephropathy (DN) mouse model, and the underlying molecular mechanisms of inflammation and oxidative stress in SGP-1-1-treated mouse models were elucidated. The results demonstrated that DN mouse models treated with SGP-1-1 (50, 100, and 200 mg kg-1 d-1) exhibited good inflammation-modulating activity. In addition, histopathological analysis showed that glomerular atrophy, severe glomerular thylakoid hyperplasia, tubular endothelial detachment, basement membrane exposure, cytoplasmic infiltration with inflammatory cells, and interstitial oedema were all alleviated in DN mice after treatment with SGP-1-1. Metabolomics analysis based on UPLC-Q-TOF/MS revealed that a close relationship between the occurrence of DN and the potential 39 biomarkers, especially, leukotriene E3 and arachidonic acid,of which the main invloved metabolic pathways may beglycerophospholipid metabolism, arachidonic acid metabolism and primary bile acid biosynthesis. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis results demonstrated that SGP-1-1 downregulates mRNA and the protein expression of the G protein-coupled cell membrane receptor TLR4 and its downstream protein kinase (NF-κB p65). This, resulted in the inhibition of the TLR4-NF-κB pathway in the peritoneum of DN mice by regulating inflammation, while stimulating the production of superoxide dismutase (SOD) and reducing the production of cytokine (IL-6, TNF-α) and malondialdehyde (MDA).
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Dandan Cui
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Mengrao Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Zhineng Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Zihan Huang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| |
Collapse
|
15
|
Li BH, Li ZY, Liu MM, Tian JZ, Cui QH. Progress in Traditional Chinese Medicine Against Respiratory Viruses: A Review. Front Pharmacol 2021; 12:743623. [PMID: 34531754 PMCID: PMC8438140 DOI: 10.3389/fphar.2021.743623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023] Open
Abstract
Respiratory viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-1, SARS-CoV-2, influenza A viruses, and respiratory syncytial virus, pose a serious threat to society. Based on the guiding principles of “holism” and “syndrome differentiation and treatment”, traditional Chinese medicine (TCM) has unique advantages in the treatment of respiratory virus diseases owing to the synergistic effect of multiple components and targets, which prevents drug resistance from arising. According to TCM theory, there are two main strategies in antiviral treatments, namely “dispelling evil” and “fu zheng”. Dispelling evil corresponds to the direct inhibition of virus growth and fu zheng corresponds to immune regulation, inflammation control, and tissue protection in the host. In this review, current progress in using TCMs against respiratory viruses is summarized according to modern biological theories. The prospects for developing TCMs against respiratory viruses is discussed to provide a reference for the research and development of innovative TCMs with multiple components, multiple targets, and low toxicity.
Collapse
Affiliation(s)
- Bao-Hong Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhong-Yuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao-Miao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Zhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing-Hua Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
16
|
Jia S, Luo H, Liu X, Fan X, Huang Z, Lu S, Shen L, Guo S, Liu Y, Wang Z, Cao L, Cao Z, Zhang X, Zhou W, Zhang J, Li J, Wu J, Xiao W. Dissecting the novel mechanism of reduning injection in treating Coronavirus Disease 2019 (COVID-19) based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113871. [PMID: 33485971 PMCID: PMC7825842 DOI: 10.1016/j.jep.2021.113871] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 05/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reduning injection (RDNI) is a patented Traditional Chinese medicine that contains three Chinese herbal medicines, respectively are the dry aboveground part of Artemisia annua L., the flower of Lonicera japonica Thunb., and the fruit Gardenia jasminoides J.Ellis. RDNI has been recommended for treating Coronavirus Disease 2019 (COVID-19) in the "New Coronavirus Pneumonia Diagnosis and Treatment Plan". AIM OF THE STUDY To elucidate and verify the underlying mechanisms of RDNI for the treatment of COVID-19. METHODS This study firstly performed anti-SARS-CoV-2 experiments in Vero E6 cells. Then, network pharmacology combined with molecular docking was adopted to explore the potential mechanisms of RDNI in the treatment for COVID-19. After that, western blot and a cytokine chip were used to validate the predictive results. RESULTS We concluded that half toxic concentration of drug CC50 (dilution ratio) = 1:1280, CC50 = 2.031 mg crude drugs/mL (0.047 mg solid content/mL) and half effective concentration of drug (EC50) (diluted multiples) = 1:25140.3, EC50 = 103.420 μg crude drugs/mL (2.405 μg solid content/mL). We found that RDNI can mainly regulate targets like carbonic anhydrases (CAs), matrix metallopeptidases (MMPs) and pathways like PI3K/AKT, MAPK, Forkhead box O s and T cell receptor signaling pathways to reduce lung damage. We verified that RDNI could effectively inhibit the overexpression of MAPKs, PKC and p65 nuclear factor-κB. The injection could also affect cytokine levels, reduce inflammation and display antipyretic activity. CONCLUSION RDNI can regulate ACE2, Mpro and PLP in COVID-19. The underlying mechanisms of RDNI in the treatment for COVID-19 may be related to the modulation of the cytokine levels and inflammation and its antipyretic activity by regulating the expression of MAPKs, PKC and p65 nuclear factor NF-κB.
Collapse
Affiliation(s)
- Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xiaotian Fan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Liangliang Shen
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| | - Zeyu Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| | - Xinzhuang Zhang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| |
Collapse
|
17
|
Consistency evaluation of Chaihuang granules based on pharmacokinetics and metabolomics. J Pharm Biomed Anal 2021; 202:114170. [PMID: 34062496 DOI: 10.1016/j.jpba.2021.114170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/25/2021] [Accepted: 05/22/2021] [Indexed: 11/23/2022]
Abstract
Consistency evaluation of Traditional Chinese Medicinal preparations (TCMPs) with complex chemical composition is challenging. Chaihuang granules (CHG), as a well-known TCMP, consists of Chaihu (Bupleuri Radix) and Huangqin (Scutellariae Radix) extract. In this work, we used pharmacokinetics and metabolomics to evaluate consistency of CHG products from two different manufacturers. In the pharmacokinetic study, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was applied to determine the plasma concentration-time profiles of baicalin in rat plasma. Pharmacokinetic parameters, including the maximum concentration in blood (Cmax), area under the curve (AUC), the time to reach Cmax (Tmax), and half-life (T1/2), were calculated to assess the consistency preliminarily. And there was no significant difference in these pharmacokinetic parameters between the two CHG. In LC-MS-based metabolomics, the metabolic response profiles changes based on relative distance values (RDV) to different CHG products were compared. Meanwhile, the kinetic process of 31 differential endogenous metabolites that altered by CHG were determined. Metabolomics data showed the similar metabolic regulation effects to rats of the two formulations. Both pharmacokinetic and metabolomics results indicated there was no significant difference between CHG products. Furthermore, metabolic pathways significantly altered by CHG were elucidated, including phenylalanine, tyrosine and tryptophan biosynthesis, valine, leucine and isoleucine biosynthesis, phenylalanine metabolism, and sphingolipid metabolism. Pharmacokinetics combined with metabolomics could provide a comprehensive perspective for consistency evaluation of CHG.
Collapse
|
18
|
Wang Z, Chen W, Li Y, Zhang S, Lou H, Lu X, Fan X. Reduning injection and its effective constituent luteoloside protect against sepsis partly via inhibition of HMGB1/TLR4/NF-κB/MAPKs signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113783. [PMID: 33421596 DOI: 10.1016/j.jep.2021.113783] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reduning injection (RDN), a popular traditional Chinese medicine, formulated by three herbs (i.e., Artemisia carvifolia Buch.-Ham. ex Roxb., Lonicera japonica Thunb., and Gardenia jasminoides J. Ellis), has been widely used to treat upper respiratory infectious diseases in China. AIM OF THE STUDY To investigate the protective effect of RDN on both lipopolysaccharides (LPS)- and cecal ligation and puncture (CLP)-induced septic mice. To identify the potentially effective constituent, and to determine its protective effect and underlying mechanism in vivo and in vitro. MATERIALS AND METHODS Male C57BL/6 mice were used to establish septic model by tail intravenous injection of 4 mg/kg LPS or CLP surgery. After modeling, mice were administered by tail intravenous injection of RDN in the dose of 16 or 8 mL/kg/day. The mortality, histopathology, plasma levels of inflammatory cytokines were evaluated respectively. In addition, we screened the potentially effective substances of RDN against sepsis by detecting the nitric oxide (NO) production in LPS-stimulated Raw 264.7 cells and verified the effect of luteoloside in CLP-induced septic mice subsequently. Finally, the underlying mechanisms of RDN and luteoloside were investigated in the inflammatory model in vitro. RESULTS Administration of RDN significantly reduced the mortality and increased the survival rate in both LPS- and CLP-induced septic mice. Meanwhile, RDN reduced the release of inflammatory cytokines accompanied by alleviating the organs damage of lung, liver, and kidney in CLP-induced septic mice. Moreover, several components from Gardenia jasminoides J. Ellis extract (ZZ) or Lonicera japonica Thunb and Artemisia carvifolia Buch.-Ham. ex Roxb extract (JQ) as well as the constituents of luteoloside, quercetin, and caffeic acid were screened out to have obvious anti-inflammatory activity, which may be the potentially effective substances of RDN against sepsis. We further verified the protective role of luteoloside in CLP-induced septic mice. In addition, RDN and luteoloside significantly inhibited both the secretion and translocation of mobility group box (HMGB)1, and HMGB1-mediated activation of TLR4/NF-κB/MAPKs signaling pathways. CONCLUSION RDN and its effective constituent luteoloside exhibited a significant protective effect against sepsis, which were potential candidate drugs for treatment of sepsis. The mechanism of antisepsis partly was related to inhibition of HMGB1/TLR4/NF-κB/MAPKs signaling pathways. The results provide an evidence base for the follow-up clinical application of RDN in treatment of sepsis.
Collapse
Affiliation(s)
- Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Wen Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunying Li
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuying Zhang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - He Lou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
19
|
Ma LL, Liu HM, Luo CH, He YN, Wang F, Huang HZ, Han L, Yang M, Xu RC, Zhang DK. Fever and Antipyretic Supported by Traditional Chinese Medicine: A Multi-Pathway Regulation. Front Pharmacol 2021; 12:583279. [PMID: 33828481 PMCID: PMC8020597 DOI: 10.3389/fphar.2021.583279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease, 2019 (COVID-19), has spread rapidly around the world and become a major public health problem facing the world. Traditional Chinese medicine (TCM) has been fully committed to treat COVID-19 in China. It improved the clinical symptoms of patients and reduced the mortality rate. In light of the fever was identified as one of leading clinical features of COVID-19, this paper will first analyze the material basis of fever, including pyrogenic cytokines and a variety of the mediators of fever. Then the humoral and neural pathways of fever signal transmission will be described. The scattered evidences about fever recorded in recent years are connected in series. On this basis, the understanding of fever is further deepened from the aspects of pathology and physiology. Finally, combining with the chemical composition and pharmacological action of available TCM, we analyzed the mechanisms of TCMs to play the antipyretic effect through multiple ways. So as to further provide the basis for the research of antipyretic compound preparations of TCMs and explore the potential medicines for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Le-Le Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hui-Min Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Chuan-Hong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ya-Nan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Fang Wang
- State key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Hao-Zhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ming Yang
- State key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Run-Chun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
20
|
Sun M, Wang Q, Zhang M, Zhang G, Wu T, Liu R, Sui W, Zhang J, Yin J, Zhang M. Leuconostoc pseudomesenteroides improves microbiota dysbiosis and liver metabolism imbalance and ameliorates the correlation between dihydroceramide and strains of Firmicutes and Proteobacteria in high fat diet obese mice. Food Funct 2020; 11:6855-6865. [PMID: 32666978 DOI: 10.1039/d0fo01009j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leuconostoc pseudomesenteroides is widely isolated from fermented foods; however, the underlying molecular mechanism behind its anti-obesity function has rarely been studied. This study aims to explore the role of alterations in gut microbes and liver metabolites mediated by Leuconostoc pseudomesenteroides (Tu) in obese mice for a period of 8 weeks through UPLC/Q-TOF-MS and 16S rRNA sequencing. Our results showed that Tu administration at a dosage of 1 × 109 CFU per day per mouse effectively attenuated the weight of mice, significantly reduced serum lipids, and markedly improved fecal lipid output. Tu also ameliorated the lipid profiles in the liver and epididymal fat tissues, and restored intestinal disorder caused by a high-fat diet. Moreover, glycerophospholipid metabolism in the liver was altered by increased dihydroceramide levels. Surprisingly, the correlation between dihydroceramide and strains of Firmicutes and Proteobacteria was found for the first time. Collectively, these findings highlight that Tu could be a potential dietary supplement for weight control.
Collapse
Affiliation(s)
- Mengzhen Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jia S, Wu J, Zhou W, Liu X, Guo S, Zhang J, Liu S, Ni M, Meng Z, Liu X, Zhang X, Wang M. A network pharmacology-based strategy deciphers the multitarget pharmacological mechanism of Reduning injection in the treatment of influenza. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|